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Abstract: 2-Chloropyridine-3-carbonitrile derivative 1 was utilized as a key precursor to build a
series of linear and angular annulated pyridines linked to a 6-hydroxy-4,7-dimethoxybenzofuran
moiety. Reaction of substrate 1 with various hydrazines afforded pyrazolo[3,4-b]pyridines. Treat-
ment of substrate 1 with 1,3-N,N-binucleophiles including 3-amino-1,2,4-triazole, 5-amino-1H-
tetrazole, 3-amino-6-methyl-1,2,4-triazin-5(4H)-one and 2-aminobenzimidazole produced the novel
angular pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidine, pyrido[3,2-e][1,2,4]tetrazolo[1,5-a]pyrimidine,
pyrido[3′,2′:5,6] pyrimido[2,1-c][1,2,4]triazine and benzo[4,5]imidazo[1,2-a]pyrido[3,2-e]pyrimidine,
respectively. Reaction of substrate 1 with 1,3-C,N-binucleophiles including cyanoacetamides and
1H-benzimidazol-2-ylacetonitrile furnished 1,8-naphthyridines and benzoimidazonaphthyridine.
Moreover, reacting substrate 1 with 5-aminopyrazoles gave pyrazolo[3,4-b][1,8]naphthyridines.
Finally, reaction of compound 1 with 6-aminouracils as cyclic enamines yielded pyrimido[4,5-
b][1,8]naphthyridines. Some of the synthesized products showed noteworthy antimicrobial efficiency
against all types of microbial strains. Structures of the produced compounds were established using
analytical and spectroscopic tools.

Keywords: benzofuran; fused pyridines; 1,8-naphthyridine; cyclocondensation; nucleophilic reagents

1. Introduction

Benzofuran scaffolds, found in numerous natural products and medications, are of
great therapeutic value [1–3]. Some drugs containing benzofurans with potential biological
activities are approved by the USFDA or EMA [4]. Benzofurans constitute a valuable
class in the field of drug discovery and development due to their interesting biological
characteristics [5,6]. Noteworthy, substituted benzofurans exhibit significant efficiency
against various tumors and cancer cell lines [7–9]. Also, benzofurans tethered different
heterocyclic compounds displayed significant antimicrobial efficiency against a diversity
of microbial strains [9–12]. Benzofuran derivatives also possess diverse biological prop-
erties, such as antioxidant, anti-inflammatory, antipyretic neuroprotective, analgesic as
well treatment potential for Alzheimer’s diseases [13–17]. Theoretical studies and physi-
cal applications on benzofuran derivatives including HOMO-LUMO energy, MEP map,
Mulliken atomic charges, dipole moments, solvatochromic, NBO and NLO, photophysical,
photochemical and optoelectronic properties were also investigated [18–22]. A variety of
synthetic strategies were developed to prepare heterocyclic compounds including benzo-
furan skeletons [23–26]. However, 6-substituted khellin represents an excellent building
block to synthesize benzofuran-tethered heterocyclic systems due to the availability of
electron-deficient γ-pyrone moiety [27–31]. On the other hand, a diversity of pyridines
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and their annulated heterocycles are widely synthesized using variable synthetic method-
ology [32–35]. Pyridine-based heterocycles exhibited promising pharmacological charac-
teristics including antiviral, antiproliferative anticancer, antimicrobial, antimycobacterial,
antifungal, anti-diabetic and anti-Alzheimer as well as inhibitors for acetylcholinesterase
and butyrylcholinesterase [36–42]. Given the chemical and biological importance of ben-
zopyrans and pyridines scaffolds, the current work aims to synthesize some new linear
and angular annulated pyridines tethered to a 6-hydroxy-4,7-dimethoxybenzofuran moiety
in one molecular frame utilizing o-choropyridinecarbonitrile 1 [43] as a building block, and
to explore the biological activities of the prepared compounds.

2. Results and Discussion
2.1. Characterization of the Synthesized Compounds

It is known that compounds containing neighboring cyano and chloro functions are active
building blocks for constructing nitrogen heterocyclic compounds [44,45]. Thus, chloropy-
ridinecarbonitrile derivative 1 serves as an effective precursor for the synthesis of a variety of
fused pyridines connected to a 6-hydroxy-4,7-dimethoxybenzofuranylcarbonyl moiety.

Reaction of substrate 1 with 3-hydrazino-5,6-diphenyl-1,2,4-triazine (2) [46] and 7-
chloro-4-hydrazinoquinoline (3) [47], in refluxing DMF/TEA, afforded triazinyl/ quinoliny
lpyrazolo[3,4-b]pyridines 4 and 5, respectively (Scheme 1). Compounds 4 and 5 are formed
via the nucleophilic addition of NH2 group to the nitrile function in substrate 1, followed by
pyrazole ring closure and elimination of an HCl molecule. The mass spectra of compounds
4 and 5 confirmed their molecular formulae C32H23N7O5 and C26H18ClN5O5 showing
their parent ion peaks at m/z 585 and 515, respectively. The C≡N function, detected at ṽ
2227 cm−1 in the spectrum of compound 1, disappeared in the IR spectra of products 4 and
5. The IR spectrum of products 4 and 5 presented distinctive absorption bands due to amino
groups at ṽ 3368, 3293 and 3354, 3271 cm−1, respectively. Also, characteristic absorption
bands corresponding to C=O and C=N were recorded at ṽ 1652/1658 and 1610/1612 cm−1.
Further, the NH2 groups were detected in the 1H-NMR spectra of compounds 4 and 5 at δ
9.31 and 9.42 ppm, respectively, while the OH protons were seen at δ 12.29 and 12.52 ppm.
In addition, two characteristic doublets attributable to H-3furan and H-2furan were seen in
the 1H NMR spectra of compounds 4 and 5 at δ 7.08/7.13 and 7.85/7.86 ppm, respectively.
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Scheme 1. Formation of pyrazolo[3,4-b]pyridines 4 and 5. Scheme 1. Formation of pyrazolo[3,4-b]pyridines 4 and 5.
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Likewise, compound 1 was permitted to react with some 1,3-N,N-binucleophiles.
Thus, the novel angular pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidine 6 and pyrido[3,2-
e][1,2,4]tetrazolo[1,5-a]pyrimidine 7 were synthesized from reacting substrate 1 with 3-
amino-1,2,4-triazole and 5-amino-1H-tetrazole, respectively (Scheme 2). The mass spectra of
the compounds 6 and 7 displayed their molecular ion peaks at m/z 406 and 407, coinciding
with the proposed molecular formulae C19H14N6O5 and C18H13N7O5, respectively. Their
IR spectra showed distinctive absorption bands at ṽ 3348, 3265/3369, 3287 (NH2) and
1649/1644 cm−1 (C=O). The 1H NMR spectra of compounds 6 and 7 revealed characteristic
singlet signals due to H-4pyridine and H-2pyridine at δ 8.43/8.52 and 8.55/8.61, respectively.
In addition, the amino protons were observed as D2O exchangeable signals at δ 9.50 and
9.26 ppm. The spectrum of compound 6 displayed definite singlet signal assignable to
H-3triazole at δ 8.97. The carbonyl carbon in compounds 6 and 7 were observed in the
downfield region in the 13C NMR spectra at δ 192.3 and 192.4 ppm, respectively, also the
spectrum of compound 6 showed distinctive singlet due to C-3triazole at δ 137.3 ppm.
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Similarly, treatment of substrate 3 with 3-amino-6-methyl-1,2,4-triazin-5(4H)-one
(8) [48] and 2-aminobenzimidazole, in boiling DMF/TEA, yielded the novel angular
annulated pyrido[3′,2′:5,6]pyrimido[2,1-c][1,2,4]triazine 9 and benzo[4,5]imidazo[1,2-a]
pyrido[3,2-e]pyrimidine 10, respectively (Scheme 3). The IR spectra of compounds 9 and 10
showed distinctive absorption bands at ṽ 3372,3296/3383,3268 (NH2) and 1654/1648 cm−1

