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Abstract: Anisotropic plasmonic nanoparticles usually generate SERS enhancement factors that are
significantly larger than those generated by spherical plasmonic nanostructures, so the former are
usually preferred as substrates for SERS measurements. Gold nanorods are one of the most commonly
used anisotropic nanomaterials for SERS experiments. Unfortunately, even a slight contamination
of the surfactant used in the process of the synthesis of gold nanorods has a significant impact on
the geometry of the resulting nanostructures. In this work, using easily formed silver nanorods as
templates, hollow AuAg nanorods are formed by means of a silver–gold galvanic exchange reaction
(in this process, nanostructures with a cavity inside form because one gold atom replaces three
silver atoms). Hollow AuAg nanorods are highly active during SERS measurements—for shorter
wavelengths of the excitation radiation, they display greater SERS activity than Au nanorods. To our
knowledge, this is the first example of the use of hollow plasmonic nanorods for SERS measurements.
Elemental mapping of the rods showed that the silver, some of which remained after the galvanic
replacement, is mainly located close to the internal cavity that was formed, whereas the gold is mainly
located at the outermost regions of the nanostructure. This explains the high chemical stability of
these nanostructures.

Keywords: hollow plasmonic nanoparticles; SERS spectroscopy; nanoresonators

1. Introduction

Standard Raman spectroscopy is not considered as an especially sensitive analyti-
cal tool because a typical total Raman scattering cross-section is only ca. 10−29 cm2 per
molecule, whereas, for comparison, the typical cross-sections for the absorption of ultravio-
let and infrared radiation are ca. 10−18 and 10−21 cm2 per molecule, respectively [1]. This
means that in a standard Raman analysis, one usually has to use a solution of an analyte
having a concentration larger than ca. 10−3 M (otherwise, no reliable spectra are obtained).
This limitation of Raman spectroscopy can be overcome, however, by depositing the ana-
lytes on certain plasmonic nanostructures, or by placing the plasmonic nanostructures on
the analyzed surfaces [1]. When illuminated, the plasmonic nanostructures generate a local
enhancement of the intensity of the incident electric field, and also generate an enhance-
ment of the intensity of the scattered radiation. This can lead to a very large increase in the
efficiency of the generation of the Raman signal in an effect known as surface-enhanced
Raman scattering (SERS) [1]. In some cases, the efficiency of the generation of the Raman
signal via the SERS effect is so large that it is possible to observe a high-quality spectrum of
even a single molecule [2–4]. This feature makes SERS one of the most sensitive analytical
tools known.

To generate large SERS enhancement factors, one has to use appropriate plasmonic
nanostructures that significantly increase the local intensity of the electric field of the exci-
tation radiation and also enhance the intensity of the scattered radiation (a description of
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exemplary substrates for SERS measurements can be found in Refs. [5–7]). Previous experi-
ments and theoretical simulations have shown that anisotropic plasmonic nanoparticles usu-
ally generate larger SERS enhancement factors than spherical plasmonic structures [8–10].
Therefore, many types of anisotropic plasmonic nanoparticles have been used to construct
SERS-active materials, for example, nanoparticles in the shape of cubes [11–13], triangu-
lar prisms [14,15], various bipyramids [16–19], stars [20–22], or rods [23–26]. Plasmonic
nanorods seem to be a particularly promising nanomaterial for SERS measurements be-
cause their plasmon resonance can easily be tuned over a wide range of frequencies by
changing their size and aspect ratio [27]. In the case of SERS measurements using systems
containing many aggregated plasmonic nanostructures, very large enhancements of the
intensity of the electric field, and hence, very large SERS enhancement factors, are gener-
ated in the narrow slits between the plasmonic objects [8–10]. However, in these cases as
well, the SERS substrates formed from anisotropic plasmonic nanostructures are usually
significantly more efficient in increasing the efficiency of the Raman signal generation than
substrates formed from isotropic plasmonic nanoparticles.

