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Abstract: A fast and sample cleanup approach for fluoxetine in human plasma was developed
using protein precipitation coupled with LC–MS-MS. Samples were treated with methanol prior to
LC–MS-MS analysis. Chromatographic separation was performed on a reverse phase column with
an isocratic mobile phase of methanol and 10 mM ammonium formate pH acidified with formic acid
(80:20, v/v) at a flow rate of 0.2 mL/min. The run time was 4 min. Mass parameters were optimized
to monitor transitions at m/z [M + H]+ 310 > > 148 for fluoxetine and m/z [M + H]+ 315.1 > > 153 for
fluoxetine-d5 as an internal standard. The lower limit of quantification and the dynamic range were
0.25 and 0.25–50 ng/mL, respectively. Linearity was good for intra-day and inter-day validations
(R2 = 0.999). The matrix effect was acceptable with CV% < 15 and accuracy% < 15. The hemolytic
effect was negligible. Fluoxetine was stable in human plasma for 48 h at room temperature (25 ◦C),
for 12 months frozen at −25 ◦C, for 48 h in an auto-sampler at 6 ◦C, and for three freeze/thaw cycles.
The validated method was applied in a pharmacokinetic study to determine the concentration of
fluoxetine in plasma samples. The study provides a fast and simple bioanalytical method for routine
analysis and may be particularly useful for bioequivalence studies. The method was successfully
applied to a pharmacokinetic study of fixed-dose fluoxetine in nine healthy volunteers.

Keywords: bioanalysis; validation; LC-MS-MS; fluoxetine; pharmacokinetics application

1. Introduction

Fluoxetine (N-methyl-3-phenyl-3-[(α,α,α-trifluoro-p-tolyl)oxy]propylamine), known
under its widely recognized trade name Prozac, is a stalwart in the domain of psychophar-
macology [1]. As the active compound of racemic fluoxetine hydrochloride, this selective
serotonin reuptake inhibitor (SSRI) has played a transformative role in the treatment of
major depressive disorder, obsessive–compulsive disorder, panic disorder, and a myriad of
other psychiatric conditions [2]. Structurally, fluoxetine belongs to the class of diphenyl-
methylamines, with a trifluoromethyl substituent rendering it distinctive. Its efficacy and
tolerability have made it a first-line therapeutic option, and its impact extends beyond
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mood regulation, including applications in the management of bulimia nervosa and pre-
menstrual dysphoric disorder [3]. When administered orally, fluoxetine undergoes hepatic
metabolism, yielding its active metabolite norfluoxetine, with a half-life that extends to
several days, ensuring a sustained therapeutic effect [4]. Fluoxetine’s potency as a sero-
tonin reuptake inhibitor, coupled with its intricate pharmacokinetic profile, underscores its
significance in modern psychopharmacotherapy [5].

Fluoxetine is a racemic mixture consisting of equal parts of the S- and R-enantiomers,
which have different pharmacokinetic and pharmacodynamic properties [6]. The S-enantiomer
(S-fluoxetine) is primarily responsible for the drug’s antidepressant effects, while the R-
enantiomer (R-fluoxetine) and its metabolite (R-norfluoxetine) exhibit less potency [6].
Fluoxetine undergoes metabolism primarily through the cytochrome P450 enzyme system,
particularly CYP2D6, which metabolizes the S-enantiomer, and CYP2C9 and CYP2D6,
which contribute to the metabolism of the R-enantiomer [6].

Liquid chromatography–tandem mass spectrometry (LC-MS-MS) is a widely em-
ployed analytical method for quantifying drug concentrations in biological samples due
to its robustness, precision, and specificity [7]. Several analytical techniques have been
developed for the determination of fluoxetine in various biological matrices. For instance,
Li Y et al. [8] devised an LC-MS-MS method to quantify fluoxetine levels in human plasma.
Their approach involved supported liquid extraction for sample preparation and exhibited
impressive sensitivity, boasting a lower limit of quantification (LLOQ) at 0.05 ng/mL,
spanning a dynamic range of 0.05–20 ng/mL. Hasnain et al. [9] also detailed an LC-MS-MS
method for fluoxetine determination in biological samples, utilizing solid-phase extrac-
tion sample preparation. This method delivered an LLOQ of 2 ng/mL and an analytical
range extending from 2 to 30 ng/mL. Furthermore, Xiao et al. [10] introduced a separation
technique LC-MS-MS to measure fluoxetine in human plasma. Their method involves
liquid–liquid extraction using ethyl acetate for sample preparation, achieving an LLOQ of
0.2 ng/mL and a linear range of 0.2–25 ng/mL.

