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Abstract: We performed intra- and intermolecular charge transfer (CT) excitation energy calculations
of (a) conjugated carbon chain [H2N–(CH=CH)n–X] and (b) its equidistant H2NH···HX (n = 2~8) with
various electron acceptors (X = NH2, OH, Cl, CHO, CN, and NO2) using EOM-CCSD, time-dependent
(TD) Hartree–Fock (HF) and various density functional theory (DFT) functionals, such as BLYP, B3LYP,
long-range corrected (LC) DFT, and LC-DFT with an optimally tuned (OT) range separation parame-
ter (µ) using Koopman’s theorem to investigate the effect of the electron-withdrawing (or -donating)
strength of end-capped functional group (X) and CT distance (R) on intra- and intermolecular CT
excitation energies. As the electron-withdrawing strength of X increases, both intra- and intermolecu-
lar CT excitation energies tend to decrease, since energy gaps between orbitals corresponding to CT
excitations (e.g., HOMO and LUMO) decrease. However, the effect of the electron-withdrawing group
on intramolecular CT excitation energy is negligible (at most 0.5 eV). OT-LC-DFT shows accurate
intermolecular CT excitation energy, but worse results in intramolecular CT excitation energy than
LC-DFT with the default µ value (0.47). Therefore, we conclude that the optimal tuning method is
not effective in predicting intramolecular CT excitation energy. While intermolecular CT excitation
energy has excitonic binding energy with asymptotic behavior to CT distance that is not affected by
the choice of range separation parameter, intramolecular CT excitation energy is affected by orbital
relaxation energy, which strongly depends on the choice of range separation parameter, which makes
the OT method of range separation parameter ineffective in predicting intramolecular CT excitation
energy as well as local excitation with high accuracy.

Keywords: range separation; DFT; LC-DFT; charge transfer; polyene; optimal tuning; intramolecu-
lar CT

1. Introduction

Charge transfer (CT) is a core photochemical mechanism of materials applied in
various fields from biology to green energy, such as photosynthesis, photovoltaic cells,
and solar cells. Thus, it is necessary to accurately predict inter- and intramolecular CT
excitation energies in many fields [1–7]. Accordingly, a time-dependent (TD) scheme
using density functional theory [8] (DFT) functionals can be applied to the calculations
of the excited state of large systems at a relatively low computational cost. However,
conventional DFT functionals, such as local density approximation (LDA), generalized
gradient approximation (GGA), and global hybrid functionals, appear to have systematic
errors in calculating both excitonic binding and orbital energies due to local characteristics
of the exchange functional. As a result, since CT excitation energy cannot be accurately
calculated, many related studies have been conducted. Studies to predict high-accuracy CT
excitation energy using DFT combined with a long-range exchange correction [9,10] (LC)
scheme, with its range separation parameter (µ) optimized to Koopmans’ theorem, have
been actively performed.
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LC-DFT calculates exchange energy with the operator 1/r12 divided into DFT and HF
parts as follows:

1
r12

= 1−erf(µr12)
r12

+ erf(µr12)
r12

DFT HF
(1)

The first term [left term of Equation (1)] is the inter-electronic short-range Coulomb
potential operator that is used for DFT exchange inclusion, and the second term [right
term of Equation (1)] is the inter-electronic long-range Coulomb potential operator used
for the HF exchange integral. By using them, LC-DFT showed successful improvement of
several chemical properties that conventional DFT functionals failed to reproduce [6,10–27].
Furthermore, LC-DFT has been shown to successfully reproduce CT excitation energy
and its oscillator strength [28–30]. In addition, LC-DFT reproduces correct far-nucleus
asymptotic behavior, −1/R, of the intermolecular CT excitation energies of donor and
acceptor with the distance between donor and acceptor [28].

In a previous report [31], we studied the dependences of intramolecular CT excitation
energies between-NH2 and-NO2 and its equidistant intermolecular CT excitation energies
between NH3 and HNO2 without a conjugated polyene chain on CT distances. As a result,
as the CT distance between electron donor and acceptor increases, intramolecular CT exci-
tation energy decreases, but intermolecular CT excitation energy increases with asymptotic
potential (−1/R). We found that this is because the orbital energy gap corresponding to
intermolecular CT excitation does not change as the distance increases, but the orbital
energy gap corresponding to intramolecular CT excitation decreases because the orbitals of
donor and acceptor are delocalized through the conjugated carbon chain. Also, we found
that LC-DFT with a large µ value (about 0.47) calculates both the intra- and intermolecular
CT excitation energies closest to EOM-CCSD/cc-pVTZ compared to LC-DFT with smaller
µ values or other DFT functionals. Moreover, our recent study clarified that intramolecular
CT excitations bridged with alkane chain between electron donor and acceptor are identical
to those with no bridge or vacuum [32]. Therefore, CT excitation bridged with alkane chain
acts similarly to intermolecular CT excitation.

LC-DFT with an optimally tuned (OT) µ parameter using Koopmans’ theorem predicts
the frontier orbital energies of a specific molecular system with high accuracy, and many
related researchers have made great progress in the efficient prediction of CT excitation
energy with LC-DFT [1,33–35]. Many theoretical studies on predicting the CT excitation
energies of various molecular systems with high accuracy have been performed, but studies
that attempt to clarify the dependency of intra- and intermolecular CT excitation energies
on the electron-withdrawing strength of an electron acceptor or electron-donating strength
of an electron donor have not yet been performed. Also, to the best of our knowledge, no
study on the optimal µ value that can provide the most accurate intra- and intermolecular
CT excitation energy of various electron acceptors (or donors) has been reported, even
though there are some reports that the OT method of LC-DFT failed in calculating some
photophysical properties [36–38].