(C=O). Also, the spectrum of compound 9 presented distinguish absorption band due to
C=Otriazine at ṽ 1692 cm−1. The 1H NMR spectra of compounds 9 and 10 presented D2O ex-
changeable signals due to amino protons at δ 9.32 and 9.52 ppm, respectively. The spectrum
of compound 9 displayed an upfield signal at δ 2.18, corresponding to CH3 triazine. The
13C NMR spectrum of compound 9 showed two specific signals attributed to CH3 triazine
and C=Otriazine at δ 17.3 and 166.2 ppm. The mass spectra of compounds 9 and 10 showed
their molecular ion peaks at m/z 448 and 455, respectively, which coincided well with their
proposed molecular formulae C21H16N6O6 and C24H17N5O5, respectively.
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Next, compound 1 was permitted to react with some of 1,3-C,N-binucleophiles.
Hence, reaction of compound 1 with cyanoacetamide, N-benzyl-2-cyanoacetamide and
1H-benzimidazol-2-ylacetonitrile, in boiling DMF/TEA, furnished 1,8-naphthyridine-3-
carbonitriles 11, 12 and benzo[4,5]imidazo[1,2-a][1,8] naphthyridine-6-carbonitrile 13, re-
spectively (Scheme 4). The IR spectra of compounds 11–13 showed characteristic absorption
bands attributed to C≡N at ṽ 2224, 2221 and 2226 cm−1, respectively. The spectra of com-
pounds 11 and 12 showed characteristic absorption bands due to C=Opyridine at 1681 and
1686 cm−1. The 1H NMR spectra of compounds 11–13 presented the NH2 protons as ex-
changeable signals at δ 9.32, 9.28 and 9.41 ppm, respectively. The NH proton in compound
11 was seen at δ 11.04 ppm. Also, the CH2 protons in compound 12 were recorded at
δ 3.08 ppm. The 13C NMR spectra of compounds 11 and 12 showed characteristic sig-
nals attributed to C≡N, C=Onaphthyridine and C=Oketone at δ 116.3/116.6, 169.5/169.1 and
193.2/194.1 ppm, respectively. The spectrum of compound 12 displayed the methylene
carbon as definite signal at δ 29.4. The mass spectra of compounds 11–13 exhibited their
parent ion peaks at m/z 406, 496 and 479 that agree well with the suggested molecular for-
mulae C20H14N4O6 (406.35), C27H20N4O6 (496.47) and C26H17N5O5 (479.44), respectively.
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Moreover, the reaction of substrate 1 with 5-amino-2,4-dihydro-3H-pyrazol-3-one and
5-amino-3-methyl-1H-pyrazole, in boiling DMF/TEA, gave linear annulated pyrazolo[3,4-
b][1,8]naphthyridines 14 and 15, respectively (Scheme 5). The IR spectrum of compound 14
showed typical absorption bands at ṽ 3376, 3338, 3296 (NH2, 2NH), 1667 (C=Opyrazole) and
1646 cm−1 (C=O). The 1H NMR spectrum of compound 15 revealed characteristic singlet
signals at δ 2.42, 8.52 and 8.64 ppm attributed to CH3 pyrazole, H-4pyridine and H-2pyridine,
in addition to three D2O exchangeable signals at δ 9.32 (NH2), 10.36 (NH) and 12.41 ppm
(OH). The mass spectra of compounds 14 and 15 revealed their molecular ion peaks at m/z
421 and 319 that match well with the proposed molecular formulae C20H15N5O6 (421.36)
and C21H17N5O5 (419.39), respectively. The carbon of C=Opyrazole was seen in the 13C NMR
spectrum of compound 14 in the downfield region at δ 165.5 ppm, while the spectrum
of compound 15 presented distinctive signal due to CH3 pyrazole at the upfield region δ

18.6 ppm (CH3).
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Scheme 5. Formation of pyrazolo[3,4-b][1,8]naphthyridines 14 and 15.

Finally, compound 1 was permitted to react with some cyclic enamines namely 6-
aminouracil, 6-aminothiouracil and 6-amino-1,3-dimethyluracil, in DMF containing TEA,
giving pyrimido[4,5-b][1,8]naphthyridines 16–18, respectively (Scheme 6). The mass spectra
of compounds 16–18 presented their molecular ion peaks at m/z 449, 465 and 477 approving
their suggested formula weights 449.37 (C21H15N5O7), 465.44 (C21H15N5O6S) and 477.43
(C23H19N5O7), respectively. The amino protons were observed in 1H NMR spectra of
compounds 16–18 at δ 9.58, 9.34 and 9.37 ppm, respectively. Two characteristic signals
attributable to 2NCH3 protons were seen in the 1H NMR spectrum of compound 18 at δ 3.06
and 3.17 ppm. Further, the 13C NMR spectra of compounds 16 and 18 showed characteristic
signals at δ 165.1/165.5 (C2 as C=Opyrimidine) and 167.4/168.1 (C4 as C=Opyrimidine), while
The spectrum of compound 17 displayed specific signals due to C4 as C=Opyrimidine and
C2 as C=Spyrimidine at δ 168.9 and 186.3 ppm, respectively. Also, the 13C NMR spectrum
of compound 18 showed two characteristic signals at δ 28.9 and 30.0 corresponding to
2NCH3 carbons.
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2.2. Antimicrobial Estimation

The synthesized products were investigated for their antimicrobial assay, in vitro,
against some Gram-positive bacteria (S. aureus and B. subtilis) and Gram-negative bacteria
(S. typhimurium and E. coli), as well as yeast (C. albicans) and fungus (A. fumigatus).

