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Abstract: As a prescription drug, retinoic acid is listed as a banned cosmetic additive in the EU and
China regulations. Currently, spectrophotometric methods, including thin-layer chromatography
(TLC), high-performance liquid chromatography (HPLC), and HPLC–MS/MS, are commonly used
for the determination of retinoic acid. As these conventional methods require complex pretreatment
and are time-consuming, chemical derivatization combined with paper spray ionization mass spec-
trometry was developed for the fast detection of retinoic acid in cosmetics. N,N-dimethylpiperazine
iodide (DMPI) was utilized as a derivatization reagent. Carboxylic acid in retinoic acid was deriva-
tized to carry a positive charge and was subjected to mass spectrometry analysis. Results showed that
compared with non-derivatized compounds, the detection limit was increased by about 50 times. The
linearity in the range of 0.005–1 µg·mL−1 was good. The limit of detection (LOD) was 0.0013 µg·mL−1,
and the limit of quantification (LOQ) was 0.0043 µg·mL−1. The recoveries of spiked samples were in
the range of 95–105%, and the RSDs were below 5%. Derivatization and paper spray ionization MS
render a quick, sensitive, and accurate method for the detection of retinoic acid in a complex matrix.

Keywords: PSI-MS; retinoic acid; cosmetics; chemical derivatization

1. Introduction

Retinoic acid [1] is a metabolite of Vitamin A in vivo. It is a prescription drug currently
used in the topical treatment of acne vulgaris [2–5], psoriasis [6,7], and ichthyosis [6–9]. Oral
administration of retinoic acid has strong teratogenic effects on humans and experimental
animals, including mice, rats, and hamsters. Topical application of retinoic acid to the
skin shows embryotoxicity and teratogenicity in mice and rabbits in the embryo-sensitive
period and may cause maternal systemic toxicity. Retinoic acid may also cause redness,
swelling, and erosions on healthy human skin [10–13]. Thus, retinoic acid is prohibited in
cosmetics products by Chinese Safety and Technical Standards (2015) and Regulation (EC)
No 1223/2009 of the European Parliament and of the Council [14,15].

It is essential to establish rapid and sensitive methods for the detection of retinoic
acid in cosmetics. Currently, thin-layer chromatography (TLC) [16,17], spectrophotome-
try [18–21], high-performance liquid chromatography (HPLC) [22–24], and HPLC with
tandem mass spectrometry (HPLC–MS/MS) [25–29] have been reported for the deter-
mination of retinoic acid in cosmetics and pharmaceuticals. HPLC–MS/MS generally
has the highest sensitivity and is widely used in screening retinoic acid in complicated
matrices [25,30]. Meanwhile, these methods are often time-consuming and costly.

To reduce the pretreatment time, one solution is the adoption of ambient ionization
mass spectrometry (AMS). First reported in 2004, it is a new type of mass spectrometry
technology that can directly analyze samples or sample surface substances under an
atmospheric pressure environment, which requires no or only a simple pretreatment. AMS
realizes in-situ, real-time, environmentally friendly, and rapid detection while retaining
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the accuracy and sensitivity of conventional mass spectrometry. Currently, the commonly
used AMS includes Desorption electrospray ionization (DESI) [31,32], Direct analysis in
real-time (DART) [33,34], Low-temperature plasma (LTP) [35,36], etc.

Paper Spray Ionization Mass Spectrometry (PSI-MS) [37–40] was introduced in 2010
as a type of ambient ionization mass spectrometry (AMS). It is currently applied in phar-
maceuticals [41–43], biological matrices [44–46], environmental testing [47–49], forensic
identification [50–52], food testing [53–55], etc. In this technology, filtration paper is used as
the substrate, and the substance to be tested is added dropwise onto the paper substrate. In
the presence of an applied electric field, normally several kilovolts, the substance dissolved
in the spray solvent moves to the tip of the paper tip, forms an electrically charged spray,
and is then detected by the mass spectrometer. PSI-MS is capable of high-throughput
detection of compounds and requires minimal sample preparation. PSI-MS also combines
the high sensitivity and accuracy of conventional mass spectrometry and is suitable for the
rapid analysis of retinoic acid in cosmetics.

