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Abstract: Semi-volatile organic compounds (SVOCs) are modern chemical substances that are present
in large quantities in indoor environments. Understanding the emission of SVOCs from building
materials is essential to identify the main sources of indoor SVOCs and to improve indoor air quality.
In this study, a reference method employing custom-designed microchambers (630 mL) was optimized
by improving the structure of the gas path and adding polytetrafluoroethylene inner coating to the
chamber. After optimization, the recoveries of the microchamber method were significantly improved
(75.4–96.7%), and the background in the microchamber was greatly reduced (<0.02 µg/h). By using
the microchamber method, 33 SVOCs (including two alkanes, one aromatic, one nitrogen compound,
and twenty-nine oxygenated compounds) and 32 SVOCs (including seven alkanes, eight aromatics,
and seventeen oxygenated compounds) were detected in the emissions of the architectural coating and
the PVC flooring samples, respectively. The area-specific emission rates (SERa) of total SVOCs emitted
from architectural coatings and PVC floorings were in the range of 4.09–1309 µg/m2/h) (median:
10.3 µg/m2/h) and 0.508–345 µg/m2/h (median: 11.9 µg/m2/h), respectively. Propanoic acid had
the highest SERa (3143 µg/m2/h) in architectural coatings, while methylbenzene (345 µg/m2/h),
2-methylnaphthalene (65.2 µg/m2/h), and naphthalene (60.3 µg/m2/h) were main SVOCs emitted
from PVC floorings. Meanwhile, the average second-stage (adsorbed phase) emission mass of the
total SVOCs accounts for 66.3% and 47.3% in architectural coatings and PVC floorings, respectively,
suggesting that the SVOCs emitted from building materials have a strong tendency to be absorbed
on the surface of the room, e.g., the interior wall, the desk or even the skin.

Keywords: semi-volatile organic compounds (SVOCs); building materials; emission characterization;
microchamber method; polyvinyl chloride (PVC)

1. Introduction

With the increasing level of urbanization, a significant amount of building materials
are utilized for interior decoration [1,2]. Building materials release various semi-volatile or-
ganic compounds (SVOCs) during construction and application, which serve as the primary
source of indoor air pollution [3]. SVOCs are ubiquitous indoors due to the widespread
use of building materials [4–7]. Because of their low vapor pressure, SVOCs tend to be
redistributed through indoor air from their original sources to other solid phases, including
skin, clothing, airborne particles, and dust. Human exposure to certain SVOCs has been
associated with adverse health effects, e.g., asthma, allergies, and reproductive abnormali-
ties [8–10]. Moreover, some SVOCs are recognized as potential endocrine disruptors [11,12].
In general, most people spend most of their time indoors: 20 h/day for adults and 21 h/day
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for children in China. Long-term exposure to SVOCs can lead to adverse effects such as
Sick Building Syndrome (SBS) [13–15]. Therefore, exposure to indoor SVOCs is a matter of
great concern [16].

The emission of SVOCs from source materials usually occurs slowly, and the gas-
phase SVOCs are easily adsorbed by internal surfaces, suspended particles, and settled
dust. Because of the low concentration of SVOCs in the gas phase, strong adsorption
to solid surfaces, ubiquitous contamination in laboratory equipment, and complex sam-
pling and analysis procedures, there are few studies on the measurement of SVOC emis-
sions. Emission chambers are presently the primary tool for measuring SVOC emissions
from typical sources [17]. Kemmlein et al. [18] investigated various building materials
and consumer goods (e.g., insulating materials, assembly foam, upholstery/mattresses,
and electronics equipment) for emissions of Tris (2-chloro-isopropyl)phosphate (TCIPP),
hexabromocyclododecane (HBCD), tetrabromobisphenol A (TBBPA), tris(2-chloroethyl)
phosphate (TCEP), etc. Three types of emission test chambers (two glass cells with volumes
of 0.001 m3 and 0.02 m3 and one standard emission stainless steel test chamber with a
volume of 1 m3) were used. TCIPP was one of the most frequently emitted SVOCs in test
samples, with the controlled emission chamber conditions of 23 ± 0.1 ◦C and 50 ± 3% RH,
the area-specific emission rates (SERa) of TCIPP varied from 20 ng/m2/h (upholstery stool)
to 140 µg/m2/h (assembly foam). However, after a test period of more than 100 days, no
emissions of HBCD from insulating boards were detected in the air. This may be attributed
to the high experimental limits of detection (0.09–1.8 ng/m³) and the low sampling vol-
umes (5–40 m³). A similar issue with SVOCs was also reported by Bakó-Biró et al. [19]. For
SVOCs, the adsorption by the chamber walls is inevitable, which may introduce errors
in the measurement of emissions [20–23]. In addition, the low emission concentration of
SVOCs requires longer sampling periods and larger sampling volumes. As a result, the
development of appropriate methods to measure the emissions of SVOCs from various
sources has become a high priority and the creation of specially designed chambers has
been a key prerequisite for measuring SVOCs. A novel micro-chamber method has been
developed to determine the emission of SVOCs in our previous studies [21,23]. Compared
with the traditional environmental chamber method, the microchamber method could
measure the emitted SVOCs from materials at both the gaseous phase and the adsorbed
phase by thermal desorption reducing the sink effect of the SVOCs. Also, the microchamber
can shorten the time to reach steady state by increasing the ratio of emission surface to
sorption surface.