One of the most commonly used anisotropic nanomaterials for SERS experiments is
the gold nanorods. Unfortunately, even a slight contamination of the surfactant used in
the process of the synthesis of gold nanorods has a significant impact on the geometry of
the nanostructures that form. An example of how changing the supplier of the surfactant
used in the synthesis affects the geometry of the resulting product is shown in Figure 1 [28].
On the other hand, in the case of the synthesis of silver nanorods, such a strong effect of
the influence of surfactant impurities on the geometries of the resulting nanostructures is
not observed, but silver nanorods, unfortunately, are much less chemically stable (which is
particularly important when studying biological systems), and silver also has significant
biotoxicity. In this work, we look at very promising and easily formed nanorods for SERS
measurements: hollow AuAg nanorods. These can be easily formed from silver nanorods
through a silver–gold galvanic exchange reaction. Moreover, elemental analysis of the
resulting hollow AuAg nanorods showed that the silver, some of which remained after
the galvanic replacement, is mainly located close to the internal cavity that was formed,
whereas the outermost part of the nanostructure is composed mainly of gold. This makes
such nanostructures suitable for biological SERS experiments.
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Figure 1. TEM (top images labelled with “1”) and SEM (bottom images labelled with “2”) images of
gold nanostructures synthesized using CTAB (hexadecylcetyltrimethylammonium bromide) from
five different suppliers (experiments carried out in 2007). (A1,A2) Fluka (product: 52370), (B1,B2) MP
Biomedicals (product: 194004), (C1,C2) Acros (product: 22716V), (D1,D2) Sigma (product: H5882),
and (E1,E2) Aldrich (product: 855820). Among the tested samples of CTAB, only the CTAB from two
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suppliers yielded nanorods, while the others yielded only spherical nanoparticles; for details, see
Ref. [28]. Reprinted with permission from American Chemical Society from Ref. [28]. Copyright 2008,
American Chemical Society.

2. Results and Discussion
2.1. Structural Characterization of the Obtained Nanomaterials

TEM images of different Ag nanorods (used as templates for the formation of the
AuAg nanorods) are shown in Figure 2. Their length can be changed by changing the ratio
of the mixed seed and growth solutions—when a smaller quantity of the seed solution
was added, there was a noticeable increase in the length of the Ag nanorods. The color
of the sols of silver nanorods exhibited various shades of green, as shown in the lower
left corner of the insets accompanying each TEM image. This color variation stems from
differences in the morphology and composition of the nanorod, providing valuable visual
cues as characteristics.
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Figure 2. TEM images of Ag nanorods obtained using different amounts of seed solution: (A) 0.5 mL,
(B) 0.25 mL, (C) 0.125 mL and (D) 0.06 mL. The insets at the bottom left are photos of the actual sols
of silver nanorods.

The addition of HAuCl4 to the sol of silver nanorods caused a silver–gold galvanic
exchange reaction to occur. Because one gold atom replaces three silver atoms (as a result
of the galvanic exchange reaction, a gold compound in the +3 oxidation state is reduced to
metallic gold, while metallic silver is oxidized to a silver compound in the +1 oxidation
state), hollow nanorods are formed; see Figures 3 and 4 (the empty central region is visible
as a brighter contrast region within the nanorod). More images of the AuAg nanostructures
that were formed are shown in the paragraph presenting elemental composition maps of
the nanostructures.
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were also synthesized. Sample TEM images of those nanoparticles are shown in Figure 5.
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2.2. Elemental Characterization of AuAg Nanorods

Energy-dispersive spectroscopy (EDS) measurements were made to analyze the el-
emental composition of the hollow AuAg nanorods that were formed (a sample EDS
spectrum of the AuAg nanorods that were obtained is shown in Figure 6).
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Figure 6. EDS spectrum of the AuAg nanorods that were obtained.