Compounds lacking nitrogen atoms are more difficult to be protonated than nitrogen-
containing compounds during PSI-MS. Adding one or more positive charges onto the
original substance by chemical derivatization will greatly improve sensitivity in PSI-MS.
In this study, a fast derivatization of retinoic acid with N,N-Dimethylpiperazinium iodide
(DMPI) was developed, and following quantitative detection of retinoic acid derivatives in
cosmetics by PSI-MS with high sensitivity was achieved (Figure 1).
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2. Results and Discussion
2.1. The Selection of Derivatization Reagents

Retinoic acid is composed of only carbon, hydrogen, and oxygen. This composition
results in poor ionization efficiency in the positive ion mode of PSI-MS. To enhance its
sensitivity in mass spectrometry, it is necessary to introduce a positively charged moiety to
retinoic acid.

Based on the functional groups within retinoic acid, carboxyl acid is derivatized.
Before reacting with an amine to form an amide derivative, the carboxyl group must be
activated. O-(7-Azabenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate
(HATU) [56], O-(Benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate
(HBTU), Dicyclohexylcarbodiimide (DCC), and ethyl-(N’,N’-dimethylamino)propylcar-
bodiimide (EDC) are all commonly used catalysts for carboxylic acid activation. Compared
to other similar catalysts, HATU renders a faster reaction rate and is less susceptible to
racemization. Thus, HATU was used in this study.

After activation, amines are widely used to form amides. Introducing nitrogen atoms
helps the ionization process during mass spectrometry analysis. To further improve the
ionization sensitivity, quarternary ammonium or piperazinium salts, which contain a
positive charge, are also used as the derivatization reagent. The addition of a positive moiety
to the retinoic acid will greatly improve the mass spectrometry sensitivity. Meanwhile, Guo
et al. showed that the reaction between DMPI and carboxylic acid finished in less than one
minute at room temperature [57]. DMPI was used in this study to quickly react with retinoic
acid as the derivatization reagent. We performed mass spectrometry detection (product
ion scan mode and MRM mode) on retinoic acid and its derivatives (Figures S1–S4). The
response of the derivatized retinoic acid was greatly improved compared to retinoic acid
without derivatization.
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2.2. The Selection of Internal Standard

For quantitation purposes in mass spectrometry, an internal standard (IS) is often used.
The structure of IS should be similar to the analyte. The isotope-labeled compound of the
analyte is the most suitable IS for quantitation since the IS has similar physical and chemical
properties to the analyte. However, the isotope-labeled compounds are usually expensive
and not easy to obtain. Fenbufen, which has a carboxylic acid group and is structurally
similar to retinoic acid, was used as the IS in the study. Therefore, Fenbufen, as the internal
standard of retinoic acid, was analyzed by PSI-MS (Figures S5 and S6).

2.3. Optimization of Derivatization Conditions

When methanol was used as the solvent, almost no retinoic acid derivative was found.
This may be caused by the reaction of methanol with the HATU-activated retinoic acid.
Thus, retinoic acid, HUTA, and DMPI were dissolved in acetonitrile separately to prepare
the stock solutions. The solution was stable within 240 min.

Since there are various matrices in cosmetics that may also react with HATU and
DMPI, it is essential to ensure that the amounts of HATU and DMPI are in excess. It was
found that the complete reaction of retinoic acid in complex matrices was achieved when
the amounts of HATU and DMPI were at least 400 and 3000 times higher than the amounts
of retinoic acid. Further experiments showed that the reaction was completed immediately
without heating or sonication at room temperature.

2.4. The Optimization of Paper-Spray Ionization Mass Spectrometry Parameters

In optimizing the mass spectrometry parameters, the distance between the tip of the
triangular paper and the cone of the ion source (2 mm, 4 mm, 6 mm, and 10 mm) was
studied. It was found that the best response for the retinoic acid-derived compounds was
obtained at a distance of 4 mm. When the paper tip is too close to the cone hole, it is
easy to produce the discharge phenomenon. With the distance larger than 10 mm, the
generated electrospray is almost dissipated in the environment and cannot be detected by
the mass spectrometer.