Therefore, in this article, we will analyze the dependence of intra- and intermolecular
CT excitation energies on electron-withdrawing (or -donating) strength and will determine
whether an optimally tuned µ value obtained using Koopmans’ theorem enables LC-
DFT to predict intra- and intermolecular CT excitation energies effectively with various
electron acceptors.

2. Results and Discussion
2.1. The Effect of Electron Acceptors on Intra- and Intermolecular CT Excitation Energies

Figure 1 shows the intra- and intermolecular CT excitation energies of H2N–(CH=CH)n–X
and H2N–H. . .. . .H–X, respectively, from electron donor, (H)–NH2, to various electron
acceptors, X (NH2, OH, Cl, CHO, CN, and NO2), with different electron-withdrawing
strengths calculated using several quantum chemical methods, such as HF, EOM-CCSD,
and various DFT functionals. Both the intra- and intermolecular CT excitation energies
calculated using EOM-CCSD/cc-pVTZ are slightly smaller than the EOM-CCSD/cc-pVDZ
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ones, which indicates that the differences between correlation energies calculated using
cc-pVDZ and cc-pVTZ are sufficiently small in both the intra-and intermolecular CT
excitation energies.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 18 
 

 

2. Results and Discussion 
2.1. The Effect of Electron Acceptors on Intra-and Intermolecular CT Excitation Energies  

Figure 1 shows the intra- and intermolecular CT excitation energies of H2N–
(CH=CH)n–X and H2N–H……H–X, respectively, from electron donor, (H)–NH2, to various 
electron acceptors, X (NH2, OH, Cl, CHO, CN, and NO2), with different electron-with-
drawing strengths calculated using several quantum chemical methods, such as HF, 
EOM-CCSD, and various DFT functionals. Both the intra- and intermolecular CT excita-
tion energies calculated using EOM-CCSD/cc-pVTZ are slightly smaller than the EOM-
CCSD/cc-pVDZ ones, which indicates that the differences between correlation energies 
calculated using cc-pVDZ and cc-pVTZ are sufficiently small in both the intra-and inter-
molecular CT excitation energies.  

 
Figure 1. (a) Intra- and (b) intermolecular CT excitation energies calculated using EOM-CCSD (cc-
pVTZ and cc-pVDZ), HF, LC-BLYP, OT-LC-BLYP, B3LYP, and BLYP (cc-pVTZ). 

We examined the effect of the electron-withdrawing strength of X on intra- and in-
termolecular CT excitation energies using the EOM-CCSD/cc-pVTZ ones. As the chain 
number (n) or CT distance (R) between electron donor and acceptor increases, the intra-
molecular CT excitation energies decrease (Figure 2), but the intermolecular CT excitation 
energies increase regardless of the choice of X (Figure 3), as reported in a previous study 
[31,32]. In order to investigate the effects of electron-withdrawing strength as well as R on 

Figure 1. (a) Intra- and (b) intermolecular CT excitation energies calculated using EOM-CCSD
(cc-pVTZ and cc-pVDZ), HF, LC-BLYP, OT-LC-BLYP, B3LYP, and BLYP (cc-pVTZ).

We examined the effect of the electron-withdrawing strength of X on intra- and inter-
molecular CT excitation energies using the EOM-CCSD/cc-pVTZ ones. As the chain num-
ber (n) or CT distance (R) between electron donor and acceptor increases, the intramolecular
CT excitation energies decrease (Figure 2), but the intermolecular CT excitation energies
increase regardless of the choice of X (Figure 3), as reported in a previous study [31,32]. In
order to investigate the effects of electron-withdrawing strength as well as R on inter- and
intramolecular CT excitation energies, we took as examples for illustrations the inter- and in-
tramolecular CT excitation energies of n = 2 and n = 4 with X = NO2, the strongest acceptor,
and NH2, the weakest acceptor, in Figures 2 and 3. In the case of n = 2, the intermolecular
CT excitation energy of H2NH···NH3 (11.13 eV) is larger than the H2NH···HNO2 (8.79 eV)
by 2.34 eV, and the intramolecular CT excitation energy of H2N–(CH=CH)2–NH2 (5.81 eV)
is larger than the H2N–(CH=CH)2–NO2 (4.53 eV) by only 1.27 eV. Similarly, in the case of
n = 4, the intermolecular CT excitation energy of H2NH···NH3 (12.08 eV) is larger than
H2NH···HNO2 (9.75 eV) by 2.33 eV, and the intramolecular CT excitation energy of H2N–
(CH=CH)4–NH2 (4.50 eV) is larger than the H2N–(CH=CH)4–NO2 (3.76 eV) by 0.74 eV
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[Tables S1 and S2]. These results show that as the electron-withdrawing strength of the
electron acceptor increases, the intermolecular CT excitation energies significantly decrease
(Figure 3). As an exceptional case, the intermolecular CT excitation energies of X = CN,
which is generally known as a strong electron-withdrawing group, are shown to be similar
to the intermolecular CT energies of X = NH2, which is a strong electron-donating group.
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Figure 2. Intramolecular CT excitation energies of H2N–(CH=CH)n–X (X = NH2, OH, Cl, CHO, CN,
and NO2) with (a) n = 2 and (b) n = 4 calculated using EOM-CCSD (cc-pVTZ and cc-pVDZ), HF,
LC-BLYP, OT-LC-BLYP, B3LYP, and BLYP (cc-pVTZ).

On the other hand, the electron-withdrawing strength of X has comparatively little
effect on intramolecular CT excitation energies. It is also noticeable that an increase in R
decreases the effect of X on intramolecular CT excitation energies (Figure 2). That is, as
the conjugation length of polyene increases, the effect of the polyene conjugation chain on
intramolecular CT excitations increases and the effect of the electron-withdrawing strength
of X diminishes [39]. On the other hand, an increase in R does not affect intermolecular CT
excitation energies in any cases of X (Figure 3).