Architectural coatings and polyvinyl chloride (PVC) floorings are commonly used in
interiors (e.g., homes, offices, and dormitories) for their low cost, aesthetic, and serviceable
characteristics [24–26]. Notably, a broad range of additives are used in coatings and PVC
floorings to improve their adhesion, durability, stability, flame retardant, etc. [27–29]. For
example, methylbenzene and xylene are commonly used as solvents and curing agents
in architectural coatings, aiding in the long-lasting dissolution of other substances in the
coatings [30]. Additionally, they help prevent issues such as cracking and peeling [31],
and 2-methylnaphthalene and naphthalene are common plasticizers in the production
of PVC materials [32,33]. It has been demonstrated that these SVOCs can transfer from
materials into indoor air during usage, leading to a significant decline in the quality of
indoor air [34–37]. Therefore, it is necessary to accurately identify the main SVOCs emitted
from indoor building materials and examine their emission characteristics.

The primary objectives of this study were to (1) optimize the microchamber test
system and evaluate the microchamber method; (2) apply the microchamber method to
identify the main SVOC pollutants released from architectural coatings and PVC floorings;
(3) investigate the emission characteristics of SVOCs in different building materials, and
to further enhance our understanding of the impact of these building materials on indoor
air pollution.
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2. Results and Discussion
2.1. The Background in the Microchamber

Evaluation of the background concentration and recovery rate of the optimized mi-
crochamber was conducted in this study, and experimental results demonstrated that the
chamber could meet the requirements of SVOC testing in the standard. Before testing, the
chamber interior and lid were wiped with ethanol and allowed to air dry naturally, followed
by purging with inert gas, slow heating up to 250 ◦C, and blowing at high temperature for
4–5 h. Air samples blown out from the microchamber were collected for background testing.
The chromatogram of the background SVOC in the microchamber after ethanol clean-up
is presented in Figure 1. The results showed that the SVOC content of each substance in
the microchamber was below 0.02 µg within 1 h, indicating that the microchamber method
met the requirements of SVOC testing in GB/T 42898-2023 [38].
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Figure 1. Recoveries of target SVOCs by microchamber method at different thermal desorption
temperatures.

2.2. Recoveries for Typical SVOCs in the Microchamber Method
2.2.1. Comparison of SVOC Recoveries at Different Thermal Desorption Temperatures

The recoveries of the optimized microchamber were evaluated using 7 SVOCs, includ-
ing typical SVOCs found in building materials such as antioxidants, flame retardants, and
plasticizers (Table 1). Data analysis revealed that low-boiling point substances such as D6
and BHT showed minimal variations in recovery rates at different temperatures (Figure 1).
High-boiling point substances exhibited relatively higher recovery rates at 250 ◦C, reaching
approximately 80%. Temperatures of 250 ◦C or higher should be preferred for testing the
release of high boiling point aromatic SVOCs.

Table 1. Typical SVOCs for evaluation.