The EDS analysis confirmed the presence of both silver and gold within the synthesized
nanostructures. However, the distribution of gold and silver was not uniform (see Figure 7).
The gold content was definitely higher in the outermost parts of the nanostructures (which
were the easiest for the chloroauric acid to reach). Silver was mainly located close to the
wall of the internal cavity that was formed (see Figure 7).
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dots) in the AuAg nanorods.

2.3. Optical Characterization of the Nanorods

An optical characterization of the rod-shaped nanostructures that were obtained was
performed using UV–vis extinction spectroscopy. In the UV–vis extinction spectra of the
sols of the solid plasmonic nanorods, one can observe two prominent bands: a longitudinal
resonance band appearing at longer wavelengths, which is associated with the oscillation
of free electrons along the long axis of the nanorods, and a transverse resonance band seen
at shorter wavelengths, corresponding to the electron oscillations perpendicular to the long
axis of the nanorods (see Figure 8).
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Both transverse and longitudinal plasmonic bands are visible in the extinction spectra
of the sols of the solid silver and gold nanorods (see Figure 9A,C); because of the sig-
nificantly larger aspect ratio in the synthesized solid Ag nanorods than in the solid Au
nanorods, both bands (longitudinal and transverse) are more clearly visible in the extinction
spectra of the sols of Ag nanorods (see Figure 9A). As can be seen in Figure 9A,C, as the
aspect ratio of the solid plasmonic nanorods increases, the longitudinal resonance band
clearly shifts towards longer wavelengths. The position of the transverse band changes
to a much smaller extent than the position of the longitudinal band. Interestingly, for the
hollow AuAg nanorods, no noticeable transverse band was observed (see Figure 9B). This
effect is related to the fact that the interior of the hollow nanostructures is not conductive,
so the vibrations of free electrons in the hollow nanorods must be realised in a slightly
different way than in the solid nanostructures.
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Hollow AuAg nanorods are formed using solid Ag nanorods as templates. We decided
to check how the position of the longitudinal resonance plasmonic band for a specific
sample of solid Ag nanorods shifts as a result of the galvanic exchange reaction. In all
the experiments that were carried out, the galvanic AuAg exchange process led to a shift
in the longitudinal plasmonic band towards longer wavelengths. For example, using Ag
nanorods with a longitudinal plasmonic band at 563 nm as templates, the AuAg nanorods
that were formed showed a maximum extinction at 617 nm. When Ag nanorods with
a longitudinal plasmonic band positioned at 603 nm were used as templates, the AuAg
nanorods showed a maximum extinction at 642 nm.

2.4. SERS Measurements

The high aspect ratio of nanorods, which are characterized by an elongated shape
and nanoscale dimensions, facilitates the generation of strong electromagnetic fields at
their tips. Therefore, plasmonic nanorods are often used as substrates to carry out SERS
measurements because they generate significantly larger SERS enhancement factors than
standard spherical plasmonic nanoparticles. This helps increase the sensitivity of the
SERS measurements.

In order to check the activity of the various types of Ag, Au and AuAg nanorods from
this work using SERS measurements, we deposited samples of different nanorods that
were similar (in terms of the number of moles of plasmonic metal used) onto a monolayer
of 4-mercaptobenzoic acid (p-MBA) chemisorbed on the surface of platinum. As can be
seen in Figure 10, when excitation radiation at a wavelength of 633 nm was used, the
AuAg nanorods generated, within the experimental error, SERS spectra as intense as those
generated by the commonly used solid Au and Ag nanorods. This means that AuAg
nanorods, which are easy to synthesize and whose synthesis is less sensitive to possible
surfactant contamination, can be used in SERS measurements as plasmonic nanoresonators
that are as effective as Au nanorods, which are much more difficult to synthesize.
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Figure 10. (A–C): (a) Raman spectra of a p-MBA monolayer on Pt before the deposition of plasmonic
nanorods. (A): (b–e) Raman spectra of a p-MBA monolayer on Pt covered with various solid silver
nanorods; (B) Raman spectra of a p-MBA monolayer on Pt covered with (b) solid Ag nanorods and
(c) hollow AuAg nanorods; (C) Raman spectra of a p-MBA monolayer on Pt covered with (b) solid
Au nanorods and (c) hollow AuAg nanorods. Excitation radiation wavelength: 633 nm.