2.2. Assessment of Various DFT Functionals on Intra- and Intermolecular CT Excitation Energy

We assessed DFT functionals for intra- and intermolecular CT excitation energy calcu-
lations with the EOM-CCSD/cc-pVTZ ones (Figure 1, Tables S1 and S2). As mentioned in
our previous report on the intra- and intermolecular CT excitations of H2N–(CH=CH)2–
NO2 and H2N–H. . .. . .H–NO2, respectively, the global hybrid DFT (B3LYP) and pure DFT
(BLYP) remarkably underestimate both intra- and intermolecular CT excitation energies.
On the other hand, LC-DFT [17] (LC-BLYP) calculates both the intra- and intermolecular CT
excitation energies significantly close to the EOM-CCSD/cc-pVTZ ones [31]. Unexpectedly,
the HF method provides the intermolecular CT excitation ones with larger deviations
from the EOM-CCSD ones than the LC-DFT ones, but the intramolecular CT excitation
energies are closer to the EOM-CCSD ones than the LC-DFT ones. However, the range of
the intramolecular CT excitation energies calculated using all the tested theoretical methods
are narrow compared to that of the intermolecular CT energies. Therefore, the deviations
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in calculated intramolecular CT excitation energies from the EOM-CCSD ones are basically
small compared to the intermolecular CT excitation energy calculations.
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NO2) with (a) n = 2, (b) n = 4, and (c) n = 8, which are equidistant with H2N–(CH=CH)n–X (X = NH2,
OH, Cl, CHO, CN, and NO2) calculated using EOM-CCSD (cc-pVTZ and cc-pVDZ), HF, LC-BLYP,
OT-LC-BLYP, B3LYP, and BLYP (cc-pVTZ).

Then, we examined the performance of the optimal tuning method of the range sepa-
ration parameter, µ, of LC-BLYP using Koopmans’ theorem on inter- and intramolecular
CT excitation energies with respect to various X and R. The optimally tuned µ values for
both the intra- and intermolecular CT excitation energies with respect to various X and R
are presented in Table 1. The optimal µ values for the intermolecular CT excitation systems
range from 0.46 to 0.49 and are shown to be independent of a change in R as well as X.
On the other hand, the optimal µ values for the intramolecular CT excitation systems are
significantly smaller than the default value (0.47) regardless of any choice of X (e.g., the
optimal µ value is 0.18 at n = 8 [39–41]. Note that the electron-drawing strength of X does
not influence optimal µ values in both the intra- and intermolecular CT excitation systems,
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which shows that optimal µ values are not related to the multitude of orbital energy gaps
corresponding to CT excitation as well as electron-withdrawing (or -donating) strength.

Table 1. Optimally tuned µ values for intra- and intermolecular CT excitations with various electron
acceptors using Koopman’s theorem.

n -X(HX) Intra Inter n -X(HX) Intra Inter

2

-NH2(NH3) 0.29 0.48

6

-NH2(NH3) 0.21 0.48
-OH(H2O) 0.30 0.48 -OH(H2O) 0.21 0.49
-Cl(HCl) 0.29 0.48 -Cl(HCl) 0.20 0.48

-CHO(CH2O) 0.29 0.46 -CHO(CH2O) 0.20 0.47
-CN(HCN) 0.29 0.48 -CN(HCN) 0.20 0.49

-NO2(HNO2) 0.30 0.47 -NO2(HNO2) 0.20 0.47

3

-NH2(NH3) 0.26 0.48

7

-NH2(NH3) 0.19 0.48
-OH(H2O) 0.27 0.49 -OH(H2O) 0.20 0.49
-Cl(HCl) 0.26 0.48 -Cl(HCl) 0.19 0.48

-CHO(CH2O) 0.26 0.47 -CHO(CH2O) 0.19 0.47
-CN(HCN) 0.26 0.47 -CN(HCN) 0.19 0.49

-NO2(HNO2) 0.26 0.47 -NO2(HNO2) 0.19 0.47

4

-NH2(NH3) 0.24 0.48

8

-NH2(NH3) 0.18 0.48
-OH(H2O) 0.24 0.49 -OH(H2O) 0.18 0.49
-Cl(HCl) 0.24 0.48 -Cl(HCl) 0.18 0.48

-CHO(CH2O) 0.24 0.47 -CHO(CH2O) 0.18 0.47
-CN(HCN) 0.24 0.49 -CN(HCN) 0.18 0.49

-NO2(HNO2) 0.24 0.47 -NO2(HNO2) 0.18 0.47

5

-NH2(NH3) 0.22 0.48
-OH(H2O) 0.22 0.49
-Cl(HCl) 0.22 0.48

-CHO(CH2O) 0.22 0.47
-CN(HCN) 0.22 0.49

-NO2(HNO2) 0.22 0.47

The intermolecular CT excitation energies calculated using OT-LC-BLYP, whose opti-
mal µ values are not different from the default 0.47 value [17], are successfully close to the
EOM-CCSD ones irrespective of any choice of X and R (Figures 1 and 3 and Table S2). How-
ever, the intramolecular CT excitation energies calculated using OT-LC-BLYP, whose opti-
mal µ values are much smaller than 0.47, are not closer to the EOM-CCSD ones than the LC-
BLYP with default µ values (µ = 0.47) regardless of any choice of X and R (Figures 1 and 2
and Table S1) even though the differences of the intramolecular CT excitation energies
between LC-BLYP and OT-LC-BLYP are not significantly large (by about less than 0.5 eV).
Overall, both the intra- and intermolecular CT excitation energies calculated using LC-BLYP
with µ = 0.47 are closer to the EOM-CCSD/cc-pVTZ ones than OT-LC-BLYP regardless of
any choice of X. In addition, it is notable that the deviation in intramolecular CT excitation
energies obtained using OT-LC-BLYP calculations to EOM-CCSD/cc-pVTZ get larger as
R increases in Figure 4 and Table S1. In other words, the optimization of the µ value of
LC-DFT to Koopmans’ theorem is not needed to achieve high-accuracy calculations using
LC-DFT on both the intra- and intermolecular CT excitation energy calculations.