Abbreviation Name CAS# Application

D6 Dodecamethylcyclohexasiloxane 540-97-6 softening agent
BHT Butylated hydroxytoluene 128-37-0 antioxidant
TCEP Tris(2-chloroethyl) phosphate 115-96-8 flame retardant
DBP Dibutyl phthalate 84-74-2 plasticizer
DOA Bis(2-ethylhexyl) adipate 103-23-1 plasticizer
DEHP Dioctyl Phthalate 117-81-7 plasticizer
BBP Butyl Benzyl Phthalate 85-68-7 plasticizer
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2.2.2. Comparison of SVOC Recoveries in Different Microchambers

The microchamber structure has been optimized, with the optimization process de-
tailed in Section 3.2. Figure 2 illustrates a comparison of recoveries of target SVOCs in
various chambers. The recoveries of target SVOCs using the microchamber method in the
original chamber, the first-generation optimized chamber, and the second-generation opti-
mized chamber were in the range of 56.4–72.1%, 70.4–88.0%, and 75.4–96.7%, respectively.
The results indicate that after optimization, the recoveries of the microchamber method
were significantly improved, and the deposition of target contaminants in the bulkhead
and pipelines was greatly reduced, which is conducive to improving test accuracy.
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Figure 2. Recoveries of target SVOCs by microchamber method in different chambers. Chamber
A: the microchamber before optimization; Chamber B: the first-generation optimization chamber;
Chamber C: the second-generation optimization chamber.

2.3. Quality Assurance and Quality Control
2.3.1. Establishment of SVOC Test Calibration Curves

Standard curves were constructed using standard solutions of the selected target
compounds. Specifically, 0.1000 g of D6, BHT, TCEP, DBP, BBP, DOA, and DEHP were
individually weighed into 100 mL volumetric flasks and then diluted to volume with
chromatography-grade acetone to prepare standard stock solutions. These stock solutions
were diluted with acetone to obtain mixed standard solutions with concentrations of 0.1,
0.5, 1, 2, 5, 7, and 10 mg/L. GC/MS was used to analyze the mixed standard solutions.
The standard curves were generated by plotting the peak area response values against the
mass of the target compounds (µg), and strong linearity (R2 > 0.999) was achieved. Details
on calibration curves and their linear correlation coefficient for the target compounds are
listed in Table 2.

Table 2. Calibration curves for the target SVOCs in the emission test.

Analytes Calibration Curves R2

D6 y = 510249x + 22982 0.9999
BHT y = 2966456x − 183151 0.9991
TCEP y = 897991x − 57186 0.9983
DBP y = 6448849x − 255305 0.9998
BBP y = 2597967x − 58986 0.9998

DOA y = 2860857x − 44271 0.9996
DEHP y = 3746605x − 75712 0.9997
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2.3.2. Method Limits of Detections

The standard sample with the lowest concentration was replicated seven times, and
the mass of each compound was determined using the standard curve and the standard
deviation (SD) calculation. The Method limits of detections (MDLs) were calculated as
three times the SD of the procedural blank values plus the average procedural blank levels.
Further details are listed in Table 3.

Table 3. Method limits of detections (MDLs) for the target SVOCs in the microchamber emission test.

Analytes
Mass of Emission (µg) SD

(%)
MDLs

(µg)Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Mean

D6 0.023 0.026 0.029 0.027 0.026 0.022 0.026 0.026 0.002 0.006
BHT 0.013 0.016 0.015 0.020 0.016 0.016 0.016 0.015 0.001 0.004
TCEP 0.018 0.019 0.018 0.024 0.018 0.021 0.020 0.019 0.001 0.003
DBP 0.025 0.024 0.022 0.022 0.024 0.028 0.023 0.024 0.002 0.005
BBP 0.023 0.023 0.021 0.025 0.023 0.025 0.024 0.023 0.001 0.004

DOA 0.024 0.026 0.022 0.025 0.027 0.027 0.025 0.025 0.002 0.005
DEHP 0.021 0.027 0.018 0.025 0.027 0.025 0.028 0.024 0.004 0.011

2.3.3. Method Precision and Sample Recovery

The actual sample with a certain content was precisely added to the blank adsorption
tube and analyzed according to the sample analysis steps. Each sample was measured
six times in parallel, and the relative standard deviation and standard recovery rate were
determined. The results, presented in Table 4, revealed recoveries ranging from 90.6% to
119% and relative standard deviations ranging from 4.03% to 13.7%, indicating that the
method has high recovery and precision for the analysis of SVOCs.