Sample cleanup is a critical aspect of fluoxetine analysis in biological matrices due to
the inherent complexity of such samples, which can introduce inaccuracies, imprecisions,
and ion suppression in analytical results [11]. Various sample preparation methods are em-
ployed to ensure the sensitivity and reliability of fluoxetine analysis. Protein precipitation,
liquid–liquid extraction, and solid-phase extraction are common techniques utilized in this
regard [12]. Protein precipitation, although a relatively fast and straightforward cleanup
method, requires careful selection of a suitable protein precipitant and an appropriate
concentration to minimize interference in the sample [13,14]. Methanol, acetonitrile, and
mixtures spiked with formic acid are often employed as protein precipitants, with varying
degrees of success [15,16]. While protein precipitation is a common choice, it may not
always provide a sufficiently clean sample, necessitating the use of more intricate methods
like liquid–liquid extraction or solid-phase extraction, which demand additional time and
expertise [17–19]. Automated sample cleanup is another approach, albeit challenging to
implement. Therefore, the choice of sample cleanup method in fluoxetine analysis de-
pends on the specific analytical requirements and the trade-offs between simplicity and
sophistication [20,21].

In this study, we implemented a sample preparation method involving protein precip-
itation with methanol. Our foremost concern was ensuring the efficacy of this approach
in generating clean samples with minimal interference, prompting a thorough evaluation
of its impact on the sample matrix and potential hemolytic effects. To further enhance the
analytical efficiency, we leveraged fluoxetine-d5 as an internal standard. Coupled with
optimized LC conditions capable of achieving rapid elution of both fluoxetine and the
internal standard within a mere 4-min timeframe, our methodology emerges as straight-
forward, expeditious, and ideally suited for the routine analysis of a substantial number
of samples. This versatility is particularly valuable in the context of pharmacokinetic and
bioequivalence studies conducted within bioanalytical and clinical laboratories.
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Recognizing the intended application of our bioanalytical method in these critical
studies, we understand the paramount importance of adhering to stringent regulatory
guidelines, including those outlined by the ICH M10, prior to its implementation. To
this end, our manuscript meticulously details our adherence to the ICH M10 guidelines
on bioanalytical method validation [22], encompassing a comprehensive validation of
all parameters stipulated within the guidance. Additionally, we emphasize the practical
application of the validated method by showcasing its use in a pharmacokinetic study. This
application involved the quantification of fluoxetine concentration in plasma samples col-
lected following the oral administration of a 20-mg fluoxetine tablet to healthy volunteers.

2. Results

Samples of human plasma, both unaltered and spiked with an internal standard
(IS), were analyzed for selectivity. No interference from endogenous components was
observed at the retention times corresponding to fluoxetine and IS, as depicted in Figure 1a.
Additionally, Figure 1b illustrates that the IS did not cause any direct interference with the
multiple reaction monitoring (MRM) channel of the analyte.
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2.1. Matrix Effect

During the matrix effect evaluation, six different human plasma sources/lots were
used. For both fluoxetine and its internal standard (IS), matrix effects were assessed at low
quality control (LQC) and high quality control (HQC) concentrations, with four replicates
analyzed per concentration level. The precision, as indicated by the coefficient of variation
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(CV%), ranged from 3.21% to 2.63% for fluoxetine and from 2.18% to 1.9% for its IS across
both LQC and HQC concentrations. These values are well within the ±15% CV threshold
specified by the ICH M10 guidelines. The accuracy of the matrix effect was found to range
from 98.09% to 90.40% for fluoxetine and 102.77% to 92.79% for its IS, also within the
guideline’s acceptable range of ±15%. These results confirm that no significant matrix
effect was detected.

The hemolysis effect was studied at concentrations of LQC and HQC in hemolyzed
human plasma. The test was performed on three different samples at each concentration.
These findings confirmed that hemolysis had no significant impact on the analyte response
for both fluoxetine and its internal standard.