2.3. Exciton Binding Energy in Intra- and Intermolecular CT Excitation

We plotted the inter- and intramolecular CT excitation energies from (H–)NH2 to
various (H–)X calculated using LC-BLYP (Figure 5a), their orbital energy gaps (Figure 5b),
and their exciton binding energies (Figure 5c) between orbitals related to the corresponding
CT excitation obtained using Equation (10) against −1/R. All the plots of the inter- and in-
tramolecular CT excitation energies with respect to various X and their energy components
are clearly shown to have nearly linear dependences on −1/R.
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OH, Cl, CHO, CN, and NO2) with n = 2, n = 3, and n = 4 calculated using LC-BLYP and OT-LC-BLYP
(cc-pVTZ) from those calculated using EOM-CCSD/cc-pVTZ.

Interestingly, the y-intercepts of the intermolecular CT excitation energy plot against
−1/R are strongly affected by the electron-withdrawing strength of H-X. Note that the
y-intercept of each CT excitation energy plot against −1/R means the CT excitation energy
converged at R → ∞, resulting in the orbital energy gap corresponding to the CT excitation,
since excitonic binding energy −1/R → 0. Noticeably, the intermolecular CT excitation
energies are shifted by the electron-withdrawing strength of H-X up to 4–5 eV differences,
which is mainly attributed to their orbital energy gaps shifted by the electron-withdrawing
strength of H-X with the same differences, as shown in Figure 5b.

Meanwhile, the slopes of all the intermolecular orbital energy gaps with respect
to various H-X against −1/R are zero, which indicates that the intermolecular orbital
energy gaps are independent of a change in R and are not affected by intermolecular CT
distance, R. The origin of this is that LUMO energies are wholly affected not by R but
by the H–X molecule. In addition, both the slopes of the intermolecular CT excitation
energies (Figure 5a) between NH3 and H-X with respect to various H–X against −1/R
are the same as those of the excitonic binding energies (Figure 5c), which indicates that
the intermolecular excitonic binding energy between NH3 and H-X is the origin of the
asymptotic potential of intermolecular CT excitation energy, but the intermolecular orbital
energy gaps are not related to the asymptotic potential of intermolecular CT excitation
energy. Therefore, it can be concluded that the electron-withdrawing strength of various H-
X absolutely does not affect the intermolecular exciton binding energy of −1/R asymptotic
potential, but only the intermolecular orbital energy gap.

Next, we investigated the plots of intramolecular CT excitation energy against −1/R,
and some conspicuous points compared to the intermolecular CT ones were found. Firstly,
the y-intercepts of the intramolecular CT excitation energies against −1/R are shown to be
independent of the electron-withdrawing strength of X, contrary to the intermolecular CT
excitation ones. That is to say, the electron-withdrawing strength of X almost does not affect
the intramolecular CT excitation energy when R is sufficiently large, as mentioned in the
previous section. Secondly, the plots of intramolecular CT excitation energies against −1/R
with respect to various X have the negative slopes, which is solely due to the negative
slopes of the intramolecular orbital energy gaps against −1/R shown in Figure 5b, while
the intramolecular exciton binding energies against −1/R have positive slopes. Why do the
intramolecular orbital energy gaps have negative slopes against −1/R? This is explained in
a previous study [31]. That is, it is because the intramolecular orbital energy gaps become
narrower as R becomes longer, which is originally due to the polyene conjugation chain
between electron donor and acceptor that dominates the intramolecular orbital energy gaps
more strongly as R becomes longer. Thirdly, contrary to the intermolecular CT excitation,
the asymptotic lines of intramolecular exitonic binding energies of various X against −1/R
do not converge to zero when −1/R goes to zero (R goes to infinity), but near to −3.0 as
reported in the previous studies in Ref. [31]. The main reason for this seems to be that
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the CT distance, R, between HOMO and LUMO of intramolecular CT excitation in the
conjugated chain system becomes shorter than the intermolecular CT distance as the chain
number increases because delocalized orbital centers come closer.
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2.4. Ineffectiveness of Optimal Tuning Method in Intramolecular CT Excitation Calculations

To find the reason why the optimal tuning method of LC-DFT with Koopman’s
theorem is not effective in predicting intramolecular CT excitation energy, unlike the case of
intermolecular CT excitation energy [2,3], we investigate the effect of a change in µ on inter-
and intramolecular CT excitation energies, their orbital energy gaps, and their excitonic
binding energies. We scanned the µ value for TD-LC-BLYP calculations in intermolecular
CT excitation energy of NH3. . .. . .HNO2 (n = 4), intramolecular CT excitation energy
of H2N–(CH=CH)n–NO2 (n = 4), and local excitation energy of NH3 for an illustration
(Figure 6 and Table S7).
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Figure 6. TD-DFT energies, orbital energy gaps, and exciton binding energies (in eV) for (a) in-
termolecular CT excitation from NH3 to HNO2 of NH3. . .. . .HNO2 (n = 4), (b) intramolecular CT
excitation from HOMO to LUMO of H2N–(CH=CH)n–X (n = 4), and (c) local excitation from HOMO
to LUMO of NH3 molecule with regard to a change in µ.