To assess the antimicrobial efficacy of the synthesized products, the inhibitory zones,
including the disc diameter (6 mm), were evaluated (Table 1) [49]. High inhibition action
referred to zone diameter >2/3 zone diameter of control, while moderate activity means
zone diameter ≤2/3 and >1/3 zone diameter of reference drug. Cycloheximide is the
reference drug for fungus and yeast, while Chloramphencol for Gram-positive bacteria,
and Cephalothin for Gram-negative bacteria.

Table 1. Antimicrobial estimation, in vitro, for the prepared compounds 1–18 by disc diffusion
measurement.

N
o.

Zone Diameter (mm) * (% with Respect to Reference Drug)

Gram-Positive Bacteria Gram-Negative Bacteria Yeasts and Fungi

C
om

pd
.

N
o.

S. aureus B. subtilis S. typhimurium E. coli C. albicans A. fumigatus

1000
µg/mL

500
µg/mL

1000
µg/mL

500
µg/mL

1000
µg/mL

500
µg/mL

1000
µg/mL

500
µg/mL

1000
µg/mL

500
µg/mL

1000
µg/mL

500
µg/mL

1 40% 38% 49% 48% 53% 50% 45% 44% 69% 71% 70% 73%
4 77% 77% 69% 72% 69% 68% 71% 74% 86% 75% 73% 77%
5 83% 81% 77% 76% 75% 68% 74% 70% 80% 75% 70% 69%
6 46% 50% 51% 52% 47% 46% 39% 41% 71% 64% 77% 73%
7 80% 77% 74% 76% 75% 71% 74% 70% 86% 79% 77% 81%
9 86% 88% 83% 84% 75% 71% 68% 74% 83% 75% 73% 73%

10 57% 58% 49% 48% 42% 39% 45% 52% 71% 68% 73% 77%
11 80% 81% 71% 72% 78% 75% 68% 70% 77% 71% 68% 69%
12 71% 69% 69% 72% 72% 71% 74% 78% 74% 68% 78% 77%
13 49% 42% 46% 40% 53% 43% 42% 41% 69% 71% 70% 69%
14 54% 54% 43% 44% 58% 50% 47% 44% 74% 71% 77% 81%
15 51% 50% 49% 48% 50% 46% 39% 41% 77% 75% 68% 73%
16 77% 77% 74% 72% 78% 68% 66% 67% 74% 71% 77% 81%
17 89% 85% 71% 72% 72% 64% 71% 70% 77% 75% 68% 73%
18 83% 83% 80% 76% 75% 71% 68% 71% 71% 68% 77% 77%
S 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

* Calculated from 3 times. S: Standard antibiotics, which are Cycloheximide for fungus and yeast, Chloramphencol
for Gram-positive bacteria, and Cephalothin for Gram-negative bacteria.

According to the results in Table 1 (Charts 1 and S1–S5), all examined compounds
had a strong inhibitory impact on the tested strains of fungus and yeast; this may due
to the presence of the 6-hydroxy-4,7-dimethoxy-1-benzofuran moiety which exists in all
products. Meanwhile, the inhibitory effect against the microbial strains varies according
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to the effect of the synthesized heterocyclic rings. Compounds 4 and 5 presented high
efficiency against both types of Gram-positive and Gram-negative bacteria and this may
be attributed to the presence of triazinyl/quinolinyl-pyrazolopyridine moieties linked to
the benzofuranylcarbonyl fragment. Also, building angular heterocyclic systems, namely
pyridotetrazolopyrimidine 7 and pyridopyrimidotriazine 9, enhanced the inhibitory effects
against all tested microorganisms. On the other hand, some linear heterocyclic systems such
as 1,8-naphthyridines 11, 12 and pyrimidonaphthyridines 16–18 showed high inhibition
actions towards all tested bacterial strains.
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Chart 1. The antibacterial efficiency of synthesized compounds against S. aureus.

As illustrated above, due to the existence of the principal scaffold, 6-hydroxy-4,7-
dimethoxy-1-benzofuran moiety, all of the examined products demonstrated valuable
inhibitory effects towards yeast and fungus. Furthermore, the inhibitory action towards
bacterial strains was improved by the inclusion of additional heterocyclic systems, such as
pyrazolopyridine, pyridotetrazolopyrimidine, pyridopyrimidotriazine, 1,8-naphthyridine
and pyrimidonaphthyridine. As a result, some of the produced compounds may have
excellent antimicrobial properties.

3. Materials and Methods
3.1. General Information

General. Melting point determination was performed using a digital Stuart SMP3
device (Buchi, Flawil, Switzerland). The mass spectra were measured using Shimadzu
(Tokyo, Japan) GC-2010 mass spectrometer (70 eV); in gas chromatography. The 1H NMR
(400 MHz) and 13C NMR (100 MHz) spectra were measured with the Mercury-400BB
apparatus (vnmr1, Rheinstetten, Germany) using DMSO-d6 as the solvent and TMS (δ) as
the internal standard. Using KBr disks, an FTIR Nicolet (Green Bay, WI, USA) IS10 spec-
trophotometer (cm−1) was used to record the infrared spectra. 2-Chloro-5-[(6-hydroxy-4,7-
dimethoxy-1-benzofuran-5-yl)carbonyl]pyridine-3-carbonitrile (1) was prepared according
to literature [43].

3.2. Biological Method

On medium potato dextrose agar (PDA), which comprised an infusion of 200 g pota-
toes, 6 g dextrose, and 15 g agar, the antimicrobial activity test was conducted. Filter paper
disks of uniform size (6 mm in diameter, with three disks for each chemical) were carefully
placed on an inoculated agar surface after being impregnated with an equivalent volume
(10 µL) of dissolved compounds at concentrations of 500 and 1000 mg/mL in dimethyl-
formamide (DMF). Following 36 h of incubation at 27 ◦C for bacteria and 48 h at 24 ◦C for
fungi. The average diameter of the bacterial and fungal inhibitory zones surrounding the
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disks, measured in millimeters at concentrations of 500 and 1000 mg/mL, was recorded for
each investigated compound [49].