Another significant advantage of AuAg nanorods becomes apparent when measure-
ments are performed using excitation radiation having a much shorter wavelength. Fig-
ure 11 shows SERS spectra, which were enhanced by solid Au nanorods and hollow AuAg
nanorods and were measured using excitation radiation with a wavelength of 532 nm. As
can be seen in Figure 11, for this wavelength, the intensity of the SERS spectrum that was
enhanced by the hollow AuAg nanorods was about 3 times larger than the intensity of
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the SERS spectrum that was enhanced by solid Au nanorods. This additional large SERS
enhancement was probably generated by the remaining Ag nanostructure that was still
present after the galvanic exchange inside the hollow AuAg nanorod—for this range of
the excitation radiation, silver is a metal that generates a much higher SERS enhancement
factor than gold [29,30]. This means that hollow AuAg nanorods exhibit a larger spectral
range for practical applications than standard Au nanorods, making them more versatile
for detecting and analyzing various molecular signatures.
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2.5. Stability Tests of Ag and AuAg Nanorods

A significant disadvantage of Ag nanorods, which are very active in SERS spectroscopy,
is their low stability in many environments, for example, when they are in contact with
certain biological samples. In order to compare the stability of solid Ag nanorods and
hollow AuAg nanorods, samples of these nanoparticles were exposed to a yeast solution,
and the UV–vis extinction spectra of the systems were monitored over time. The experiment
started with the preparation of sols of Ag and hollow AuAg nanorods and a solution of
yeast cells. In the next step, the yeast solution was added to the sols of various nanorods,
and immediately after that, the UV–vis spectrum of the mixture was recorded for each
case; then, the UV–vis spectra and the color of the solution were continuously observed
and recorded for each mixture at 5, 15, and 30 min and 1 h after the addition of the yeast
solution. As can be seen in Figure 12, the UV–vis spectrum of the solution containing
AuAg nanorods was significantly more stable over time than the UV–vis spectrum of the
solution containing Ag nanorods. This experiment demonstrates that AuAg nanorods
exhibit significantly greater stability in the presence of a yeast solution than Ag nanorods.
Their relatively high stability is probably attributable to the gold, which has high chemical
stability, that formed on the outermost parts of these nanoparticles.



Molecules 2024, 29, 4540 9 of 12

Molecules 2024, 29, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 12. (A) Schematic drawing illustrating an experiment to compare the stability of Ag and 
AuAg nanorods. (B) Temporal evolution of the UV–vis spectrum of a mixture of solutions of yeast 
and Ag nanorods: (a) spectrum recorded immediately after mixing, (b) after 15 min, (c) after 30 min 
and (d) after 1 h. (C) Temporal evolution of the UV–vis spectrum of a mixture of solutions of yeast 
and AuAg hollow nanorods: (a) spectrum recorded immediately after mixing, (b) after 15 min, (c) 
after 30 min and (d) after 1 h. Inserts in the upper right corner in panels (B,C) show photographs of 
the solution of nanorods and yeast cells at various times after mixing. 

3. Materials and Methods 
3.1. Materials 

Silver nitrate, trisodium citrate dihydrate, sodium borohydride, ascorbic acid, so-
dium hydroxide, hexadecyltrimethylammonium bromide (CTAB), hydroxylamine hydro-
chloride and 4-mercaptobenzoic acid were purchased from Sigma-Aldrich (Poznań, Po-
land). HAuCl4 (a 30% solution in dilute HCl, 99.99% trace metals basis) was acquired from 
the Polish State Mint (Warsaw, Poland). All of the reagents were used as received, without 
further purification or treatment. The water used in all the experiments was purified using 
a Millipore Milli-Q system (Merck Millipore, Burlington, MA, USA).  