The evolutions of the intermolecular CT excitation energies and their orbital energy
gaps as a function of µ are shown to have similar curve shapes with a small difference in
Figure 6a. We already know that the reason for this is that intermolecular CT excitation
energy is strongly affected by the orbital energy gap, which is increased by an increase in
µ. To our surprise, the intermolecular exciton binding energy obtained using TD-LC-DFT
as Equation (10) is about −1.0 eV regardless of a change in µ, which indicates that the
intermolecular excitonic binding energy is not affected by the choice of µ. Only when µ
becomes less than 0.05 does the intermolecular excitonic binding energy go to 0.

However, a change in µ seems to have little effect on intramolecular CT excitation
energy, as shown in Figure 6b. Actually, the evolution of the intramolecular orbital energy
gaps as a function of µ is quite similar to that of intermolecular ones. However, while the
intermolecular exciton binding energy is independent of a change in µ, the intramolecular
exciton binding energy is largely dependent on a change in µ, which eventually is the main
reason why intramolecular CT excitation energy is not substantially affected by a change in
µ. Therefore, the different dependence of the intramolecular CT excitation energy from the
intermolecular one on a change in µ seems to be mainly due to the different dependence of
their exciton binding energy on a change in µ.
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It is noticeable that this behavior seen in intramolecular CT excitation is also observed
in local excitation. Figure 6c shows how local excitation energy behaves as a function
of µ in a manner similar to intramolecular CT excitation energy, which indicates that
intramolecular CT excitation is fundamentally similar to local excitation. The electronic
transition shown in the Figure 6c takes place from the HOMO of NH3 to the LUMO. As
mentioned earlier, the evolutions of local excitation energy, its following orbital energy
gap, and exciton binding energy as a function of a change in µ have behaviors analogous
to those of intramolecular CT excitation ones. In other words, as µ increases, the orbital
energy gap increases, exciton binding energy decreases, and eventually local excitation
energy has little evolution compared to intramolecular CT excitation energy.

Here, it should be mentioned that Ref. [3] explains that the origin of the increases in
intermolecular CT excitation energy with respect to an increase in µ is asymptotic behavior
with respect to distance (R) between donor, NH3, and acceptor, HNO2, which is evidently
due to exciton binding energy with −1/R behavior. In detail, it is written in Ref. [3] that “The
reason why LE (local excited) excitations and CT excitations show so markedly different evolutions
with respect to ω (µ) is related to the fact that the CT states are very sensitive to the nature of the
asymptotic potential, which is strongly affected by the choice of ω (µ), whereas the LE states probe
the asymptotic potential to a much smaller degree”. However, we inevitably should indicate here
that the statement “the asymptotic potential is strongly affected by the choice of ω (µ), whereas the
LE states probe is not so much” is mistaken. On the contrary, as clearly observed in Figure 6a,
the intermolecular exciton binding energy obtained using TD-DFT calculations does not
depend on a change in µ and is invariable as far as the µ value is not less than 0.1. Only
R can affect the amount of exciton binding energy between electron donor and acceptor.
The intramolecular exciton binding energy decreases with an increase in µ, as shown in
Figure 6b. Therefore, the statement in Ref. [3] should be corrected as “The reason why LE
(local excited) excitations and CT excitations show so markedly different evolutions with respect to ω
(µ) is related to the fact that the CT states probe the asymptotic potential (or exciton binding energy)
to a much smaller degree, whereas the LE states are very sensitive to the nature of the asymptotic
potential (or exciton binding energy), which is strongly affected by the choice of ω (µ)”.

Why do the excitonic binding energy contributions in the local excitation energies
as well as the intramolecular CT excitation by TD-LC-DFT through Equation (10) become
larger (or more negative) with respect to an increase in µ in Figure 6b? In local excitations,
the electron transition takes place from the HOMO of NH3 to the LUMO. In other words,
one electron is removed from HOMO, and the electron is added to LUMO in the electron
transition, which elevates HOMO energy and lowers LUMO energy. We call this energy
effect caused by electron transition from one orbital to the other orbital the “orbital relax-
ation effect”. In the case of intramolecular CT excitation as well as local excitation, HF,
hybrid-DFT, and LC-DFT include this orbital relaxation effect by TD calculations more as
the HF exchange integral included in the exchange functional decreases. As a result, optical
band gaps of local and intramolecular CT excitations obtained using TD calculations of HF,
hybrid-DFT, and LC-DFT become similar.

Optimal fitting of the µ parameter of LC-DFT to Koopmans’ theorem allows TD-LC-
DFT to calculate intermolecular CT excitation energy with relatively high accuracy because
it calculates corresponding frontier orbital energies with their orbital relaxation effects
included correctly. The IP-EA values obtained from the energies of cation (A+), anion (A−),
and neutral molecule (A) using ∆SCF with µ parameter scanned show that they become
identical to εLUMO–εHOMO at µ = 0.5 (Figure 6a), which means that LC-DFT with that value
of µ provides the orbital energy gap with the orbital relaxation effect included correctly.
Moreover, since TD-LC-DFT can calculate −1/R asymptotic potential between electron
donor and acceptor correctly, the intermolecular CT excitation energies can be calculated
with high accuracy. Interestingly, the evolutions of ∆XC values obtained using Equation (25)
as a function of µ are very similar to those of IP–EA–(εLUMO–εHOMO), which indicates that
the minimization of the ∆XC value with changing µ corresponds to making orbital energy
include orbital relaxation correctly.
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Meanwhile, both the IP–EA–(εLUMO–εHOMO) and ∆XC values of the intramolecular CT
excitation energies become zero at about µ = 0.25 even though it is shown that TD-LC-DFT
with a larger µ value provides similar results with the EOM-CCSD ones in Section 2.2. In
the case of the local excitation of NH3, both the IP–EA–(εLUMO–εHOMO) and ∆XC values
simultaneously become zero at large µ value (0.45). The charges of cation and anion of
the conjugated chain systems in the intramolecular CT excitation are expected to be de-
localized, which reduces energy changes in the cation and anion caused by the charge,
which will make the µ value optimized less than those obtained in the intermolecular
CT excitation in the conjugated system or local excitations in a small molecule [38,42].
Therefore, to overcome this ineffectiveness of optimal tuning methods of LC-DFT in pre-
dicting intramolecular CT excitation energy, we should solve this delocalization problem in
conjugated molecules [43].