Table 4. Method precision and recoveries.

Analytes
Mass of Emission (µg) RSD

(%)
Recoveries

(%)Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

D6 0.748 0.580 0.616 0.565 0.546 0.520 13.7 119
BHT 0.533 0.511 0.494 0.481 0.484 0.486 4.03 99.6
TCEP 0.535 0.474 0.438 0.401 0.418 0.451 10.6 90.6
DBP 0.573 0.503 0.475 0.463 0.468 0.505 8.17 99.6
BBP 0.583 0.512 0.481 0.480 0.488 0.527 7.72 102

DOA 0.587 0.531 0.502 0.497 0.502 0.543 6.55 105
DEHP 0.573 0.512 0.481 0.480 0.484 0.522 7.10 102

2.4. Application of the Microchamber Method
2.4.1. SVOC Emissions from Each Architectural Coating

Following a comparative analysis of chromatographic peaks and the elimination of
blank interference, the release results of SVOCs for each architectural coating sample
were obtained and presented in Figure 3. The emission characteristics of SVOCs exhibit
heterogeneities in different coating samples. In total, 33 SVOCs were detected emitted from
the four architectural coatings using the emission chamber: two alkanes (n-hexadecane, n-
heptadecane), one aromatic (ethylbenzene), one nitrogen compound (di-n-butylamine), and
twenty-nine oxygenated compounds. The SERa of total semi-volatile organic compounds
(TSVOC) emitted by architectural coatings ranged from 4.09 µg/(m2·h) to 1309 µg/(m2·h),
with a median of 10.3 µg/(m2·h). Propanoic acid and di-n-butyl glutarate had the highest
emission rate (3143 and 1309 µg/(m2·h), respectively). Many studies have reported the
presence of propanoic acid and di-n-butyl glutarate in indoor environments [39–42], but
little information is available on its sources. This study suggested that one of the sources of
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propanoic acid and di-n-butyl glutarate in indoor environments might be SVOCs emitted
by architectural coating.
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Figure 3. Gas-phase and adsorbed-phase chamber concentrations of SVOCs emitted from architectural
coatings. (a) Coating sample A; (b) coating sample B; (c) coating sample C; (d) coating sample D.

The SVOCs emitted from the coating samples A and C were all absorbed into the
chamber’s inner surface. On average, the emitted SVOCs in the gas phase account for only
33.7% of the total mass, which suggests that the SVOCs emitted from the architectural
coating were primarily absorbed on the surface of the room, e.g., the interior wall, the
desk, or even the skin. Because most SVOCs have low vapor pressures. For example, the
vapor pressure of diisobutyl adipate is as low as 1.75 × 10−7 Pa at 25 ◦C, which means that
diisobutyl adipate has a strong tendency to adsorb on surfaces.

2.4.2. SVOC Emissions from Each PVC Flooring

32 SVOCs were detected emitted from the three PVC floorings using the emission cham-
ber: seven alkanes (n-hendecane, tritriacontane, n-heptadecane, n-hexadecane, n-heneicosane,
dodecane, octamethyl cyclotetrasiloxane), eight aromatics (styrene, methylbenzene, naph-
thalene, α-methylnaphthalene, 2-methylnaphthalene, 2-ethynyl naphthalene, 1,3-dimethyl
naphthalene, 1,5-dimethyl naphthalene), and seventeen oxygenated compounds (1-methoxy-
2-propyl acetate, 2-ethyl hexanol, benzoic acid, 2-hydroxy-2-methylpropiophenone, Isobutyl
benzoate, methyl Laurate, benzophenone, 4-chlorobenzophenone, di-iso-butyl phthalate,
methyl 2-benzoyl benzoate, palmitic acid, dibutyl Phthalate, di(2-ethylhexyl)phthalate, di-
ethylene glycol dibutyl ether, methyl palmitate, levoglucosenone, and 1-decane phosphonic
acid).
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Figure 4 shows the SERa of each compound emitted from the PVC flooring sam-
ples. The SERa of TSVOC emitted by PVC floorings ranged from 0.508 µg/(m2·h) to
345 µg/(m2·h), with a median of 11.9 µg/(m2·h). The top three SVOCs in emission rate
were methylbenzene (345 µg/(m2·h)), 2-methylnaphthalene (65.2 µg/(m2·h)), and naph-
thalene (60.3 µg/(m2·h)). This is consistent with previous studies, which also detected
methylbenzene, 2-methylnaphthalene, and naphthalene in indoor air [43–45]. SVOCs in
the adsorbed phase account for 47.3% of the total mass on average. The partition coefficient
(ratio of the released mass of SVOCs in the chamber’s gaseous phase to that in the adsorbed
phase) of the 32 detected SVOCs was in the range of 0−30.0, indicating that SVOCs emitted
from the PVC floorings have a strong tendency to adsorb on surfaces.
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Figure 4. Gas-phase and adsorbed-phase chamber concentrations of SVOCs emitted from PVC
floorings. (a) Flooring sample A; (b) flooring sample B; (c) flooring sample C.