3-Amino-1-(5,6-diphenyl-1,2,4-triazin-3-yl)-5-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-
5-yl)carbonyl]-1H-pyrazolo[3,4-b]pyridne (4)

A mixture of compound 1 (0.72 g, 2 mmol) and 3-hydrazinyl-5,6-diphenyl-1,2,4-triazine
(2) (0.58 g, 2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux
for 4 h. After cooling, the pale-yellow crystals deposited were filtered and recrystallized
from AcOH, mp > 300 ◦C, yield (0.88 g, 75%). IR (KBr, cm−1): 3413 (OH), 3368, 3293 (NH2),
1652 (C=O), 1610 (C=N), 1581 (C=C). 1H NMR (400 MHz, DMSO-d6, δ): 3.86 (s, 3H, OCH3),
3.95 (s, 3H, OCH3), 7.08 (d, 1H, J = 2.0 Hz, H-3furan), 7.44–7.52 (m, 10H, Ar-H), 7.85 (d,
1H, J = 2.0 Hz, H-2furan), 8.42 (s, 1H, H-4pyridine), 8.48 (s, 1H, H-2pyridine), 9.31 (s, 2H, NH2

exchangeable with D2O), 12.29 (s, 1H, OH exchangeable with D2O). 13C NMR (75 MHz,
DMSO-d6, δ): 58.7 (OMe), 59.8 (OMe), 102.3 (C3a′), 104.0 (C3′), 108.2 (C3a), 112.4 (C5′),
121.4 (Ar-C), 122.1 (Ar-C), 123.8 (C7′), 124.7 (Ar-C), 125.2 (Ar-C), 127.6 (Ar-C), 129.1 (C4′),
129.8 (Ar-C), 131.4 (Ar-C), 132.8 (C5), 135.7 (Ar-C), 138.2 (C-7a), 139.0 (C-5triazine), 139.9
(C-6triazine), 140.2 (C-3triazine), 143.2 (C-3), 144.5 (C-4), 147.2 (C-2′), 148.1 (C-6), 149.1 (C6′),
151.6 (C7a′), 189.7 (C=Oketone). Mass spectrum, m/z (Ir %): 585 (M+, 46), 555 (24), 452 (37),
353 (16), 324 (20), 220 (71), 178 (100), 159 (13), 133 (10), 117 (16), 93 (25), 77 (48), 64 (21).
Anal. Calcd for C32H23N7O5 (585.57): C, 65.64; H, 3.96; N, 16.74%. Found: C, 65.37; H, 3.88;
N, 16.64%.

3-Amino-1-(7-chloroquinolin-4-yl)-5-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)
carbonyl]-1H-pyrazolo[3,4-b]pyridne (5)

A mixture of compound 1 (0.72 g, 2 mmol) and 7-chloro-4-hydrazinylquinoline (3)
(0.38 g, 2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h.
After cooling, the orange-yellow crystals so formed were filtered and recrystallized from
AcOH, mp > 300 ◦C, yield (0.79 g, 78%). IR (KBr, cm−1): 3408 (OH), 3354, 3271 (NH2), 1658
(C=O), 1612 (C=N), 1588 (C=C). 1H NMR (400 MHz, DMSO-d6, δ): 3.87 (s, 3H, OCH3), 3.97
(s, 3H, OCH3), 7.13 (d, 1H, J = 2.0 Hz, H-3furan), 7.52–7.56 (m, 3H, H-3quinoline, H-5quinoline
and H-6quinoline), 7.86 (d, 1H, J = 2.0 Hz, H-2furan), 8.04 (s, 1H, H-8quinoline), 8.18 (d, 1H,
J = 7.6 Hz, H-2quinoline), 8.53 (s, 1H, H-4pyridine), 8.69 (s, 1H, H-2pyridine), 9.42 (s, 2H, NH2

exchangeable with D2O), 12.52 (s, 1H, OH exchangeable with D2O). 13C NMR (75 MHz,
DMSO-d6, δ): 58.5 (OMe), 59.3 (OMe), 102.5 (C3a′), 106.4 (C3′), 109.3 (C3a), 112.5 (C5′), 122.0
(Ar-C), 122.6 (Ar-C), 123.3 (Ar-C), 123.7 (C7′), 124.6 (Ar-C), 125.1 (Ar-C), 126.4 (Ar-C), 127.8
(Ar-C), 128.6 (C4′), 134.5 (C8aquinoline), 139.5 (C-7a), 140.5 (C4quinoline), 143.4 (C2 quinoline),
144.5 (C-4), 145.2 (C-3), 147.4 (C-2′), 148.2 (C-6), 150.5 (C6′), 152.6 (C7a′), 192.2 (C=Oketone).
Mass spectrum, m/z (Ir %): 515/517 (M+/M+2, 100/33), 354 (68), 312 (32), 221 (54), 162/164
(69/23), 134 (11), 117 (19), 94 (42), 77 (26), 64 (15). Anal. Calcd for C26H18ClN5O5 (515.90):
C, 60.53; H, 3.52; N, 13.57%. Found: C, 60.41; H, 3.39; N, 13.52%.

5-Amino-3-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]pyrido[3,2-e] [1,2,4]
triazolo[4,3-a]pyrimidine (6)

A mixture of compound 1 (0.72 g, 2 mmol) and 3-amino-1,2,4-triazole (0.16 g, 2 mmol),
in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h. After cooling,
the yellow crystals deposited were filtered and recrystallized from iso-butanol, mp > 300 ◦C,
yield (0.59 g, 72%). IR (KBr, cm−1): 3406 (OH), 3348, 3265 (NH2), 1649 (C=O), 1615 (C=N),
1594 (C=C). 1H NMR (400 MHz, DMSO-d6, δ): 3.84 (s, 3H, OCH3), 3.92 (s, 3H, OCH3),
7.11 (d, 1H, J = 2.0 Hz, H-3furan), 7.92 (d, 1H, J = 2.0 Hz, H-2furan), 8.43 (s, 1H, H-4pyridine),
8.55 (s, 1H, H-2pyridine), 8.97 (s, 1H, H-3triazole), 9.50 (s, 2H, NH2 exchangeable with D2O),
12.33 (s, 1H, OH exchangeable with D2O). 13C NMR (100 MHz, DMSO-d6, δ): 58.0 (OCH3),
59.2 (OCH3), 102.3 (C5′), 104.3 (C4a), 106.7 (C3′), 109.3 (C3a′), 122.4 (C7′), 128.2 (C3), 129.6
(C4′), 137.3 (C9), 138.4 (C4), 139.3 (C2), 144.9 (C5), 145.2 (C2′), 148.5 (C10a), 149.7 (C6a),
151.6 (C6′), 152.8 (C7a′), 192.3 (C=Oketone). Mass spectrum, m/z (Ir %): 406 (M+, 100), 350
(67), 320 (39), 288 (32), 221 (51), 185 (24), 148 (28), 134 (15), 118 (11), 94 (47), 77 (33), 64 (10).
Anal. Calcd for C19H14N6O5 (406.35): C, 56.16; H, 3.47; N, 20.68%. Found: C, 55.96; H, 3.44;
N, 20.39%.
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5-Amino-7-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]pyrido[3,2-e] [1,2,4]
tetrazolo[1,5-a]pyrimidine (7)