Although matrix evaluation in specific populations (e.g., hepatically or renally im-
paired) was not available, the six plasma sources used here were diverse enough to confi-
dently rule out significant interference from matrix ions.

2.2. Linearity and Sensitivity

The calibration curve linearity was assessed through five repetitions, covering a
range of 0.25–50 ng/mL, using five batches of calibration standards. The coefficient of
determination (R2) for the curve fell within the range of 0.9990 to 0.9994, indicating an
excellent fit. Linear regression with 1/x2 least square weighting was applied to establish
the optimal relationship between analyte concentration and detector response (Figure 2).
The lower limit of quantification (LLOQ) was determined to be 0.25 ng/mL. Deviations
of back-calculated concentrations for all calibration curve points and the LLOQ from the
nominal values were below 15 and 20, respectively, as detailed in Table 1. Additionally, the
signal-to-noise ratio (S/N) was ≥12 at the LLOQ level, confirming the method’s sensitivity
and precision in accurately quantifying fluoxetine across the specified concentration range.
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Table 1. Mean inter-day back-calculated standard and standard curve results (n = 5).

Batch 0.25 ng/mL 0.5 ng/mL 2.5 ng/mL 5 ng/mL 10 ng/mL 20 ng/mL 40 ng/mL 50 ng/mL

1 0.23 0.57 2.59 5.28 9.18 20.24 39.57 50.28

2 0.26 0.44 3.03 5.07 10.22 20.11 39.53 52.85

3 0.25 0.46 2.45 5.33 10.02 20.12 37.53 50.43

4 0.27 0.48 3.02 5.04 10.28 19.39 40.79 51.53

5 0.27 0.48 3.02 5.04 10.28 19.39 40.79 51.53

Mean 0.26 0.49 2.82 5.15 10.00 19.85 39.64 51.32

SD 0.02 0.05 0.28 0.14 0.47 0.43 1.33 1.04

CV% 7.01 9.98 9.94 2.76 4.68 2.15 3.36 2.03

Accuracy% 103.49 97.37 112.89 103.07 99.98 99.25 99.10 102.65

2.3. Precision and Accuracy

The Table 2 summarizes the precision and accuracy assessments of fluoxetine in human
plasma across various concentrations of quality control levels. Intra-day precision (CV)
values consistently fall within acceptable ranges, demonstrating reliable results within the
same day. Intra-day accuracy is satisfactory, with most values meeting the 85–115% range.
Inter-day analyses reveal consistent precision and accuracy, supporting the method’s
reliability over different days. Overall, the results affirm the method’s robustness and
suitability for the accurate quantification of fluoxetine in human plasma across a diverse
range of concentrations and quality control levels.

Table 2. Intra-day and inter-day evaluation of fluoxetine precision and accuracy across multiple days
for various levels of concentration.

Days 0.25 ng/mL 0.9 ng/mL 15 ng/mL 30 ng/mL

Day 1

Concentration Mean 0.281 0.886 14.714 33.307

STD-Intra-day 0.052 0.023 0.363 0.999

CV-Intra-day 18.405 2.591 2.466 3.000

Accuracy-Intra-day 112.472 98.491 98.095 111.024

Day 2

Mean 0.253 0.807 14.358 26.333

STD-Intra-day 0.019 0.051 0.432 1.740

CV-Intra-day 7.573 6.326 3.008 6.606

Accuracy-Intra-day 101.076 89.699 95.722 87.775

Day 3

Mean 0.246 0.820 15.232 29.263

STD-Intra-day 0.028 0.025 0.527 0.563

CV-Intra-day 11.393 3.073 3.459 1.923

Accuracy-Intra-day 98.443 91.095 101.544 97.544

Mean 0.260 0.838 14.768 29.634

STD-Inter-day 0.037 0.049 0.555 3.162

CV-Inter-day 14.094 5.809 3.758 10.671

Accuracy-Inter-day 103.997 93.095 98.453 98.781

2.4. Carry-Over

The carry-over effect was evaluated after injecting the highest calibration sample of
fluoxetine following a blank plasma sample. The average carry-over was found to be
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4.3%, well below the acceptable limit of 20%. This indicates that any residual presence of
fluoxetine from the previous injection has a minimal impact on the results, ensuring the
reliability and accuracy of the subsequent analyses.

