Stress-Relieving Effects of Green Tea Depend on the Ratio of Its Special Ingredients and the Infusion Conditions
Abstract
:1. Introduction
2. Results
2.1. Tea Components in Tea Leaves
2.2. Stress-Relieving Effects of Tea Leaf Powder Consumption
2.3. Tea Components in the Infused Solution
2.4. Evaluation of Stress-Relieving Effects of Model Green Tea Ingredients
3. Discussion
4. Materials and Methods
4.1. Measurement of Tea Components
4.2. Preparation of Tea Sample for Mice
4.3. Infusion Method
4.4. Evaluation Methods for Stress Relief Effects
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konishi, S. Biochemistry of Tea Tree. In The Science of Tea; Muramatsu, K., Ed.; Asakura Publishing Co., Ltd.: Tokyo, Japan, 1991; pp. 32–42. [Google Scholar]
- Kobayashi, K.; Nagato, Y.; Aoi, N.; Juneja, L.R.; Kim, M.; Yamamoto, T.; Sugimoto, S. Effects of L-theanine on the release of α-brain waves in human volunteers. Nippon. Nogeikagaku Kaishi 1998, 72, 153–157. [Google Scholar] [CrossRef]
- Kimura, K.; Ozeki, M.; Juneja, L.R.; Ohira, H. L-Theanine reduces psychological and physiological stress responses. Biol. Psychol. 2007, 74, 39–45. [Google Scholar] [CrossRef]
- Unno, K.; Hara, A.; Nakagawa, A.; Iguchi, K.; Ohshio, M.; Morita, A.; Nakamura, Y. Anti-stress effects of drinking green tea with lowered caffeine and enriched theanine, epigallocatechin and arginine on psychosocial stress induced adrenal hypertrophy in mice. Phytomedicine 2016, 23, 1365–1374. [Google Scholar] [CrossRef]
- Unno, K.; Nakamura, Y. Green Tea Suppresses Brain Aging. Molecules 2021, 26, 4897. [Google Scholar] [CrossRef]
- Kettenmann, H.; Schachner, M. Pharmacological properties of gamma-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J. Neurosci. 1985, 5, 3295–3301. [Google Scholar] [CrossRef]
- Unno, K.; Furushima, D.; Nomura, Y.; Yamada, H.; Iguchi, K.; Taguchi, K.; Suzuki, T.; Ozeki, M.; Nakamura, Y. Antidepressant Effect of Shaded White Leaf Tea Containing High Levels of Caffeine and Amino Acids. Molecules 2020, 25, 3550. [Google Scholar] [CrossRef]
- Ikegaya, K. Chemistry of Tea. In The Science of Tea; Muramatsu, K., Ed.; Asakura Publishing Co., Ltd.: Tokyo, Japan, 1991; pp. 85–92. [Google Scholar]
- Monobe, M.; Ema, K.; Tokuda, Y.; Maeda-Yamamoto, M. Effect on the epigallocatechin gallate/epigallocatechin ratio in a green tea (Camellia sinensis L.) extract of different extraction temperatures and its effect on IgA production in mice. Biosci. Biotechnol. Biochem. 2010, 74, 2501–2503. [Google Scholar] [CrossRef]
- Mehta, A.; Prabhakar, M.; Kumar, P.; Deshmukh, R.; Sharma, P.L. Excitotoxicity: Bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol. 2013, 698, 6–18. [Google Scholar] [CrossRef]