A mixture of compound 1 (0.72 g, 2 mmol) and 5-amino-1H-tetrazole (0.16 g, 2 mmol),
in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h. After cooling,
the yellow crystals so formed were filtered and recrystallized from iso-butanol, mp > 300 ◦C,
yield (0.57 g, 70%). IR (KBr, cm−1): 3403 (OH), 3369, 3287 (NH2), 1644 (C=O), 1611 (C=N),
1590 (C=C). 1H NMR (400 MHz, DMSO-d6, δ): 3.86 (s, 3H, OCH3), 4.03 (s, 3H, OCH3), 7.19
(d, 1H, J = 2.0 Hz, H-3furan), 7.95 (d, 1H, J = 2.0 Hz, H-2furan), 8.52 (s, 1H, H-4pyridine), 8.61 (s,
1H, H-2pyridine), 9.26 (s, 2H, NH2 exchangeable with D2O), 12.40 (s, 1H, OH exchangeable
with D2O). 13C NMR (100 MHz, DMSO-d6, δ): 58.5 (OCH3), 59.1 (OCH3), 101.8 (C5′), 105.1
(C4a), 106.2 (C3′), 110.3 (C3a′), 123.1 (C7′), 128.5 (C3), 129.8 (C4′), 138.5 (C4), 138.8 (C2),
144.2 (C5), 145.1 (C2′), 148.1 (C10a), 149.2 (C6a), 151.1 (C6′), 152.7 (C7a′), 192.4 (C=Oketone).
Mass spectrum, m/z (Ir %): 407 (M+, 48), 349 (30), 304 (25), 274 (19), 221 (36), 192 (16), 171
(14), 159 (22), 133 (18), 117 (14), 93 (100), 77 (64), 64 (24). Anal. Calcd for C18H13N7O5
(407.34): C, 53.07; H, 3.22; N, 24.07%. Found: C, 52.83; H, 3.14; N, 23.95%.

5-Amino-3-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]-9-methyl-10H-
pyrido[3′,2′:5,6]pyrimido[2,1-c][1,2,4]triazin-10-one (9)

A mixture of compound 1 (0.72 g, 2 mmol) and 3-amino-6-methyl-1,2,4-triazin-5(4H)-
one (8) (0.25 g, 2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux
for 4 h. After cooling, the pale-brown crystals so formed were filtered and recrystallized
from AcOH/H2O, mp > 300 ◦C, yield (0.62 g, 69%). IR (KBr, cm−1): 3405 (OH), 3372,
3296 (NH2), 1692 (C=Otriazine), 1654 (C=O), 1604 (C=N), 1587 (C=C). 1H NMR (400 MHz,
DMSO-d6, δ): 2.18 (s, 3H, CH3 triazine), 3.82 (s, 3H, OCH3), 3.91 (s, 3H, OCH3), 7.25 (d, 1H,
J = 2.4 Hz, H-3furan), 7.85 (d, 1H, J = 2.4 Hz, H-2furan), 8.49 (s, 1H, H-4pyridine), 8.58 (s, 1H,
H-2pyridine), 9.32 (s, 2H, NH2 exchangeable with D2O), 12.40 (s, 1H, OH exchangeable with
D2O). 13C NMR (100 MHz, DMSO-d6, δ): 17.3 (CH3), 58.8 (OCH3), 59.3 (OCH3), 103.4 (C5′),
104.9 (C4a), 106.6 (C3′), 110.2 (C3a′), 123.0 (C7′), 129.3 (C4′), 130.0 (C3), 135.4 (C9), 138.5
(C4), 139.1 (C2), 143.6 (C5), 145.0 (C11a), 146.2 (C2′), 148.5 (C6a), 150.5 (C6′), 152.7 (C7a′),
166.2 (C=Otriazine), 193.6 (C=Oketone). Mass spectrum, m/z (Ir %): 448 (M+, 68), 418 (100),
388 (32), 346 (29), 227 (17), 194 (15), 159 (17), 133 (22), 118 (13), 92 (36), 77 (32), 64 (14).
Anal. Calcd for C21H16N6O6 (448.39): C, 56.25; H, 3.60; N, 18.74%. Found: C, 56.03; H, 3.47;
N, 18.65%.

5-Amino-3-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]benzo[4,5] imidazo
pyrido[3,2-e]pyrimidine (10)

A mixture of compound 1 (0.72 g, 2 mmol) and 2-aminobenzimidazole (0.27 g, 2 mmol),
in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h. After cooling,
the yellow crystals deposited were filtered and recrystallized from AcOH, mp > 300 ◦C,
yield (0.65 g, 71%). IR (KBr, cm−1): 3417 (OH), 3383, 3268 (NH2), 1648 (C=O), 1607 (C=N),
1582 (C=C). 1H NMR (400 MHz, DMSO-d6, δ): 3.84 (s, 3H, OCH3), 3.98 (s, 3H, OCH3),
7.15 (d, 1H, J = 2.4 Hz, H-3furan), 7.37–7.43 (m, 2H, Ar-H), 7.48–7.53 (m, 2H, Ar-H), 7.86 (d,
1H, J = 2.4 Hz, H-2furan), 8.42 (s, 1H, H-4pyridine), 8.53 (s, 1H, H-2pyridine), 9.52 (s, 2H, NH2

exchangeable with D2O), 12.33 (s, 1H, OH exchangeable with D2O). 13C NMR (100 MHz,
DMSO-d6, δ): 58.5 (OCH3), 59.7 (OCH3), 102.1 (C5′), 104.8 (C4a), 106.2 (C3′), 110.5 (C3a′),
120.3 (Ar-C), 121.1 (Ar-C), 122.8 (C7′), 124.1 (Ar-C), 125.2 (Ar-C), 126.1 (Ar-C), 129.6 (C4′),
130.3 (C3), 134.3 (Ar-C), 138.3 (C4), 139.7 (C2), 142.9 (C-13a), 144.7 (C5), 146.3 (C2′), 148.1
(C6a), 150.3 (C6′), 151.9 (C7a′), 192.3 (C=Oketone). Mass spectrum, m/z (Ir %): 455 (M+, 100),
395 (59), 340 (46), 234 (21), 220 (35), 190 (24), 161 (32), 134 (26), 117 (10), 94 (56), 77 (42), 65
(17). Anal. Calcd for C24H17N5O5 (455.42): C, 63.29; H, 3.76; N, 15.38%. Found: C, 63.14; H,
3.52; N, 15.31%.