3. Materials and Methods
3.1. Test Pieces

Seven different interior building materials, including four architectural coatings and
three polyvinyl chloride (PVC) floorings, were collected from a construction materials
plant in China according to their popularity. These samples are representative products of
different brands in the Chinese domestic market and have different properties or prices.
Each architectural coating sample was applied on a 50 cm2 stainless steel sheet and cured
for 48 h at a temperature of 23 ◦C and a humidity of 50 ± 10%. Each PVC flooring sample
was cut into 50 cm2 sheets at randomly chosen positions, wrapped in aluminum foil, and
also aged for 48 h under the same conditions. Prior to a measurement, the test pieces were
unpacked and placed in the emission chamber.
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3.2. Emission Chamber

The design of the microchamber used in previous experiments was improved. The
schematics of the microchamber before and after optimization are shown in Figure 5 [21,46].
The part and reason for the microchamber optimization are listed in Table 5. The first-
generation microchamber (Figure 5a) was initially designed with two microchambers,
which could simultaneously conduct the emission test on two samples. The chamber
utilized a glass rotor flowmeter to control the gas flow rate, and the inner wall of the
chamber was made of mirror stainless steel. However, problems with the flow meter and
seals resulted in elevated background concentrations within the chamber. In contrast,
problems with the gas inlet and chamber lid seals resulted in SVOC recovery rates of
50–60%. Therefore, we customized the second-generation microchamber (Figure 5b) [21,46].
To reduce the sink effect, the microchamber was mainly reformed in two aspects. On
the one hand, the structure of the gas path was improved so that N2 could enter the
chamber directly without passing through the flowmeter. On the other hand, the inner wall
and sealing cover of the chamber were coated with polytetrafluoroethylene to reduce the
adsorption to the inner wall. Meanwhile, in order to improve the tightness of the chamber
system, we replaced the seals and the electronic flowmeter.
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sample; 3: sealing material; 4: adsorbent tube (air sampling in microchamber); 5: sampling pump; 6:
microchamber; 7: incubator); Arrows indicate the direction of carrier gas flow.

Table 5. Part and reason of the microchamber optimization.

Before the Optimization After the Optimization Reason

Sample clamped between hatch cover
and hatch body.

Samples are stored on hold or on a
sample rack.

Solid flaky samples should be cut into round
flaky samples before optimization. After
optimization, it is suitable for testing thicker and
deformed samples.

The air intake was located on the
lower side of the chamber.

The air intake was located on the
cover of the chamber. To reduce the SVOC deposition in the chamber.

The bottom of the chamber was flat. The bottom of the chamber was
streamlined. To reduce the SVOC deposition in the chamber.

No cooling device. The electronic cooling unit was added
for gas sampling at low temperatures. To improve the capture efficiency of the SVOC.