- Lee, R.S.; Sawa, A. Environmental stressors and epigenetic control of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 2014, 100, 278–287. [Google Scholar] [CrossRef]
- Oyola, M.G.; Handa, R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: Sex differences in regulation of stress responsivity. Stress 2017, 20, 476–494. [Google Scholar] [CrossRef]
- Olloquequi, J.; Cornejo-Córdova, E.; Verdaguer, E.; Soriano, F.X.; Binvignat, O.; Auladell, C.; Camins, A. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications. J. Psychopharmacol. 2018, 32, 265–275. [Google Scholar] [CrossRef]
- Nicosia, N.; Giovenzana, M.; Misztak, P.; Mingardi, J.; Musazzi, L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int. J. Mol. Sci. 2024, 25, 6521. [Google Scholar] [CrossRef]
- Hing, B.; Gardner, C.; Potash, J.B. Effects of negative stressors on DNA methylation in the brain: Implications for mood and anxiety disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165B, 541–554. [Google Scholar] [CrossRef]
- Chmielewska, N.; Szyndler, J.; Maciejak, P.; Płaźnik, A. Epigenetic mechanisms of stress and depression. Psychiatr. Pol. 2019, 53, 1413–1428. [Google Scholar] [CrossRef]
- Schiele, M.A.; Gottschalk, M.G.; Domschke, K. The applied implications of epigenetics in anxiety, affective and stress-related disorders—A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin. Psychol. Rev. 2020, 77, 101830. [Google Scholar] [CrossRef]
- Hollis, F.; Pope, B.S.; Gorman-Sandler, E.; Wood, S.K. Neuroinflammation and Mitochondrial Dysfunction Link Social Stress to Depression. Curr. Top. Behav. Neurosci. 2022, 54, 59–93. [Google Scholar]
- Hodes, G.E.; Pfau, M.L.; Leboeuf, M.; Golden, S.A.; Christoffel, D.J.; Bregman, D.; Rebusi, N.; Heshmati, M.; Aleyasin, H.; Warren, B.L.; et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA 2014, 111, 16136–16141. [Google Scholar] [CrossRef]
- Unno, K.; Iguchi, K.; Tanida, N.; Fujitani, K.; Takamori, N.; Yamamoto, H.; Ishii, N.; Nagano, H.; Nagashima, T.; Hara, A.; et al. Ingestion of theanine, an amino acid in tea, suppresses psychosocial stress in mice. Exp. Physiol. 2013, 98, 290–303. [Google Scholar] [CrossRef]
- Unno, K.; Furushima, D.; Hamamoto, S.; Iguchi, K.; Yamada, H.; Morita, A.; Horie, H.; Nakamura, Y. Stress-Reducing Function of Matcha Green Tea in Animal Experiments and Clinical Trials. Nutrients 2018, 10, 1468. [Google Scholar] [CrossRef]
- Kakuda, T.; Hinoi, E.; Abe, A.; Nozawa, A.; Ogura, M.; Yoneda, Y. Theanine, an ingredient of green tea, inhibits [3H]glutamine transport in neurons and astroglia in rat brain. J. Neurosci. Res. 2008, 86, 1846–1856. [Google Scholar] [CrossRef]
- Lin, Y.; Bloodgood, B.L.; Hauser, J.L.; Lapan, A.D.; Koon, A.C.; Kim, T.K.; Hu, L.S.; Malik, A.N.; Greenberg, M.E. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 2008, 455, 1198–1204. [Google Scholar] [CrossRef]