2.5. Dilution Integrity

The upper concentration limit for quality control of the analyte can be effectively
extended to 60 ng/mL using screened human blank plasma. In the assessment of dilution
integrity samples at a 1/2 dilution, the accuracy was determined to be 89.92, demonstrating
a high level of agreement with the expected values. Additionally, the precision, expressed
as the coefficient of variation (CV), was less than 3.26, indicating excellent reproducibility.
This successful dilution integrity evaluation signifies the method’s reliability in accurately
analyzing samples with concentrations beyond the original upper limit, thus expanding
the dynamic range of the analytical assay.

2.6. Reinjection Reproducibility

The reproducibility test confirms the reliability of the analysis, demonstrating con-
sistent precision and accuracy for fluoxetine measurements across different concentration
levels (Table 3). With low CV and accuracy percentages well within the acceptable range, the
study affirms the robustness of the bioanalytical method, ensuring stable and reproducible
results in diverse conditions.

Table 3. Reinjection reproducibility of fluoxetine analysis.

Initial Injection Re-Injection

Level LQC MQC HQC LQC MQC HQC

Concentration Mean 0.8155 15.2831 29.0438 0.8052 15.4126 29.5170

CV % 0.7466 4.7586 1.3491 9.8177 2.8704 2.1061

Accuracy % 90.6059 101.8872 96.8126 89.4697 102.7505 98.3898

2.7. Stability

All results expressed as CV% and accuracy (Table 4), demonstrating the stability of
fluoxetine, fall within the acceptable range of 15. This confirms the robust stability of
fluoxetine under various conditions, including freeze–thaw cycles, bench-top short-term
exposure, long-term storage, autosampler conditions, and stability in whole blood. The
consistent and reliable CV (%) values, along with accurate recovery rates, underscore the
stability of fluoxetine in human plasma across diverse scenarios, supporting its suitability
for analytical and clinical applications.

Table 4. Fluoxetine stability profiles under different conditions.

Stability Condition Level Accuracy/Stability Precision (CV %)

Freeze–Thaw Stability
in Matrix

After 3 cycle at −25 ◦C
LQC 93.151 1.384

HQC 99.976 3.186

Bench-Top (short-term)
Stability in Matrix

22 ◦C during 4 h
LQC 101.674 7.904

HQC 106.891 5.526

Long-Term Stability in
Matrix

12 months at −25 ◦C
LQC 95.582 4.874

HQC 100.199 1.587

Auto sampler 6 ◦C during 48 h
LQC 109.467 5.379

HQC 114.63 0.809

Stability in Whole
Blood

22 ◦C during 3 h in
blood

LQC 88.661 9.453

HQC 93.887 1.135
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2.8. Pharmacokinetic Study

The sensitivity and selectivity of the assay were validated in a real-life scenario by ana-
lyzing fluoxetine in human plasma samples obtained from six healthy volunteers. Figure 3
depicts a representative mean plasma concentration versus time profile of fluoxetine. The
calculated areas under the curve from time 0 to t (AUC0-t) were 345.46 ng.h/mL, respec-
tively. The observed maximum plasma concentration (Cmax) was 8.88 ± 2.65 ng/mL, and
the time to reach Cmax (tmax) was 5.33 ± 1.22 h. T. A comprehensive summary of the
pharmacokinetic parameters is presented in Table 5.
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Figure 3. Mean plasma concentration–time profile of nine healthy volunteers after oral administration
of a single dose of a fluoxetine 20-mg tablet (n = 9).

Table 5. Pharmacokinetic parameters of nine healthy volunteers after oral administration of a single
dose of a fluoxetine 20-mg tablet.