3.3. Emission and Gas Sampling

This study uses a microchamber (630 mL, inner chamber: inert coated, stainless
steel) (Figure 6) through a set of testing conditions (environmental temperature, relative
humidity, and ventilation) and sampling conditions (Table 6) according to ISO 16000-
25:2011 [47]. Apparatus preparation included thorough cleaning of the microchamber using
methanol, acetone, and ethyl acetate in sequence, as well as testing of the microchamber
background. High-purity nitrogen was introduced into the chambers with an outlet flow
rate of 15 mL/min, and the gas flow rates were controlled by an electronic flowmeter.
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The emission samples were actively sampled on Tenax TA adsorbent tubes referred to
ISO 16000-25:2011 [47], and the tube was affixed to the outlet to capture SVOCs in the
gas phase over 24 h. After a 24-hour sampling of SVOCs from architectural coatings and
PVC floorings, then, the test piece was taken out, the temperature increased to 250 ◦C, and
the SVOCs adsorbed on the wall surface were desorbed and sampled. The test method
was obtained by a two-stage time-dependent determination of emission test (first step test,
gaseous phase) and heating-up desorption test (second step test, absorbed phase).
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Table 6. Measurement conditions of the two-stage microchamber emission test.

First Emission Stage

Gas supply N2 (0.9 L/h)
Temperature and humidity 23 ± 0.5 ◦C and 50 ± 5% RH

Sampling rate 21.6 L (15 mL/min × 24 h)
Scavenger Tenax TA

Second Thermal Desorption Stage

Gas supply N2 (5.4 L/h)
Temperature of the thermal desorption system 23 ◦C → 15 ◦C/min → 250 ◦C

Sampling rate 3.6 L (90 mL/min × 40 min)
Scavenger Tenax TA

The concentration of each component in the emission samples should be calculated
according to Equation (1).

Ci =
mi − m0i

V
(1)

where Ci is the concentration of the emitted SVOCs in the microchamber (ng/m3); mi is the
mass of the SVOCs in the sample sorbent tube (ng); moi is the mass of the SVOCs in the
blank sorbent tube (ng); V is the volume of air sampling (m3).

The SERa of each SVOC in the specimen is calculated according to Equation (2).

SERa =
m1 + m2

At
(2)
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where m1 is the mass collected in the emission test (first step test) (ng); m2 is the mass
collected in the absorption test (second step test) (ng); A is the surface area of the test
specimen (m2); t is the duration of the first phase (h).

3.4. Analysis Method

The SVOCs collected on the Tenax TA tubes were analyzed using a thermal desorber
combined with gas chromatography coupled to mass spectrometry (TD100-XR, Marks
(Calgary, Canada), desorb temperature: 300 ◦C, desorb time: 10 min, trap flow: 30 mL/min,
trap low temperature: −10 ◦C, trap high temperature: 300 ◦C, flow path temperature:
250 ◦C, S/SL mode: splitless). All samples were analyzed using a GC-MS (QP2020, Shi-
madzu (Kyoto, Japan)) in the SCAN mode and electron ionization (EI). Separation was
conducted on a column (DB-5MS, length 30 m, internal diameter 0.25 mm, film thickness
0.25 µm) using a thermal gradient: 50 ◦C for 2 min, 20 ◦C/min to 200 ◦C, held for 8 min,
8 ◦C/min to 300 ◦C for 12 min. The injector temperature was 300 ◦C with helium as carrier
gas at 8 mL/min.

4. Conclusions

In this study, the microchamber was improved by modifying the gas path and adding
polytetrafluoroethylene coating to reduce the SVOCs’ sink effects, i.e., sorption to chamber
components. After optimization, the background concentration of a single SVOC did not
exceed 0.02 µg within 1 h, and the recoveries of SVOCs during the whole emission test
were in the range of 90.6–119% (SD: 4.03–13.7%), which met the requirements in GB/T
42898-2023 [38]. The SVOCs emitted from architectural coatings and PVC floorings were
analyzed by the microchamber methods. The results indicated that the SVOCs emitted from
architectural coatings with the highest emission rates were propanoic acid and di-n-butyl
glutarate, and the SVOCs emitted from PVC floorings with the highest emission rates were
methylbenzene, 2-methylnaphthalene, and naphthalene. The two-stage emission rates are
different. On average, the second-stage (adsorbed phase) emission mass of SVOCs from
the architectural coating and PVC floorings account for 66.3% and 47.3% of the total mass,
respectively, meaning the emitted SVOCs have a strong tendency to adsorb on surfaces.
This comprehensive research into chemical emissions could help rapidly identify indoor
sources of SVOCs, identify the risks associated with SVOCs in building materials, and
prioritize a range of chemicals of concern to SVOCs based on risk.
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