4-Amino-6-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]-2-oxo-1,2-dihydro-
1,8-naphthyridine-3-carbonitrile (11)

A mixture of compound 1 (0.72 g, 2 mmol) and cyanoacetamide (0.16 g, 2 mmol) in
DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h. After cooling, the
yellow crystals so formed were filtered and recrystallized from DMF/H2O, mp > 300 ◦C,
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yield (0.59 g, 73%). IR (KBr, cm−1): 3411 (OH), 3385, 3316, 3274 (NH2, NH), 2224 (C≡N),
1681 (C=Opyridine), 1650 (C=O), 1608 (C=N), 1584 (C=C). 1H NMR (400 MHz, DMSO-d6,
δ): 3.89 (s, 3H, OCH3), 3.97 (s, 3H, OCH3), 7.23 (d, 1H, J = 2.4 Hz, H-3furan), 7.91 (d, 1H,
J = 2.4 Hz, H-2furan), 8.46 (s, 1H, H-4pyridine), 8.52 (s, 1H, H-2pyridine), 9.32 (s, 2H, NH2
exchangeable with D2O), 11.04 (s, 1H, NH exchangeable with D2O), 12.64 (s, 1H, OH
exchangeable with D2O). 13C NMR (100 MHz, DMSO-d6, δ): 59.0 (OCH3), 60.2 (OCH3),
87.1 (C3), 102.7 (C5′), 105.8 (C3′), 111.2 (C3a′), 116.3 (C≡N), 122.8 (C7′), 123.2 (C4a), 128.4
(C6), 129.8 (C4′), 138.2 (C5), 140.0 (C7), 144.7 (C4), 146.1 (C2′), 148.8 (C8a), 150.8 (C6′), 152.3
(C7a′), 169.5 (C2 as C=Onaphthyridine), 193.2 (C=Oketone). Mass spectrum, m/z (Ir %): 406
(M+, 100), 340 (25), 256 (20), 221 (49), 172 (38), 133 (14), 117 (23), 93 (46), 77 (28), 64 (13).
Anal. Calcd for C20H14N4O6 (406.35): C, 59.12; H, 3.47; N, 13.79%. Found: C, 59.06; H, 3.30;
N, 13.58%.

4-Amino-1-benzyl-6-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]-2-oxo-
1,2-dihydro-1,8-naphthyridine-3-carbonitrile (12)

A mixture of compound 1 (0.72 g, 2 mmol) and N-benzylcyanoacetamide (0.32 g,
2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h.
After cooling, the yellow crystals deposited were filtered and recrystallized from AcOH,
mp > 300 ◦C, yield (0.68 g, 68%). IR (KBr, cm−1): 3415 (OH), 3371, 3288 (NH2), 2221 (C≡N),
1686 (C=Opyridine), 1657 (C=O), 1613 (C=N), 1579 (C=C). 1H NMR (400 MHz, DMSO-d6, δ):
3.08 (s, 2H, CH2), 3.83 (s, 3H, OCH3), 3.97 (s, 3H, OCH3), 7.18 (d, 1H, J = 2.0 Hz, H-3furan),
7.54–7.66 (m, 5H, Ar-H), 7.93 (d, 1H, J = 2.4 Hz, H-2furan), 8.42 (s, 1H, H-4pyridine), 8.50 (s,
1H, H-2pyridine), 9.28 (s, 2H, NH2 exchangeable with D2O), 12.32 (s, 1H, OH exchangeable
with D2O). 13C NMR (100 MHz, DMSO-d6, δ): 29.4 (NCH2), 58.3 (OCH3), 59.5 (OCH3),
88.4 (C3), 103.5 (C5′), 106.2 (C3′), 111.4 (C3a′), 116.6 (C≡N), 123.1 (C7′), 125.3 (C4a), 125.6
(Ar-C), 127.0 (Ar-C), 128.6 (C6), 129.2 (C4′), 130.6 (Ar-C), 134.1 (Ar-C), 138.6 (C5), 139.2 (C7),
144.5 (C4), 146.6 (C2′), 149.2 (C8a), 150.8 (C6′), 152.5 (C7a′), 169.1 (C2 as C=Onaphthyridine),
194.1 (C=Oketone). Mass spectrum, m/z (Ir %): 496 (M+, 59), 466 (52), 375 (46), 309 (47), 242
(32), 220 (64), 194 (26), 159 (21), 134 (15), 118 (16), 91 (100), 77 (57), 64 (23). Anal. Calcd for
C27H20N4O6 (496.47): C, 65.32; H, 4.06; N, 11.29%. Found: C, 65.14; H, 4.01; N, 11.15%.

5-Amino-3-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]-benzo[4,5]imidazo
[1,8]naphthyridine-6-carbonitrile (13)

A mixture of compound 1 (0.72 g, 2 mmol) and 1H-benzimidazol-2-ylacetonitrile
(0.31 g, 2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h.
After cooling, the pale-brown crystals deposited were filtered and recrystallized from DMF,
mp > 300 ◦C, yield (0.71 g, 74%). IR (KBr, cm−1): 3404 (OH), 3361, 3279 (NH2), 2226 (C≡N),
1651 (C=O), 1612 (C=N), 1576 (C=C). 1H NMR (400 MHz, DMSO-d6, δ): 3.86 (s, 3H, OCH3),
3.93 (s, 3H, OCH3), 7.13 (d, 1H, J = 2.0 Hz, H-3furan), 7.37–7.42 (m, 4H, Ar-H), 7.88 (d, 1H,
J = 2.0 Hz, H-2furan), 8.39 (s, 1H, H-4pyridine), 8.57 (s, 1H, H-2pyridine), 9.41 (s, 2H, NH2

exchangeable with D2O), 12.33 (s, 1H, OH exchangeable with D2O). 13C NMR (75 MHz,
DMSO-d6, δ): 59.1 (OMe), 60.2 (OMe), 87.3 (C-6), 102.9 (C3a′), 105.8 (C3′), 108.6 (C-9), 112.5
(C5′), 113.1 (C-7a), 117.2 (C≡N), 120.7 (Ar-C), 122.8 (C7′), 124.1 (Ar-C), 124.7 (Ar-C), 128.9
(Ar-C), 129.8 (C4′), 130.7 (Ar-C), 132.2 (Ar-C), 138.7 (C-11a), 142.3 (C-8), 143.2 (C-10), 145.1
(C-7), 147.2 (C2′), 148.0 (C-5a), 151.9 (C6′), 152.4 (C7a′), 191.3 (C=Oketone). Mass spectrum,
m/z (Ir %): 479 (M+, 100), 419 (64), 353 (47), 313 (43), 258 (24), 221 (36), 192 (18), 161 (15), 133
(12), 117 (19), 94 (68), 77 (44), 64 (19). Anal. Calcd for C26H17N5O5 (479.44): C, 65.13; H,
3.57; N, 14.61%. Found: C, 64.96; H, 3.40; N, 14.39%.