- Kaplan, A.; Nash, A.I.; Freeman, A.A.H.; Lewicki, L.G.; Rye, D.B.; Trotti, L.M.; Brandt, A.L.; Jenkins, A. Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABAAR Activation. Biomolecules 2023, 13, 365. [Google Scholar] [CrossRef]
- Isokawa, M. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity. Neural Plast. 2016, 2016, 1239629. [Google Scholar] [CrossRef]
- Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J. 2020, 28, 445–451. [Google Scholar] [CrossRef]
- Pervin, M.; Unno, K.; Konishi, T.; Nakamura, Y. L-Arginine Exerts Excellent Anti-Stress Effects on Stress-Induced Shortened Lifespan, Cognitive Decline and Depression. Int. J. Mol. Sci. 2021, 22, 508. [Google Scholar] [CrossRef]
- Campos-Melo, D.; Galleguillos, D.; Sánchez, N.; Gysling, K.; Andrés, M.E. Nur transcription factors in stress and addiction. Front. Mol. Neurosci. 2013, 6, 44. [Google Scholar] [CrossRef]
- Philippu, A. Nitric Oxide: A Universal Modulator of Brain Function. Curr. Med. Chem. 2016, 23, 2643–2652. [Google Scholar] [CrossRef]
- Research Group of Green Tea Brewing. Brewing Condition of Tasty Cup of Green Tea. Tea Res. J. (Chagyo Kenkyu Hokoku) 1973, 40, 58–66. [Google Scholar]
- Unno, K.; Noda, S.; Kawasaki, Y.; Yamada, H.; Morita, A.; Iguchi, K.; Nakamura, Y. Reduced Stress and Improved Sleep Quality Caused by Green Tea Are Associated with a Reduced Caffeine Content. Nutrients 2017, 9, 777. [Google Scholar] [CrossRef]
- Rentscher, K.E.; Carroll, J.E.; Repetti, R.L.; Cole, S.W.; Reynolds, B.M.; Robles, T.F. Chronic stress exposure and daily stress appraisals relate to biological aging marker p16INK4a. Psychoneuroendocrinology 2019, 102, 139–148. [Google Scholar] [CrossRef]
- Lyons, C.E.; Razzoli, M.; Bartolomucci, A. The impact of life stress on hallmarks of aging and accelerated senescence: Connections in sickness and in health. Neurosci. Biobehav. Rev. 2023, 153, 105359. [Google Scholar] [CrossRef] [PubMed]
- Rosso, G.; Albert, U.; Asinari, G.F.; Bogetto, F.; Maina, G. Stressful life events and obsessive-compulsive disorder: Clinical features and symptom dimensions. Psychiatry Res. 2012, 197, 259–264. [Google Scholar] [CrossRef]
- Goto, T.; Horie, H.; Mukai, T. Analysis of major amino acids in green tea by high-performance liquid chromatography coupled with OPA precolumn derivatization. Tea Res. J. (Chagyo Kenkyu Hokoku) 1993, 77, 29–33. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kanemori, T.; Kanemaru, M.; Takai, N.; Mizuno, Y.; Yoshida, H. Performance evaluation of salivary amylase activity monitor. Biosens. Bioelectron. 2004, 20, 491–497. [Google Scholar] [CrossRef]
Tea Component | Sample A | Sample B | Sample C | Sample D | Sample E | |||||
---|---|---|---|---|---|---|---|---|---|---|