3.2. Synthesis of Silver Nanorods 
Silver nanorods were obtained according to a slightly modified version of the proce-

dure described by Murphy et al. [31]. The synthesis began with the obtainment of a sol of 
4 nm Ag seed nanoparticles; for this purpose, 10 mL of 0.25 mM AgNO3 solution and 10 
mL of 0.25 mM trisodium citrate solution were mixed, and then, under vigorous stirring, 
0.6 mL of a 10 mM NaBH4 solution was quickly added. The sol of Ag seeds that was ob-
tained was stored in a refrigerator at 4 °C for 2 h before being used in the next step of the 
synthesis. During the stabilisation of the sol of Ag seeds at 4 °C, what is known as a 
‘growth solution’ was prepared by mixing the following solutions: 0.25 mL of 10 mM 
AgNO3, 0.5 mL of 100 mM ascorbic acid and 10 mL of 80 mM CTAB. Then, to produce 
rod-shaped Ag nanoparticles of different lengths, various amounts of the Ag seed sol (0.5, 

Figure 12. (A) Schematic drawing illustrating an experiment to compare the stability of Ag and AuAg
nanorods. (B) Temporal evolution of the UV–vis spectrum of a mixture of solutions of yeast and
Ag nanorods: (a) spectrum recorded immediately after mixing, (b) after 15 min, (c) after 30 min and
(d) after 1 h. (C) Temporal evolution of the UV–vis spectrum of a mixture of solutions of yeast and
AuAg hollow nanorods: (a) spectrum recorded immediately after mixing, (b) after 15 min, (c) after
30 min and (d) after 1 h. Inserts in the upper right corner in panels (B,C) show photographs of the
solution of nanorods and yeast cells at various times after mixing.

3. Materials and Methods
3.1. Materials

Silver nitrate, trisodium citrate dihydrate, sodium borohydride, ascorbic acid, sodium
hydroxide, hexadecyltrimethylammonium bromide (CTAB), hydroxylamine hydrochloride
and 4-mercaptobenzoic acid were purchased from Sigma-Aldrich (Poznań, Poland). HAuCl4
(a 30% solution in dilute HCl, 99.99% trace metals basis) was acquired from the Polish
State Mint (Warsaw, Poland). All of the reagents were used as received, without further
purification or treatment. The water used in all the experiments was purified using a
Millipore Milli-Q system (Merck Millipore, Burlington, MA, USA).

3.2. Synthesis of Silver Nanorods

Silver nanorods were obtained according to a slightly modified version of the pro-
cedure described by Murphy et al. [31]. The synthesis began with the obtainment of a
sol of 4 nm Ag seed nanoparticles; for this purpose, 10 mL of 0.25 mM AgNO3 solution
and 10 mL of 0.25 mM trisodium citrate solution were mixed, and then, under vigorous
stirring, 0.6 mL of a 10 mM NaBH4 solution was quickly added. The sol of Ag seeds that
was obtained was stored in a refrigerator at 4 ◦C for 2 h before being used in the next step
of the synthesis. During the stabilisation of the sol of Ag seeds at 4 ◦C, what is known as
a ‘growth solution’ was prepared by mixing the following solutions: 0.25 mL of 10 mM
AgNO3, 0.5 mL of 100 mM ascorbic acid and 10 mL of 80 mM CTAB. Then, to produce
rod-shaped Ag nanoparticles of different lengths, various amounts of the Ag seed sol (0.5,
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0.25, 0.125 or 0.06 mL) were added to the growth solution. Finally, 0.1 mL of the 1 M NaOH
solution was added, and the mixture was gently shaken.

3.3. Galvanic Exchange Reaction—Synthesis of AuAg Nanorods

In order to obtain AuAg nanorods, the sol of Ag nanorods that was obtained in the
previous step was diluted in a 1:5 ratio, heated under gentle stirring to 60 ◦C, and then
30 µL of 2 mM NH2OH solution and 90 µL of 0.25 mM HAuCl4 solution were added
dropwise.