Pharmacokinetic Parameters Values

Cmax (ng/mL) 8.88 ± 2.65

tmax (h) 5.33 ± 1.22

t1/2 35.43 ± 34.85

AUC0-t (ng/mL/h) 345.46 ± 265.94

AUC0-∞ (ng/mL/h) 371.70 ± 342.65

3. Discussion

In the present study, a simple and fast method for the quantification of fluoxetine
in human plasma was developed using protein precipitation coupled with LC–MS-MS.
This approach offers a straightforward sample cleanup using methanol, which allows
for efficient preparation in routine analysis. Compared to other techniques such as solid-
phase extraction (SPE), as used in the study [23], our method simplifies the preparation
process while maintaining comparable analytical performance. While SPE offers high
selectivity and recovery, its increased complexity and cost may not be practical for routine
applications. In contrast, the protein precipitation method employed in both our study
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and [24] provides a faster and more practical alternative, making it suitable for clinical
pharmacokinetic studies.

In terms of chromatographic conditions, our method achieved separation using an
isocratic mobile phase with a low flow rate of 0.2 mL/min, resulting in a 4-min run
time. This is comparable to the method in [24], which also achieved separation within
4 min. However, the method in [23] demonstrated a faster run time of 2 min, enabling
simultaneous analysis of both olanzapine and fluoxetine. Although faster run times are
advantageous for high-throughput analysis, the simplicity of our sample preparation and
the robustness of our method compensate for the slightly longer analysis time. Additionally,
the lower flow rate in our method helps reduce solvent consumption, which contributes to
cost savings in routine applications.

Our method also demonstrated excellent sensitivity, with a linearity of R2 = 0.999
and a lower limit of quantification (LLOQ) of 0.25 ng/mL, consistent with [24]. This
level of sensitivity ensures precise quantification of fluoxetine at low plasma concentra-
tions, which is critical for pharmacokinetic studies. In comparison, the method in [25]
offered a broader dynamic range (0.5–100 ng/mL), potentially better suited for studies
involving higher concentration measurements. Nevertheless, our method’s LLOQ of
0.25 ng/mL covers a sufficient range for most clinical applications, balancing sensitivity
with practical application.

The method validation demonstrated strong results in terms of precision, matrix
effects, and stability. Our method showed good reproducibility with acceptable intra-day
and inter-day variations and a matrix effect CV% below 15%. This aligns with findings
from [23], which reported fluoxetine recoveries of 91% and similarly low variations in
precision. However, unlike [23,25], we did not focus on recovery rates, as our study
prioritized method robustness and stability. Future work could benefit from including
recovery data to further compare our results to those seen in studies like [25], which
reported recovery rates between 94% and 97.5%.

Lastly, the successful application of our method in a pharmacokinetic study under-
scores its practicality and reliability in real-world settings. This is comparable to the
methods [23–25], which were applied in pharmacokinetic and bioequivalence studies. Our
method demonstrated strong stability under various conditions, including both short-
term and long-term storage, making it particularly suitable for clinical trials and routine
bioanalytical applications. While the studies in [24,25] focused on bioequivalence, our
method’s application in pharmacokinetics provides broader utility, especially in personal-
ized medicine and therapeutic drug monitoring.

In summary, while each method has its distinct advantages, our study offers a bal-
anced approach that emphasizes simplicity, sensitivity, and stability. The combination of
streamlined sample preparation with robust chromatographic and mass spectrometric per-
formance positions our method as a practical and reliable tool for pharmacokinetic studies.
Future work could expand on the recovery data to further enhance its comparability with
other established methods.

4. Materials and Methods
4.1. Chemicals and Reagents

Fluoxetine standard (purity 99.6%) was obtained from Uquifa (Unión Químico Far-
macéutica, S.A.U.), and fluoxetine-d5 was obtained from Otc Canada. Methanol (LC/MS
grade and HPLC grade) was obtained from Merck (Darmstadt, Germany). Formic acid
(ACS grade) was purchased from Scharlau (Barcelona, Spain), and ammonium formate
was procured from HIMEDIA (Mumbai, India). Ultrapure water, with a resistance of
>18.0 Ω/cm, was employed.