4-Amino-6-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]-1,2-dihydro-3H-
pyrazolo[3,4-b][1,8]naphthyridin-3-one (14)

A mixture of compound 1 (0.72 g, 2 mmol) and 5-amino-2,4-dihydro-3H-pyrazol-3-one
(0.20 g, 2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h.
After cooling, the pale-brown crystals deposited were filtered and recrystallized from DMF,
mp > 300 ◦C, yield (0.64 g, 76%). IR (KBr, cm−1): 3407 (OH), 3376, 3338, 3296 (NH2, 2NH),
1667 (C=Opyrazole), 1646 (C=O), 1605 (C=N), 1582 (C=C). 1H NMR (400 MHz, DMSO-d6,
δ): 3.87 (s, 3H, OCH3), 4.03 (s, 3H, OCH3), 7.16 (d, 1H, J = 2.0 Hz, H-3furan), 7.93 (d, 1H,
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J = 2.0 Hz, H-2furan), 8.50 (s, 1H, H-4pyridine), 8.69 (s, 1H, H-2pyridine), 9.39 (s, 2H, NH2
exchangeable with D2O), 10.44 (s, 1H, NH exchangeable with D2O), 11.28 (s, 1H, NH
exchangeable with D2O), 12.48 (s, 1H, OH exchangeable with D2O). 13C NMR (100 MHz,
DMSO-d6, δ): 59.4 (OCH3), 59.9 (OCH3), 103.4 (C5′), 105.5 (C3a), 106.7 (C3′), 111.6 (C3a′),
112.4 (C5a), 122.6 (C7′), 128.3 (C6), 129.2 (C4′), 137.4 (C5), 138.1 (C7), 143.0 (C9a), 145.2 (C4),
146.2 (C2′), 148.4 (C8a), 150.7 (C6′), 152.5 (C7a′), 165.5 (C=Opyrazolone), 192.0 (C=Oketone).
Mass spectrum, m/z (Ir %): 421 (M+, 100), 378 (47), 318 (56), 278 (27), 221 (38), 201 (41),
172 (30), 157 (14), 133 (17), 118 (21), 93 (48), 77 (36), 65 (12). Anal. Calcd for C20H15N5O6
(421.36): C, 57.01; H, 3.59; N, 16.62%. Found: C, 56.86; H, 3.47; N, 16.50%.

4-Amino-6-(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]-3-methyl-1H-pyra
zolo[3,4-b][1,8]naphthyridine (15)

A mixture of compound 1 (0.72 g, 2 mmol) and 5-amino-3-methyl-1H-pyrazole (0.20 g,
2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated under reflux for 4 h. After
cooling, the yellow crystals so formed were filtered and recrystallized from DMF/H2O,
mp > 300 ◦C, yield (0.66 g, 79%). IR (KBr, cm−1): 3412 (OH), 3359, 3281 (NH2), 1648 (C=O),
1617 (C=N), 1589 (C=C). 1H NMR (400 MHz, DMSO-d6, δ): 2.42 (s, 3H, CH3 pyrazole), 3.92
(s, 3H, OCH3), 4.00 (s, 3H, OCH3), 7.22 (d, 1H, J = 2.4 Hz, H-3furan), 7.96 (d, 1H, J = 2.4 Hz,
H-2furan), 8.52 (s, 1H, H-4pyridine), 8.64 (s, 1H, H-2pyridine), 9.32 (s, 2H, NH2 exchangeable
with D2O), 10.36 (s, 1H, NH exchangeable with D2O), 12.41 (s, 1H, OH exchangeable with
D2O). 13C NMR (100 MHz, DMSO-d6, δ): 18.6 (CH3), 59.2 (OCH3), 60.0 (OCH3), 102.8 (C5′),
105.7 (C3a), 106.1 (C3′), 111.5 (C3a′), 113.4 (C5a), 122.4 (C7′), 125.4 (C6), 129.6 (C4′), 135.3
(C3), 137.2 (C6), 138.1 (C8), 142.6 (C9a), 143.0 (C4), 145.9 (C2′), 148.5 (C8a), 150.8 (C6′), 153.1
(C7a′), 191.6 (C=Oketone). Mass spectrum, m/z (Ir %): 419 (M+, 68), 389 (100), 319 (42), 278
(37), 220 (51), 198 (24), 157 (20), 133 (26), 118 (27), 92 (39), 77 (28), 64 (17). Anal. Calcd for
C21H17N5O5 (419.39): C, 60.14; H, 4.09; N, 16.70%. Found: C, 59.93; H, 3.84; N, 16.59%.

5-Amino-7-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl] pyrimido[4,5-b]
naphthyridine-2,4(1H,3H)-dione (16)

A mixture of compound 1 (0.72 g, 2 mmol) and 6-amino-2,3-dihydro pyrimidin-
2,4(1H,3H)-dione (0.27 g, 2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated
under reflux for 4 h. After cooling, the yellow crystals deposited were filtered and recrys-
tallized from AcOH/H2O, mp > 300 ◦C, yield (0.67 g, 75%). IR (KBr, cm−1): 3407 (OH),
3384, 3297, 3227 (NH2, 2NH), 1679 (2C=Opyrimidine), 1656 (C=O), 1614 (C=N), 1583 (C=C).
1H NMR (400 MHz, DMSO-d6, δ): 3.92 (s, 3H, OCH3), 3.98 (s, 3H, OCH3), 7.13 (d, 1H,
J = 2.4 Hz, H-3furan), 7.88 (d, 1H, J = 2.4 Hz, H-2furan), 8.34 (s, 1H, H-4pyridine), 8.72 (s, 1H,
H-2pyridine), 9.58 (s, 2H, NH2 exchangeable with D2O), 10.33 (s, 1H, NH exchangeable with
D2O), 10.70 (s, 1H, NH exchangeable with D2O), 12.45 (s, 1H, OH exchangeable with D2O).
13C NMR (100 MHz, DMSO-d6, δ): 58.7 (OCH3), 59.6 (OCH3), 102.5 (C5′), 104.0 (C4a),
107.4 (C3′), 109.2 (C3a′), 111.2 (C5a), 122.9 (C7′), 127.6 (C3), 129.3 (C4′), 137.8 (C6), 139.1
(C8), 144.3 (C10a), 144.9 (C5), 147.4 (C2′), 148.1 (C9a), 150.5 (C6′), 152.7 (C7a′), 165.1 (C2 as
C=Opyrimidine), 167.4 (C4 as C=Opyrimidine), 192.8 (C=Oketone). Mass spectrum, m/z (Ir %):
449 (M+, 100), 391 (68), 346 (39), 305 (43), 262 (52), 229 (41), 185 (38), 157 (19), 134 (25), 117
(16), 94 (31), 77 (28), 64 (10). Anal. Calcd for C21H15N5O7 (449.37): C, 56.13; H, 3.36; N,
15.58%. Found: C, 56.02; H, 3.21; N, 15.37%.