3.4. Synthesis of Pure Gold Nanorods

As in the case of Ag nanorods, the synthesis of Au nanorods is based on growing seeds.
To prepare a sol of gold seeds, solutions of the following compounds were mixed: CTAB
(0.2 M, 5 mL), HAuCl4 (0.5 mM, 5 mL) and NaBH4 (10 mM, 0.6 mL). When synthesizing
the Au nanorods, the growth solution was obtained by mixing solutions of the following
compounds: CTAB (0.2 M, 5 mL), HAuCl4 (0.5 mM, 2.5 mL or 5 mL, for forming gold
nanorods with a length of 45 nm and 65 nm, respectively) and ascorbic acid (78 mM, 70 µL).
In the last step of the synthesis, 15 µL of the seed sol was added to the growth solution [32].

3.5. Experimental Techniques

A Talos F200X (Thermo Fisher, Waltham, MA, USA) transmission electron microscope
(TEM) operating at 200 kV was utilized to examine the morphology of the nanomaterials
that were obtained. Additionally, the elemental composition of the nanomaterials was
analyzed with a Brucker BD4 energy-dispersive X-ray spectroscopy (EDS) instrument
(Billerica, MA, USA).

Extinction spectroscopic measurements in the UV–vis range were conducted with a
Thermo Scientific Evolution 201 spectrophotometer (Waltham, MA, USA).

The Raman measurements were carried out using a Horiba Jobin-Yvon Labram HR800
spectrometer (Palaiseau, France) equipped with a Peltier cooled charge-coupled device
detector (1024 × 256 pixels), a 600 groove/mm holographic grating and an Olympus BX40
microscope (Tokio, Japan) with a long-distance 50× objective. Excitation radiation was
provided at a wavelength of 532 nm using a frequency-doubled Nd:YAG laser and at a
wavelength of 633 nm using a He–Ne laser.

4. Conclusions

Hollow gold–silver nanorods were synthesized. The EDS elemental mapping of
these nanostructures showed that the distribution of gold and silver is not uniform: the
gold is mainly located in the outermost parts of the nanostructures, whereas the silver
mainly forms the wall of the internal cavity. The hollow gold–silver nanorods that were
obtained have some unique properties that make them particularly valuable for certain
scientific and technological purposes. First of all, the rod-like nanostructures generate
only one clearly visible resonance plasmonic band: a longitudinal one. Hollow AuAg
nanorods are highly active during SERS measurements—in experiments with red excitation
radiation, the SERS enhancement factors were practically the same as those generated by
solid nanorods. Moreover, with green excitation radiation, the hollow AuAg nanorods
generated significantly larger SERS enhancement factors than the solid Au nanorods, an
effect that is probably due to the presence of silver inside the nanostructure. The cavity in
the center of the nanostructure reduces the consumption of expensive gold. Additionally,
the outermost gold layer ensures that these systems are relatively stable, which is important
for the durability of the nanorods in various environments. The outermost gold layer of the
nanostructures that were formed should also be beneficial in enhancing biocompatibility.

In summary, although different types of SERS substrates are clearly better for many
applications (for example, when high repeatability of the SERS enhancement factor is
required, substrates obtained by sputtering a layer of plasmonic metal onto a regularly
nanostructured substrate seem to be definitely better than plasmonic nanorods), hollow
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AuAg nanorods represent an interesting advancement in nanomaterial science. They
contain less gold, their synthesis is clearly less sensitive to possible contamination of
the surfactant than the synthesis of standard Au nanorods, and in some cases, they can
enhance the spectral capabilities of SERS, thereby expanding the potential applications
and reliability of SERS-based technologies. Such an extension of the capabilities of SERS
spectroscopy can be expected, for example, in cases in which SERS measurements are taken
inside cells, plasmonic nanoparticles are introduced into the cells, and it is not possible to
use macroscopic standard SERS substrates.

5. Patents

As a result of the work reported in this manuscript, patent application number P.449506
was prepared.
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