Shaded “Seimei” | Shaded “Yabukita” | Shaded “Yabukita” | Non-Shaded Soft New Leaves | Non-Shaded Hard New Leaves | ||||||
mg/g | μmol | mg/g | μmol | mg/g | μmol | mg/g | μmol | mg/g | μmol | |
Theanine (T) | 32.29 | 185.4 | 27.51 | 157.9 | 18.07 | 103.7 | 7.46 | 42.8 | 3.26 | 18.7 |
Arginine (A) | 6.77 | 38.9 | 4.42 | 25.4 | 2.19 | 12.6 | 0.76 | 4.4 | 0.30 | 1.7 |
Glutamine | 12.68 | 86.8 | 7.82 | 53.5 | 4.93 | 33.7 | 1.51 | 10.3 | 0.55 | 3.8 |
Serine | 1.55 | 8.4 | 1.44 | 7.8 | 0.86 | 4.6 | 0.37 | 2.0 | 0.24 | 1.3 |
Asparagine | 1.30 | 9.8 | 1.20 | 9.1 | 0.39 | 3.0 | 0.02 | 0.2 | 0.06 | 0.5 |
Glutamic acid | 6.04 | 41.1 | 3.98 | 27.1 | 3.27 | 22.2 | 1.47 | 10.0 | 1.27 | 8.6 |
Aspartic acid | 6.50 | 48.8 | 4.72 | 35.5 | 2.74 | 20.6 | 1.04 | 7.8 | 1.10 | 8.3 |
Caffeine (C) | 33.66 | 173.3 | 37.36 | 192.4 | 29.86 | 153.8 | 21.32 | 109.8 | 22.78 | 117.3 |
EGCG (E) | 57.47 | 125.4 | 77.94 | 170.0 | 75.51 | 164.7 | 75.12 | 163.9 | 82.36 | 179.7 |
EGC | 28.93 | 94.5 | 18.88 | 61.6 | 31.73 | 103.6 | 47.24 | 154.2 | 52.15 | 170.3 |
ECG | 12.36 | 27.9 | 12.91 | 29.2 | 11.94 | 27.0 | 12.54 | 28.3 | 14.27 | 32.3 |
EC | 8.83 | 30.4 | 6.65 | 22.9 | 7.99 | 27.5 | 10.46 | 36.0 | 10.85 | 37.4 |
CE/TA molar ratio | 1.33 | 1.98 | 2.74 | 5.80 | 14.58 |
Tea Component | CE/TA Molar Ratio in Tea Leaves | |||||||
---|---|---|---|---|---|---|---|---|
1.33 (Sample A) | 1.98 (Sample B) | 5.80 (Sample D) | 14.58 (Sample E) | |||||
mg/L | mM | mg/L | mM | mg/L | mM | mg/L | mM | |
Theanine (T) | 455.8 | 2.62 | 398.6 | 2.29 | 97.4 | 0.56 | 18.6 | 0.11 |
Arginine (A) | 70.9 | 0.41 | 53.5 | 0.31 | 4.6 | 0.03 | 0.7 | 0.004 |
Glutamine | 181.6 | 1.24 | 107.9 | 0.74 | 18.1 | 0.12 | 2.9 | 0.02 |
Serine | 22.4 | 0.21 | 21.0 | 0.20 | 9.1 | 0.09 | 1.8 | 0.02 |
Asparagine | 18.2 | 0.14 | 18.6 | 0.14 | 0.4 | 0.003 | 0.5 | 0.004 |
Glutamic acid | 94.8 | 0.64 | 61.4 | 0.42 | 22.8 | 0.15 | 8.6 | 0.06 |
Aspartic acid | 104.0 | 0.78 | 70.5 | 0.53 | 14.2 | 0.11 | 6.6 | 0.05 |
Caffeine (C) | 389.3 | 2.00 | 431.3 | 2.22 | 172.8 | 0.89 | 137.0 | 0.71 |
EGCG (E) | 213.5 | 0.47 | 299.1 | 0.65 | 224.9 | 0.49 | 233.7 | 0.51 |
EGC | 276.8 | 0.90 | 207.6 | 0.68 | 387.8 | 1.27 | 293.5 | 0.96 |
ECG | 39.8 | 0.002 | 34.1 | 0.002 | 36.3 | 0.002 | 37.4 | 0.002 |
EC | 88.3 | 0.30 | 55.9 | 0.19 | 84.6 | 0.29 | 65.9 | 0.02 |
CE/TA molar ratio in infused solution | 0.82 | 1.11 | 2.36 | 10.99 |
Elution Efficiency | ||||
---|---|---|---|---|
CE/TA in Tea Leaves | 1.33 (Sample A) | 1.98 (Sample B) | 5.8 (Sample D) | 14.58 (Sample E) |
Theanine | 0.565 | 0.580 | 0.522 | 0.228 |
Arginine | 0.419 | 0.484 | 0.242 | 0.093 |
Glutamine | 0.573 | 0.552 | 0.479 | 0.211 |
Serine | 0.578 | 0.583 | 0.984 | 0.300 |
Asparagine | 0.560 | 0.620 | 0.800 | 0.333 |