4.2. LC-MS-MS Conditions

The UHPLC system utilized for this study consisted of an Agilent 1290 Infinity II qua-
ternary pump (Waldbronn, Germany), an Agilent 1290 Infinity II autosampler (Waldbronn,
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Germany), and an Agilent 1290 Infinity II column thermostat (Waldbronn, Germany).
Chromatographic separation was conducted on a Phenomenex C18 analytical column
(100 mm × 2 mm, 4 µm particle size; Phenomenex, Torrance, UCA, SA) at a flow rate of
0.2 mL/min. The mobile phases comprised 5-mM ammonium formate in water with 0.1%
formic acid (A) and methanol (LC/MS grade) (B). Optimal chromatographic separation
was achieved with a solvent composition of 20% A and 80% B. The column temperature
was maintained at 40 ◦C, and elution of fluoxetine acid and fluoxetine-d5 (IS) occurred at
approximately 1.925 and 1.915 min, respectively.

Mass spectrometric analysis was performed using an Agilent 6420 triple quadrupole
mass spectrometer (Agilent, Waldbronn, Germany) controlled by Mass Hunter B.09.00
software. The mass spectrometer operated in the positive multiple reaction monitoring
(MRM) mode with a dwell time of 200 ms per transition and employed electrospray
ionization (ESI). MRM transitions were set at 310 >> 148 for fluoxetine and 315.1 >> 153 for
IS, ensuring the broadest resolution for all analytes. Fragmenter settings were optimized at
100 V for both fluoxetine and IS, with collision energy set at 10 eV for fluoxetine and 10 eV
for IS.

4.3. Preparation of Standard Stock Solutions

A standard stock solution of fluoxetine was initially prepared in methanol with a
concentration of 1 mg/mL. Subsequently, this stock solution was diluted in methanol to
generate various working standard solutions at concentrations of 0.005, 0.01, 0.05, 0.1, 0.2,
0.4, 0.8, and 1 µg/mL. These working standard solutions were intended for the creation
of calibration standards. Another stock solution, also with a concentration of 1 mg/mL,
was prepared and subsequently diluted with methanol to produce various working stan-
dard solutions at concentrations of 1 mg/mL, 0.6 µg/mL, 0.3 µg/mL, 0.018 µg/mL, and
0.005 ng/mL. These working standard solutions were designed for the preparation of
quality control (QC) samples.

To facilitate the analysis, an internal standard stock solution of fluoxetine-d5 at a
concentration of 1 mg/mL was prepared in methanol. This internal standard stock solution
was further diluted with methanol to yield a working internal standard solution at a
concentration of 0.4 µg/mL.

4.4. Preparation of Calibration Standards and QC Samples

The calibration standards were established by adding the working standard solutions
to blank human plasma, resulting in eight final concentrations of 0.25, 0.5, 2.5, 5, 10, 20,
40, and 50 ng/mL. Notably, the concentration of 0.25 ng/mL served as the lower limit of
quantification (LLOQ). For quality control (QC) purposes, four distinct concentration levels
of QC samples were prepared. These QC samples were generated by spiking blank human
plasma with the working standard solutions, resulting in final concentrations of 0.25, 0.9,
15, and 30 ng/mL. These concentrations corresponded to zero, low, medium, and high QC
concentration levels, denoted as QC0, LQC, MQC, and HQC, respectively.

4.5. Preparation of Clinical Blood Samples

Blood samples were obtained from six consenting adult, healthy volunteers. A forearm
vein was cannulated, and the cannula was maintained with normal saline to ensure unob-
structed blood flow. These blood samples were collected into Na2EDTA blood collection
tubes and subsequently subjected to centrifugation at 3000 revolutions per minute (rpm)
for 10 min. Following centrifugation, the resulting plasma was carefully transferred into
polypropylene tubes and stored at a temperature of −25 ◦C until it was ready for analysis.

4.6. Preparation of Samples Prior to LC–MS-MS Analysis

A 15 µL solution of the working internal standard (IS) was introduced into each plasma
sample, including calibration standards, QC samples, and clinical plasma samples, at a
volume of 0.3 mL. Following IS spiking, the samples were vigorously vortexed for 30 s and
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then treated with 0.750 mL of methanol to induce protein precipitation. After an additional
30 s of vortexing, the samples underwent centrifugation at 20,000 rpm at a temperature of
6 ◦C for 7 min. Subsequently, 0.8 mL of the resulting supernatant was mixed with 0.2 mL
of the mobile phase and then injected into the LC–MS-MS system for analysis.

4.7. Method Validation

The analytical method underwent a thorough validation process in accordance with
the ICH M10 guidance for bioanalytical methods [22]. This validation encompassed several
key aspects, including specificity, matrix effects, linearity, accuracy, precision, and stability.