5-Amino-7-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]-2-thioxo-2,3-dihy
dropyrimido[4,5-b][1,8]naphthyridin-4(1H)-one (17)

A mixture of compound 1 (0.72 g, 2 mmol) and 6-amino-2-thioxo-2,3-dihydropyrimidin-
4(1H)-one (0.29 g, 2 mmol), in DMF (10 mL) containing TEA (0.1 mL), was heated under
reflux for 4 h. After cooling, the canary yellow crystals so formed were filtered and recrys-
tallized from AcOH, mp > 300 ◦C, yield (0.73 g, 78%). IR (KBr, cm−1): 3401 (OH), 3370,
3284, 3216 (NH2, 2NH), 1673 (C=Opyrimidine), 1652 (C=O), 1619 (C=N), 1587 (C=C), 1226
(C=S). 1H NMR (400 MHz, DMSO-d6, δ): 3.90 (s, 3H, OCH3), 3.98 (s, 3H, OCH3), 7.08 (d,
1H, J = 2.8 Hz, H-3furan), 7.87 (d, 1H, J = 2.8 Hz, H-2furan), 8.53 (s, 1H, H-4pyridine), 8.67 (s,
1H, H-2pyridine), 9.34 (s, 2H, NH2 exchangeable with D2O), 11.42 (s, 1H, NH exchangeable
with D2O), 11.78 (s, 1H, NH exchangeable with D2O), 12.64 (s, 1H, OH exchangeable with
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D2O). 13C NMR (100 MHz, DMSO-d6, δ): 58.5 (OCH3), 59.7 (OCH3), 103.4 (C5′), 105.3 (C4a),
107.2 (C3′), 109.5 (C3a′), 112.4 (C5a), 123.1 (C7′), 126.9 (C3), 128.7 (C4′), 136.4 (C6), 137.6
(C8), 142.1 (C10a), 143.2 (C5), 146.3 (C2′), 147.8 (C9a), 151.2 (C6′), 152.5 (C7a′), 168.9 (C4
as C=Opyrimidine), 186.3 (C2 as C=Spyrimidine), 194.8 (C=Oketone). Mass spectrum, m/z (Ir %):
465 (M+, 78), 407 (58), 348 (61), 318 (55), 263 (47), 221 (56), 173 (16), 159 (26), 133 (29), 118
(32), 92 (100), 77 (46), 64 (13). Anal. Calcd for C21H15N5O6S (465.44): C, 54.19; H, 3.25; N,
15.05; S, 6.89%. Found: C, 53.85; H, 3.17; N, 14.93; S, 6.81%.

5-Amino-7-[(6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl]1,3-dimethyl-pyri
mido[4,5-b][1,8]naphthyridine-2,4(1H,3H)-dione (18)

A mixture of compound 1 (0.72 g, 2 mmol) and 6-amino-1,3-dimethylpyrimidine-
2,4(1H,3H)-dione (0.31 g, 2 mmol), in DMF (10 mL) containing TEA (0.1 mL) was heated
under reflux for 4 h. After cooling, the pale-yellow crystals so formed were filtered and
recrystallized from AcOH/H2O, mp > 300 ◦C, yield (0.74 g, 77%). IR (KBr, cm−1): 3402
(OH), 3376, 3283 (NH2), 1676 (2C=Opyrimidine), 1658 (C=O), 1610 (C=N), 1588 (C=C). 1H
NMR (400 MHz, DMSO-d6, δ): 3.06 (s, 3H, NCH3), 3.17 (s, 3H, NCH3), 3.92 (s, 3H, OCH3),
4.04 (s, 3H, OCH3), 7.25 (d, 1H, J = 2.0 Hz, H-3furan), 7.97 (d, 1H, J = 2.0 Hz, H-2furan), 8.52
(s, 1H, H-4pyridine), 8.68 (s, 1H, H-2pyridine), 9.37 (s, 2H, NH2 exchangeable with D2O), 12.52
(s, 1H, OH exchangeable with D2O). 13C NMR (100 MHz, DMSO-d6, δ): 28.9 (NCH3), 30.0
(NCH3), 58.9 (OCH3), 59.7 (OCH3), 102.6 (C5′), 103.9 (C4a), 106.7 (C3′), 109.8 (C3a′), 111.1
(C5a), 123.2 (C7′), 126.8 (C3), 129.0 (C4′), 137.1 (C6), 139.3 (C8), 143.6 (C10a), 144.7 (C5),
146.2 (C2′), 148.3 (C9a), 151.2 (C6′), 151.8 (C7a′), 165.5 (C2 as C=Opyrimidine), 168.1 (C4 as
C=Opyrimidine), 192.7 (C=Oketone). Mass spectrum, m/z (Ir %): 477 (M+, 100), 416 (72), 375
(64), 333 (47), 256 (58), 221 (65), 194 (37), 173 (46), 158 (25), 133 (29), 118 (21), 94 (22), 77 (18),
64 (9). Anal. Calcd for C23H19N5O7 (477.43): C, 57.86; H, 4.01; N, 14.67%. Found: C, 57.64;
H, 3.95; N, 14.48%.

4. Conclusions

In the current study, the recently synthesized 2-chloro-5-[(6-hydroxy-4,7- dimethoxy-1-
benzofuran-5-yl)carbonyl]pyridine-3-carbonitrile (1) was efficiently utilized as a building
block for the construction of various heterocyclic systems. Linear and angular annu-
lated pyridines linked to the (6-hydroxy-4,7-dimethoxy-1-benzofuran-5-yl)carbonyl were
efficiently synthesized through the reaction of starting precursor 1 with binucleophilic
reagents. All the synthesized compounds showed a remarkable effect against yeast and
fungus strains, while compounds 4, 5, 7, 9, 11, 12 and 16–18 exhibited significant inhibitory
effects against all tested microorganisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29184496/s1. Supporting Materials: (A) Copies of
1H-NMR, 13C-NMR and mass spectral data for the synthesized compounds and (B) Antimicrobial
efficiency of the synthesized compounds with respected to references drugs.
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