Glutamic acid | 0.628 | 0.617 | 0.620 | 0.271 |
Aspartic acid | 0.640 | 0.597 | 0.546 | 0.240 |
Caffeine | 0.463 | 0.462 | 0.324 | 0.241 |
EGCG | 0.149 | 0.154 | 0.120 | 0.114 |
EGC | 0.383 | 0.440 | 0.328 | 0.225 |
ECG | 0.129 | 0.106 | 0.116 | 0.105 |
EC | 0.400 | 0.336 | 0.324 | 0.243 |
Elution Condition | 100 mL of Water at 60 °C | |
---|---|---|
Tea Leaves | 2.5 g | 5 g |
Theanine (T) | 398.6 (mg/L) | 783.7 (mg/L) |
Arginine (A) | 53.5 | 111.6 |
Glutamine | 107.9 | 209.8 |
Serine | 21.0 | 39.2 |
Asparagine | 18.6 | 34.5 |
Glutamic acid | 61.4 | 115.5 |
Aspartic acid | 70.5 | 150.3 |
Caffeine (C) | 431.3 | 830.7 |
EGCG (E) | 299.1 | 602.2 |
EGC | 207.6 | 414.2 |
ECG | 34.1 | 56.0 |
EC | 55.9 | 113.1 |
CE/TA molar ratio | 1.11 | 1.09 |
Component (mg/L) | Infusion Condition | |
---|---|---|
80 °C, 1 min | 4 °C, 15 h | |
Theanine (T) | 93.6 | 138.0 |
Arginine (A) | 4.7 | 8.8 |
Glutamine | 17.1 | 25.7 |
Serine | 8.7 | 11.0 |
Asparagine | 0.2 | 0.5 |
Glutamic acid | 21.1 | 30.7 |
Aspartic acid | 13.3 | 18.1 |
Caffeine (C) | 237.6 | 210.5 |
EGCG (E) | 291.2 | 169.2 |
EGC | 406.4 | 673.8 |
ECG | 47.5 | 28.3 |
EC | 92.2 | 124.1 |
CE/TA molar ratio | 3.29 | 1.72 |
Components (mM) | CE/TA Molar Ratio | ||||
---|---|---|---|---|---|
0.5 | 1.0 | 2.0 | 4.0 | 10.0 | |
Theanine (T) | 4.6 | 2.3 | 1.15 | 0.6 | 0.23 |
Arginine (A) | 0.6 | 0.3 | 0.15 | 0.05 | 0.03 |
EGCG (E) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Caffeine (C) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Component (mM) | CE/TA Molar Ratio 2.0 | ||||
---|---|---|---|---|---|
Theanine (T) | 1.15 | 0.6 | 0.23 | 0.115 | 0.06 |
Arginine (A) | 0.15 | 0.05 | 0.03 | 0.015 | 0.005 |
EGCG (E) | 0.6 | 0.3 | 0.12 | 0.06 | 0.03 |
Caffeine (C) | 2.0 | 1.0 | 0.4 | 0.2 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unno, K.; Taguchi, K.; Matsuda, T.; Nakamura, Y. Stress-Relieving Effects of Green Tea Depend on the Ratio of Its Special Ingredients and the Infusion Conditions. Molecules 2024, 29, 4553. https://doi.org/10.3390/molecules29194553
Unno K, Taguchi K, Matsuda T, Nakamura Y. Stress-Relieving Effects of Green Tea Depend on the Ratio of Its Special Ingredients and the Infusion Conditions. Molecules. 2024; 29(19):4553. https://doi.org/10.3390/molecules29194553
Chicago/Turabian StyleUnno, Keiko, Kyoko Taguchi, Tomoko Matsuda, and Yoriyuki Nakamura. 2024. "Stress-Relieving Effects of Green Tea Depend on the Ratio of Its Special Ingredients and the Infusion Conditions" Molecules 29, no. 19: 4553. https://doi.org/10.3390/molecules29194553
APA StyleUnno, K., Taguchi, K., Matsuda, T., & Nakamura, Y. (2024). Stress-Relieving Effects of Green Tea Depend on the Ratio of Its Special Ingredients and the Infusion Conditions. Molecules, 29(19), 4553. https://doi.org/10.3390/molecules29194553