In addition to these standard validation criteria, an alternative validation approach
was tested using the accuracy profile. The accuracy profile approach evaluates an analytical
method by assessing its accuracy, precision, and compliance with predefined acceptance
limits. It generates confidence intervals and calculates coverage probabilities to provide
a thorough assessment of method performance across various concentration levels. This
approach ensures the method’s reliability and suitability for its intended purpose [26].

4.7.1. Specificity

Specificity was evaluated by screening blank plasma from six different lots spiked with
fluoxetine at the LLOQ. The spiked samples were extracted, and the presence or absence of
interfering peaks at the same retention time of fluoxetine or IS was examined.

4.7.2. Matrix Effect

The influence of the plasma matrix was assessed separately for fluoxetine and the
internal standard (IS), and the results were expressed as matrix factors (MFs). Six distinct
batches of blank human plasma were subjected to this evaluation. The determination was
carried out in triplicate for each lot at both the lower quality control (LQC) and higher
quality control (HQC) levels. To calculate the MF for fluoxetine, the peak area derived
from samples spiked with fluoxetine in extracted blank plasma was compared to the
corresponding concentration in an authentic methanol-based fluoxetine solution. A similar
methodology was employed for determining and calculating the MF of the IS. The variation
in the matrix effect across the six different lots of blank plasma was assessed, with the
acceptance criterion stipulating that it should not exceed 15%.

In addition, a hemolysis effect test was conducted. To simulate hemolysis, human
blood samples were frozen and thawed three times, then centrifuged to obtain hemolyzed
plasma. LQC and HQC concentrations were prepared in this hemolyzed plasma and tested
using three replicates for each concentration. The results were compared to non-hemolyzed
plasma to assess any impact of hemolysis on the analyte response. According to ICH M10,
the test results were considered valid if accuracy remained within ±15% and precision
(CV%) was ≤15%.

4.7.3. Calibration Curves and Linearity

Calibration curves were constructed by plotting fluoxetine concentrations against
the peak area ratio of fluoxetine’s quantifying ion (m/z 310 >> 148) to that of the internal
standard (IS) (m/z 315.1 >> 153). The equation model was established using weighted least
squares linear regression analysis, incorporating a weighting factor of 1/x2. The equation’s
robustness was validated through the precise back-calculation of calibration standard
concentrations. The required accuracy criteria demand that back-calculated concentrations
of calibration standards should not deviate beyond ±20 of the nominal concentration at the
lower limit of quantification (LLOQ) and ±15 at all other concentration levels. A minimum
of 75 of the calibration standards, including at least 6 calibration standard levels, must
adhere to these specified accuracy criteria.

To evaluate linearity, calibration curves were diligently generated across five consecu-
tive days, with the coefficient of determination (R2) mandated to surpass 0.99. When deter-
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mining the concentrations of unknown samples, the linear regression equation derived from
the calibration curve was employed, using the peak area ratio of these unidentified samples.

4.7.4. Accuracy and Precision

In the validation process, intra-day accuracy and precision were assessed by analyzing
four replicates of four quality control (QC) concentration levels, encompassing the LLOQ,
low QC, medium QC, and high QC, all falling within the calibration curve range. Accuracy
was gauged through the calculation of deviation, with the requirement that it should
not exceed ±15 of the true value, except at the LLOQ, where it should not exceed ±20.
Precision, on the other hand, was evaluated using CV, with the expectation that it should
not surpass ±15 at each concentration level. To ensure the method’s reliability, inter-day
accuracy and precision were also scrutinized over three days.

4.7.5. Carry-Over

Dilution integrity evaluates whether sample dilution affects analyte measurement
accuracy and precision. Dilution QCs should be prepared above the ULOQ, using the
same matrix as for QC, and diluted with blank matrix. At least 5 replicates should confirm
accurate measurement within the calibration range. Accuracy must be within ±15% and
precision (%CV) below 15%. In rare cases, a surrogate matrix may be used if it does not
compromise accuracy or precision.