Various external DC voltages (0.3 kV, 1.0 kV, 1.5 kV, 2.0 kV, 2.5 kV, 3.0 kV, 3.5 kV) were
also studied. The results (Figure 2) showed that the mass spectrometry response was best
when the external DC voltage was 1.0 kV. This result is lower than that of the normally
used 2.5–3.5 kV in the literature. This may be due to the positive charge on the retinoic
acid derivative. It undergoes electrospray directly without requiring a high voltage to form
charged ions first.
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The spray solvent serves to re-dissolve the analyte on the paper. The signal intensity
is directly affected by the spray solvent. Commonly used spray solvents include water,
acetonitrile, methanol, etc. As shown in Figure 3, the best response was obtained when the
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spray solvent was MeOH:H2O (V/V) = 8:2. When the spray solvent was pure methanol,
the response was extremely low, probably because the retinoic acid derivative had poor
solubility in methanol. When water was mixed with methanol, the solubility was improved.
Interestingly, after 0.1% formic acid was added, the response was decreased. This may
be due to the analyte itself being already positively charged; additional acid suppresses
the ionization.
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2.5. Linearity and Sensitivity

Linear solutions were injected from low (0.005 µg·mL−1) to high (1 µg·mL−1) concen-
trations, and the injections were repeated three times for each concentration. A linear curve
was plotted with the ratio of the intensity of the analyte to IS (Y) versus the concentration of
retinoic acid (X) (Figure 4). The linear correlation equation was y = 0.2488x+ 0.016, and the
coefficients were 0.9993. The lower limits of detection (LOD) were calculated by D = 3δ/S,
where D represents LOD, δ represents the standard deviation of six injections of the blank
solution, and S represents the slope of the linearity. LOD was 0.0013 µg·mL−1, and the
LOQ was 0.0043 µg·mL−1.
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2.6. The Precision of the Experiment

Retinoic acid solutions of 0.005 µg·mL−1, 0.01 µg·mL−1, 0.1 µg·mL−1, and 1 µg·mL−1

were taken and prepared according to the method described in Section 3.3. Each concentra-
tion was measured five times in parallel. The result showed that the average was calculated
as 0.00496 µg·mL−1, 0.00986 µg·mL−1, 0.106 µg·mL−1, and 0.990 µg·mL−1, respectively.
Their RSD were 6.87%, 6.90%, 4.77%, and 4.07%, respectively.
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2.7. The Sample Recovery Experiment

Recovery experiments were also performed. First, 10 mg of cosmetic matrix was mixed
with 5 mL linear standard solutions (0.005 µg·mL−1, 0.05 µg·mL−1 and 0.5 µg·mL−1),
respectively. The solution was sonicated for 1 min. After 50 µL of the resulting solution
and 5 µL internal standard solution (10 µg·mL−1) were mixed, 20 µL HATU in acetonitrile
solution (1 mg·mL−1) was added, and the resulting solution was vortexed for 30 s. Then,
50 µL of DMPI in acetonitrile solution (3 mg·mL−1) and 5 µL of TEA in acetonitrile solution
(1 mol·L−1) were added; the final solution was vortexed for 30 s and analyzed by PSI-
MS immediately.

Recoveries were tested at low (0.005 µg·mL−1), medium (0.05 µg·mL−1) and high
(0.5 µg·mL−1) concentrations. Each concentration was measured three times. The average
recoveries of the samples were calculated to be 102.40%, 100.79%, and 99.85%, and the RSD
were all lower than 5%.

2.8. The Complex Matrix Sample Detection

To test the practicability of the method, retinoic acid was added to a complex matrix
(cream with glycerol, caprylic/capric triglyceride, cetearyl alcohol, 1,2-pentanediol, and
glyceryl stearatese) and measured using the derivatization and PSI-MS method. The results
showed that (Table 1) the method was able to quantitatively determine the retinoic acid in
a complex matrix.

Table 1. Detection of retinoic acid in complex matrices.

Chemical
Compound

Added
(µg·mL−1)

Found
(µg·mL−1)

Recovery
Rate (%)

Average Recovery
Rates (%)

RSD%
(N = 3)

0.00525 104.94

Retinoic acid

0.005 0.00524 104.78 102.40 4.15
0.00487 97.49
0.0493 98.54

0.05 0.0491 98.26 100.79 4.11
0.0528 105.57
0.497 99.47

0.5 0.486 97.20 99.85 2.86
0.514 102.87

3. Materials and Methods
3.1. The Instruments

All experiments were carried out with an Agilent 1290 HPLC coupled with a 6495 triple
quadruple mass spectrometer (Palo Alto, CA, USA). Data were acquired and processed by
Agilent MassHunter Workstation 10.1 (Palo Alto, CA, USA). HB-Z303-1AC high-voltage
DC power supply (Tianjin Hengbo High Voltage Power Supply Factory, Tianjin, China) and
KQ-500DA CNC ultrasonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd., Kunshan,
China) were used. Grade 1 chromatographic paper was from Whatman (Stevenage, UK).