3. Theory
3.1. Time-Dependent Density Functional Theory with Hybrid- and LC-DFTs

In TD-DFT calculations, excitation energy ω and the corresponding excitation vectors
X and Y are usually obtained by solving a non-Hermitian eigenvalue equation [9,44,45].(

A B
B A

)(
X
Y

)
= ω

(
1 0
0 −1

)(
X
Y

)
(2)

The elements of the matrices A and B are

Aiaσ,jbτ = δijδabδστ(εaσ − εiσ) + Kiaσ,jbτ (3)

where εiσ is the ith Kohn–Sham σ-spin orbital energy, and

Biaσ,jbτ = Kiaσ,bjτ (4)

where matrix element Kiaσ,jbτ in Equations (3) and (4) is given by

Kiaσ,jbτ = (iaσ|bjτ) +
∫ ∫

ψ∗
iσ(r1)ψ

∗
aσ(r2)

δ2Exc

δρσ(r1)δρτ(r2)
ψjτ(r1)ψbτ(r2)d3r1d3r2 − KHF

iaσ,jbτ (5)

As usual, indices i, j, and a, b, label occupied and virtual orbitals, respectively. In
Equation (5), the first term on the right side is a two-electron repulsion integral,

(iaσ|bjτ) =
∫ ∫

ψ∗
iσ(r1)ψaσ(r1)

1
r12

ψ∗
bτ(r2)ψjτ(r2)d3r1d3r2 (6)

and KHF
iaσ,jbτ is the mixed HF exchange integral term; for pure functionals, KHF

iaσ,jbτ = 0, and
for conventional hybrid functionals,

KHF
iaσ,jbτ = cxδστ

∫ ∫
ψ∗

iσ(r1)ψ
∗
aσ(r2)

1
r12

ψjτ(r1)ψbτ(r2)d3r1d3r2 (7)

where cx is a constant mixing rate of HF exchange integral in global hybrid functionals,
such as B3LYP and PBE0. TD-LC-DFT includes a nonzero KHF

iaσ,jbτ , due to the HF exchange
terms in Equation (1),

KHF
iaσ,jbτ = δστ

∫ ∫
ψ∗

iσ(r1)ψ
∗
aσ(r2)

[
erf(µr12)

r12

]
ψjτ(r1)ψbτ(r2)d3r1d3r2 (8)
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3.2. Asymptotic Potential and Excitonic Bindng Energy

From Equations (2)–(8), we can approximate the optical CT excitation gap between
occupied (OMO) and unoccupied molecular orbitals (UMO) (e.g., OMO = HOMO and
UMO = LUMO) [31,32,46] as

ωCT
TD ≈ εU − εO + (OMOUMO|1/r12|OMOUMO) − (OMOOMO|O(r12)|UMOUMO) (9)

Here, the third term on the right side originates from the two-electron repulsion
integral term shown in Equation (6), and the fourth term on the right side originates
from the HF exchange interaction shown in Equations (7) and (8). O(r12) is a two-electron
HF exchange operator. For example, O(r12) of B3LYP is cx/r12 (cx = 0.2), that of LC-
DFT is erf(µr12)/r12, and that of the pure functional is 0. The excitonic binding energy
(Eexciton) [46,47] between OMO and UMO calculated in TD-DFT can be considered as

Eexciton ≈ ωCT
TD − (εU–εO) (10)

In the intermolecular CT excitation and intramolecular CT excitation of polyalkane,

Eexciton ≈ −(OMOOMO|O(r12)|UMOUMO) (11)

because (OMOUMO|1/r12|OMOUMO) will disappear quickly as the distance between donor
and acceptor (R) increases, in that the overlap between HOMO and LUMO is too small.
Moreover, the excitonic binding energies of pure and screened hybrid-DFT functionals
become zero, in that (OMOOMO|O(r12)|UMOUMO) also disappear quickly. In the case of LC-
DFT, (OMOOMO|O(r12)|UMOUMO) becomes −1/R. Therefore, in the case of intermolecular
CT excitations, the excitonic binding energy of LC functionals will be like

Eexciton ≈ −1/R (12)

which is known as an asymptotic potential of CT excitation energy.

3.3. Derivative Discontinuity of Approximated Exchange–Correlation Functionals

In previous studies for a system with a fractional electron number [48–50], it was
shown that the derivative of the total energy with respect to electron number is the chemical
potential and its discontinuous derivatives at an integer number of an electron number on
both sides gives the following relations, which is also related to conceptual DFT:(

∂E
∂N

)
+
= lim

f→0+

dE(N + f )
d f

= E(N + 1)− E(N) = −EA (13)

and (
∂E
∂N

)
−
= lim

f→0−

dE(N + f )
d f

= E(N)− E(N − 1) = −IP (14)

Additionally, Refs. [51–55] show that in exact DFT

εHOMO = −IP (15)

but in the case of the approximated exchange–correlation functional and optimized effective
potential (OEP) orbitals