4.7.6. Dilution Integrity

Dilution integrity was tested by preparing a plasma sample spiked with twice the con-
centration of the high quality control (HQC) sample, specifically at 30 ng/mL. Five separate
preparations of this sample were then diluted by a factor of 1/2 using blank plasma. These
diluted samples were analyzed using the calibration range established for the assay. This
approach ensured that the accuracy and precision of the analyte measurement were not
compromised by the dilution process. At least five replicates were tested for each dilution
to verify that the mean accuracy remained within ±15% of the nominal concentration and
that the precision (%CV) did not exceed 15%.

4.7.7. Reinjection Reproducibility

Reproducibility is assessed by replicate QC measurements and included in precision
and accuracy assessments. If samples require reinjection due to instrument interruptions or
equipment failure, reinjection reproducibility should be evaluated. This is performed by
reinjecting calibration standards and at least 5 replicates of low, middle, and high QCs after
storage. The precision and accuracy of the reinjected QCs confirm sample viability. These
results should be included in the validation report or the bioanalytical report of the study.

4.7.8. Stability

Fluoxetine stability studies in human plasma, conducted in triplicate at LQC and
HQC levels, covered freeze–thaw, short-term, long-term, and post-preparative stability
assessments for both fluoxetine and its internal standard (IS). These studies included ana-
lyzing the effects of freezing and thawing, short-term room temperature storage, long-term
storage at different temperatures, and post-preparative stability in a controlled autosam-
pler. Samples were considered stable when assay values demonstrated accuracy within
±15 deviation and precision within ±15 coefficient of variation (CV).

4.8. A Pharmacokinetic Study

The validated method was used to determine the concentrations of fluoxetine in
human plasma samples collected from nine healthy Moroccan volunteers who received
a single-dose 20-mg tablet after providing informed consent. A physical examination
including body mass index, pulse, blood pressure, and body temperature was a prereq-
uisite for all volunteers. The inclusion criteria for volunteer selection were based on age
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(18–50 years) and body mass index (18–25 kg/m2). Vital signs including pulse (60–90 bpm),
blood pressure (SBP of 100–135 mmHg and DBP of 60–90 mmHg), and body temperature
(36.5–37.58 ◦C) were monitored prior to and during the study. All subjects were in good
health, as shown by clinical laboratory screening including serology, hematology, and bio-
chemistry tests. None of the volunteers reported a history of allergy to fluoxetine or related
derivatives. All subjects abstained from intake of other drugs and alcohol for 2 weeks prior
to and throughout the study. Caffeine-containing beverages were not allowed in the 3 days
prior to and during the study. All the subjects were informed of the aims and risks of the
study, and written consent was obtained.

The clinical study protocol was submitted to the local medical ethics committee
(Abulcasis University, Faculty of Health Science, Rabat, Morocco) for human research ethics
approval. The study was approved prior to the study, which was carried out in accordance
with the international guidelines for human research protection, including the Declaration
of Helsinki, the Belmont Report, the CIOMS Guideline, and the International Conference
on Harmonization in Good Clinical Practice (ICH-GCP). Blood samples were collected
pre-dose and 1, 2, 3, 4, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 10, 11, 12, 24, 36, 48, 72, 96, 120, 144, and
288 h post-dose. Blood samples were collected in Na2EDTA blood collection tubes.

The samples were centrifuged at 3000 rpm for 10 min and immediately stored at
−25 ◦C until analysis. A 300 µL aliquot of thawed plasma was spiked with IS and then
treated as described in the sample preparation section. The study was performed on
two consecutive days. QC samples were distributed among unknown samples in the
analytical run to verify the analytical system during analysis. A typical injection sequence
for each day was performed in the following order: blank, calibration set, QC set, and
sample set, QC set, sample set, and QC set.

5. Conclusions

In summary, our study presents a rapid LC–MS-MS method for the determination of
fluoxetine, employing a methanol-based protein precipitation technique. The efficiency of
methanol in both cleaning plasma proteins and preventing re-precipitation of fluoxetine
simplifies the bioanalytical process, thereby reducing potential errors. The robustness
of this method is confirmed through comprehensive validation, which covers specificity,
linearity, accuracy, precision, matrix effects, and hemolytic effects. Specificity assessments
for fluoxetine analysis, along with stability evaluations, further highlight the method’s
reliability for routine analysis.
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