3.2. Materials and Reagents

Retinoic acid and Fenbufen were from the National Institutes for Food and Drug
Control (Beijing, China). Methanol was purchased from Merck (Darmstadt, Germany).
Acetonitrile was purchased from Fisher Scientific (Waltham, MA, USA). Triethylamine
was from Taitan Science and Technology (Shanghai, China). HATU was purchased from
TCI Chemicals (Shanghai, China). All reagents were used directly without further pu-
rification. DMPI was synthesized in the laboratory following a previously published
procedure [57]. The structure of DMPI was consistent with the literature [57]: 1H NMR
(D2O,TMS): δ:3.41(6H,s,CH3), δ:3.79–3.87(8H,m,CH2); HRMS: C6H15N2

+ (calc.: 115.1229,
found: 115.1230).
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3.3. Solution Preparation

Standard stock solution (100 µg·mL−1): After 10 mg retinoic acid was transferred to
a 10 mL volumetric flask, 1 mL TEA in acetonitrile (1 mol·L−1) was added to dissolve
the solid; the resulting solution was diluted to volume with acetonitrile. Then, 1 mL of
the resulting solution was transferred to a 10 mL volumetric flask and was diluted to the
volume with acetonitrile.

Linear standard solutions: Standard solution was diluted to 0.005, 0.01, 0.1, 0.3, 0.6,
and 1 µg·mL−1 with acetonitrile.

Internal standard solution (10 µg·mL−1): After 10 mg Fenbufen was transferred to
a 10 mL volumetric flask, 1 mL TEA in acetonitrile (1 mol·L−1) was added to dissolve
the solid; the resulting solution was diluted to volume with acetonitrile. Then, 1 mL of
the solution was transferred to a 100 mL volumetric flask and was diluted to the volume
with acetonitrile.

3.4. Derivative Reaction

Derivatization of retinoic acid: After 5 µL of internal standard solution and 50 µL of
linear standard solution were mixed, 20 µL of HATU in acetonitrile solution (1 mg·mL−1)
was added to the solution, and the resulting solution was vortexed for 10 s. Then 50 µL
of DMPI in acetonitrile solution (3 mg·mL−1) and 5 µL of TEA in acetonitrile solution
(1 mol·L−1) were added; the final solution was vortexed for 30 s and analyzed by PSI-
MS immediately.

3.5. Paper Spray Mass Spectrometry Parameters

An isosceles triangular chromatography paper, 5 mm long at the bottom and 15 mm
high, is fixed to a steel table with copper clamps so that the tip of the paper is directed
towards the hole in the cone of the ion source of the mass spectrometer. After 2 µL of
the derivatization solution was added to the paper substrate, the paper was dried for
1 min. After a voltage of 1.0 kV was applied, 20 µL of the sprayed solvent was added.
The derivative compounds adsorbed on the paper are dissolved in the spray solvent and
brought to the tip of the paper by the applied voltage to form an electrospray, which was
detected in the mass spectrometer.

For the mass spectrometer, the collision voltage was 24 eV, and the parent ions and
daughter ions were 397.3→175.1 for retinoic acid and 351.2→237.1 for Fenbufen (Figure 5).
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4. Conclusions

In the present work, a chemical derivatization and PSI-MS method were established
for fast screening of retinoic acid in cosmetics. DMPI, as a derivatization reagent, can react
with retinoic acid quickly at room temperature. The reaction is not interfered with by
many ingredients, such as glycerol and caprylic/capric triglyceride in cosmetics. After
derivatization, the sensitivity increased more than 50 times compared to un-derivatized
retinoic acid (Figure S7). Compared to the traditional HPLC–MS method, no extraction
and separation of retinoic acid in cosmetics is required. This strategy can be used for fast
screening of low-response analytes on PSI-MS in cosmetics.
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//www.mdpi.com/article/10.3390/molecules29184491/s1, Figure S1: Mass spectrum of retinoic acid
without derivatization (Product ion scan mode); Figure S2: Mass spectrum of retinoic acid derivatives
(Product ion scan mode); Figure S3: Mass spectrum of retinoic acid (MRM mode); Figure S4: Mass
spectrum of retinoic acid derivatives (MRM mode); Figure S5: Mass spectrum of Fenbufen (Product
ion scan mode); Figure S6: Mass spectrum of Fenbufen derivatives (Product ion scan mode); Figure S7:
The linearity of the retinoic acid without derivatization.
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