εLUMO = −EA −
〈

LUMO
∣∣∣∑XC ({εLUMO})− vXC

∣∣∣LUMO
〉

(16)

where ΣXC is an energy-dependent exchange–correlation potential or exchange–correlation
self-energy operator that includes correlation and relaxation effects, self-interaction correc-
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tion, and so on, and vXC is the approximated exchange–correlation potential, and in other
references it is expressed as

εLUMO = −EA − ⟨LUMO
∣∣∣vnonlocal

XC
(
r, r′

)
− vXC(r)

∣∣∣LUMO⟩ (17)

where it is the nonlocal exchange–correlation potential [55]. Actually, the second terms
on the right side of Equations (16) and (17) are different expressions of the approximated
exchange–correlation functional derivative discontinuity [50,54–57],

∆XC = v(+)
XC (r)− v(−)

XC (r) (18)

where

v(±)
XC (r) = lim

f→0±

δEXC[ρ]

δρ(r)

∣∣∣∣
N±δ

(19)

Meanwhile, according to Equations (4) and (6), the HOMO energy of the anion, A−,
which is an N + 1-electron system, is –EA as

εHOMO(A− : N + 1) = −EA (20)

if the derivative linearity of the total energy with respect to the fractional electron number
is maintained [58]. However, in the case of the neutral molecule, A, which is an N-electron
system, LUMO energy is not –EA as

εHOMO(A− : N + 1) = εLUMO(A : N) + ∆XC (21)

Note that the addition of an electron to the LUMO of the N-electron system makes the
HOMO of the N + 1-electron system, and the related energy differences are expressed in
the second terms on the right side of Equations (16) and (17).

Therefore,
εLUMO(A : N) + ∆XC = −EA (22)

However, if the approximated exchange–correlation functional and its kernel are exact,
as shown in Equation (11) of Ref [59], the ∆XC will become zero on the grounds of Janak’s
theorem and the derivative linearity of the total energy [6]. Therefore, in exact DFT

εLUMO = −EA (23)

Therefore,
εHOMO(A− : N + 1) = εLUMO(A : N) + ∆XC (24)

and
∆XC = εHOMO(A− : N + 1)− εLUMO(A : N) (25)

Equation (25) provides one of the methods we can use to assess the approximated
exchange–correlation functional on calculating frontier orbital energies.

4. Computational Details

We obtained H2N–(CH=CH)n–X (n = 2~8) polyene geometries with various electron-
withdrawing groups (X = NH2, OH, Cl, CHO, CN, and NO2) optimized using B3LYP/aug-
cc-pVTZ [60] for intra-molecular CT excitation calculations. Then, we obtained H2NH. . .HX
structures by removing the polyene conjugation backbones of H2N–(CH=CH)n–X (n = 2~8)
followed by adding an H atom to –NH2 and –X [31,32]. The lengths between the central
atom and H were set up with 1.01 Å (–NH2), 1.00 Å (–OH), 1.28 Å (–Cl), 1.10 Å (–CHO),
1.07 Å (–CN), and 1.01 Å (–NO2), respectively, which are the average bond lengths between
other H atoms and the central atoms of each molecule. The CT distances (R) between
electron donors and acceptors were estimated from the central atoms of the electron donor
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to those of the acceptor. However, since the central orbital of HCl is closer to the H atom
than other electron acceptor molecules, we set the distance between N in NH3 and H in
HCl as R.

We obtained CT excitation energies using TD-DFT calculations with various function-
als (BLYP, B3LYP, and LC-BLYP) as well as wavefunction theory (TD-HF and EOM-CCSD).
Also, optimally tuned (OT) [33] LC-BLYP calculations where µ is optimized with Koopmans’
theorem were also performed.

Most of the intramolecular CT excitations correspond to the electronic transitions from
HOMO to LUMO except for some CT excitation cases calculated using EOM-CCSD, HF,
and BLYP when X = NH2, OH, CHO with n = 2. However, the intermolecular CT excitations
do not correspond to the electronic transition from HOMO to LUMO in some cases. We
investigated the molecular orbital shapes of related electron transitions to confirm the
intermolecular CT excitations from the molecular orbital of electron donor to that of the
acceptor. The numbers of the CT orbitals and their shapes are shown in Tables S8 and S9
and Figures S8–S17.

All the DFT and HF calculations were performed using cc-pVTZ, but EOM-CCSD
was calculated using cc-pVDZ and cc-pVTZ. All calculations were executed on the official
version of the Gaussian16 program [61].

5. Conclusions

In this study, we analyzed inter- and intramolecular CT excitation energies, their
orbital energy gaps, and their exciton binding energies with changing electron acceptors
that have various electron-withdrawing strengths and conjugated carbon chain lengths or
CT distances. Both inter- and intramolecular CT excitation energies show decreased CT
excitation energy with regard to an increase in electron-withdrawing strength. However, in
contrast to intermolecular CT excitation energy, the effect of electron-withdrawing strength
on intramolecular CT excitation energy is very small because intramolecular CT has low
dependence on electron-withdrawing strength.

Also, we confirmed that the orbital energy gap between electron donor and acceptor
orbitals play a significant role in determining intermolecular CT excitation energy, in that
asymptotic potential of −1/R calculated using TD-DFT, which is also called excitonic
binding energy, is not dependent on the range separation parameter value. Therefore,
the optimal tuning method of the range separation parameter is significantly effective
for predicting intermolecular CT excitation energy. However, accurate calculations of
anion and cation energies are difficult in the intramolecular CT excitation of conjugated
chain systems since the delocalization of charge and its reduced charge effect on the total
energy of cation and anion disturb computations of IP and EA in the optimal tuning
method. Therefore, the ineffectiveness of optimal tuning methods of LC-DFT in predicting
intramolecular CT excitation energy can be overcome by an accurate delocalization error
in conjugated molecules. Moreover, it is recommended to use a larger µ value rather than
optimally tuned µ values to calculate high-accuracy intramolecular CT excitation energies
with a polyene conjugation chain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29184423/s1, Table S1. Intramolecular CT excitation
energy between electron-donating orbital corresponding to -NH2 and electron-withdrawing orbitals
corresponding to various electron acceptors (eV). Values in parentheses are errors of CT excitation
energies from EOM-CCSD. Table S2. Intermolecular CT excitation energy from electron-donating
orbital corresponding to NH3 to electron-withdrawing orbitals corresponding to various electron
acceptors (eV). Values in parentheses are errors of CT excitation energies from EOM-CCSD. Table S3.
Intramolecular orbital energy gaps between electron-donating orbital corresponding to -NH2 and
electron-withdrawing orbitals corresponding to various electron acceptors (eV). Table S4. Inter-
molecular orbital energy gaps between electron-donating orbital corresponding to NH3 and electron-
withdrawing orbitals corresponding to various electron acceptors (eV). Table S5. Intramolecular
exciton binding energies between electron-donating orbital corresponding to -NH2 and electron-

https://www.mdpi.com/article/10.3390/molecules29184423/s1
https://www.mdpi.com/article/10.3390/molecules29184423/s1
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withdrawing orbitals corresponding to various electron acceptors (eV). Table S6. Intermolecular
exciton binding energies between electron-donating orbital corresponding to NH3 and electron-
withdrawing orbitals corresponding to various electron acceptors (eV). Table S7. Orbital energy gap,
CT excitation energy and exciton binding energy (eV) of intra- and intermolecular CT excitations
from -NH2 (NH3) to -NO2 (HNO2) with n = 4 in a change in µ value. Table S8. Molecular orbitals cor-
responding to intramolecular CT excitations from -NH2 and various electron acceptor. (H is HOMO
and L is LUMO). Table S9. Molecular orbitals corresponding to intramolecular CT excitations from
NH3 and various electron acceptor. (H is HOMO and L is LUMO). Figure S1. Orbital energy gaps
corresponding to (a) intramolecular and (b) intermolecular CT excitations between electron-donating
and electron-withdrawing orbitals calculated using HF, LC-BLYP, OT-LC-BLYP, B3LYP and BLYP.
Figure S2. Intramolecular CT excitation energies from electron-donating to electron-withdrawing
orbitals with (a) n = 2, (b) n = 3, and (c) n = 4 calculated using EOM-CCSD, HF, LC-BLYP, OT-LC-
BLYP, B3LYP and BLYP. Figure S3. Intermolecular CT excitation energies from electron-donating to
electron-withdrawing orbitals with (a) n = 2, (b) n = 3, (c) n = 4, (d) n = 5, (e) n = 6, (f) n = 7, and (g)
n = 8 calculated using EOM-CCSD, HF, LC- BLYP, OT-LC-BLYP, B3LYP and BLYP. Figure S4. Orbital
energy gaps between electron-donating and electron-withdrawing orbitals in intramolecular CT
excitations with (a) n = 2, (b) n = 3, and (c) n = 4 calculated using HF, LC-BLYP, OT-LC- BLYP, B3LYP
and BLYP. Figure S5. Orbital energy gaps between electron-donating and electron-withdrawing
orbitals of intermolecular CT excitations with (a) n = 2, (b) n = 3, (c) n = 4, (d) n = 5, (e) n = 6, (f) n = 7,
and (g) n = 8 calculated using HF, LC-BLYP, OT-LC-BLYP, B3LYP and BLYP. Figure S6. Intramolec-
ular HOMO and LUMO energies of (a) H2N–(CH=CH)n–NH2 and (b) H2N–(CH=CH)n–NO2 and
intermolecular HOMO and LUMO energies of (c) H2N–H. . .. . .H–NH2 and (d) H2N–H. . .. . .H–NO2
with regard to n calculated using LC-BLYP. The HOMO and LUMO energies of NH3 molecule in
(a) and (c) and the HOMO energy of NH3 and the LUMO of HNO2 in (b) and (d) are displayed in
both sides. Figure S7. (a) HOMO and LUMO energies of electron acceptors as single molecule of
(HX) (b) HOMO and LUMO energies of their combination with NH3 molecule for intermolecular
CT excitations [H2N–H. . .. . .H–X] (n = 4), (c) HOMO and LUMO energies for intramolecular CT
excitations [H2N–(CH=CH)n–NO2] (n = 4). Figure S8. MO shapes of intramolecular CT excitations
from -NH2 to various electron acceptors with n = 2 calculated using HF. Figure S9. MO shapes of
intramolecular CT excitations from -NH2 to various electron acceptors with n = 3 calculated using
HF. Figure S10. MO shapes of intramolecular CT excitations from -NH2 to various electron acceptors
with n = 4 calculated using HF. Figure S11. MO shapes of intermolecular CT excitations from NH3 to
various electron acceptors with n = 2 calculated using HF. Figure S12. MO shapes of intermolecular
CT excitations from NH3 to various electron acceptors with n = 3 calculated using HF. Figure S13. MO
shapes of intermolecular CT excitations from NH3 to various electron acceptors with n = 4 calculated
using HF. Figure S14. MO shapes of intermolecular CT excitations from NH3 to various electron
acceptors with n = 5 calculated using HF. Figure S15. MO shapes of intermolecular CT excitations
from NH3 to various electron acceptors with n = 6 calculated using HF. Figure S16. MO shapes of
intermolecular CT excitations from NH3 to various electron acceptors with n = 7 calculated using HF.
Figure S17. MO shapes of intermolecular CT excitations from NH3 to various electron acceptors with
n = 8 calculated using HF.
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