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Abstract: The gas sweetening process is essential for removing harmful acid gases, such as hydrogen
sulfide (H2S) and carbon dioxide (CO2), from natural gas before delivery to end-users. Consequently,
chemical absorption-based acid gas removal units (AGRUs) are widely implemented due to their high
efficiency and reliability. The most common solvent used in AGRU is monodiethanolamine (MDEA),
often mixed with piperazine (PZ) as an additive to accelerate acid gas capture. The absorption
performance, however, is significantly influenced by the solvent mixture composition. Despite this,
solvent composition is often determined through trial and error in experiments or simulations, with
limited studies focusing on predictive methods for optimizing solvent mixtures. Therefore, this paper
aims to develop a predictive technique for determining optimal solvent compositions under varying
sour gas conditions. An ensemble algorithm, Extreme Gradient Boosting (XGBoost), is selected to
develop two predictive models. The first model predicts H2S and CO2 concentrations, while the
second model predicts the MDEA and PZ compositions. The results demonstrate that XGBoost
outperforms other algorithms in both models. It achieves R2 values above 0.99 in most scenarios,
and the lowest RMSE and MAE values of less than 1, indicating robust and consistent predictions.
The predicted acid gas concentrations and solvent compositions were further analyzed to study
the effects of solvent composition on acid gas absorption across different scenarios. The proposed
models offer valuable insights for optimizing solvent compositions to enhance AGRU performance
in industrial applications.

Keywords: solvent composition; acid gas removal unit; XGBoost; MDEA; PZ

1. Introduction

The gas sweetening process plays a crucial role in refinery or chemical industries to
ensure the quality of gas products, such as natural gas. Although natural gas is known for
its numerous benefits including environmentally friendliness, extensive accessibility, and
high reliability, this gas inherently contains several acidic substances, particularly hydrogen
sulfide (H2S) and carbon dioxide (CO2) [1]. These two acid gases need to be removed since
they may cause various damages to the environment and human health [2]. Furthermore,
they can damage the equipment and facility such as gas pipelines. Thus, the sour gas from
the original source has to undergo the sweetening process to become sweet gas before
being utilized. The term “sweet gas” refers to the purified gas which contains an acceptable
quantity of H2S. Conversely, the gas with high H2S or the natural gas before being purified
is referred to as “sour gas”. Industrially, the permitted concentration of H2S should be less
than 4 to 20 ppm and below 3–4 mole% for CO2 [3].

Several techniques applied in the gas sweetening process include absorption with
a chemical and physical solvent, membranes, adsorption, and the oxidation process. In
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acid gas removal unit (AGRU) technology, chemical absorption has been widely applied
with alkanolamines as the solvent that is often used for commercial applications. Amines
are mainly categorized into primary, secondary, and tertiary. The examples of chemical
compounds for these three amines are diglycolamine amine (DGA), diethanolamine (DEA),
and monodiethanolamine (MDEA), respectively. Among all types of amines, MDEA is
the most commonly used amine solvent due to its lower degradation and corrosion rates.
However, MDEA has a lower absorption rate of CO2. This is due to a slow formation of
bicarbonate when this solvent reacts with CO2. Consequently, the use of additives or an
amine mixture is recommended to overcome the limitation of MDEA.

Amine mixtures aim to leverage the strengths of each amine by compensating for
the limitation of the single amines to improve the absorption rate. Some additives that
are usually blended with MDEA include piperazine (PZ), Triethylamine (TEA), sulfolane,
and DEA. Industrially, the MDEA concentration ranges from 30 to 45 wt%, and additional
activator can be kept around 5 to 20 wt%. Among the additives, MDEA is commonly mixed
with PZ which has a high reaction rate towards CO2 [4,5]. Even though the amine mixture
exhibits a significant improvement in absorption effectiveness, the removal efficiency is
affected by several factors [6,7]. These factors include the temperature, pressure, and
flowrate of the sour gas and solvent. Apart from that, the mixture composition of the
solvent blend is one crucial factor for optimizing the removal efficiency.

The conventional method of solvent optimization mainly relies on experiment and
simulation by randomly variegating the composition of the solvent mixture. Umer in [8]
simulated the blended DGA and MDEA using Hysys to observe the energy consumption
in the acid gas removal process. The result exhibits that the addition of 0–15 wt% DGA to
MDEA significantly improves the operational energy savings. Farooqi in [9] used a mixture
of diisopropanolamine (DIPA) and TEA to achieve an optimized absorption rate of H2S and
CO2. TEA (35 to 50 wt%) acts as the base amine and DIPA (0–15 wt%) is used as the additive
amine with the variation in pressure ranging from 10 to 18 bar. The study shows that there
was a significant impact aligning with the increase in operating pressure. Different from the
mentioned studies, Law in [10] combined MEA and MDEA to simulate acid gas removal.
The simulation exhibits that a 5.5% efficiency improvement with 91.27% removal rate of
CO2 was achieved. AGRU optimization mainly simulated in Hysys software 14.0 which
has various useful packages to model gas sweetening plants. Instead of only simulating
the acid gases’ capture, Hamid et al. in [11] experimentally observed the use of MEA with
different compositions for CO2 removal. The MEA with a concentration ranging from 25 to
33 wt% was applied in a laboratory pilot plant. However, it faced some limitations such as
being time-consuming and resource-intensive. To this end, several attempts at employing
data-driven techniques were proposed by researchers.

Hakimi in [12] developed a predictive model for H2S concentration using Artificial
Neural Networks (ANNs) in comparison with Multi Linear Regression (MLR). The model
was trained using simulated data with solvent blending of MDEA and PZ. The model
showed an outstanding performance represented by an R-squared of 0.96. A similar
attempt at employing an ANN in AGRU was proposed by Alardhi [13] and Salooki [14].
Both researchers utilized actual data from a gas sweetening plant with a single solvent.
The predictive performance of R-squared lies between 0.9 and 0.92, respectively. Another
attempt was proposed by Adib [15] and Rahaei [16] to predict H2S using the Support Vector
Machine (SVM). SVM was powerful in predicting the H2S concentration with an R-squared
of 0.97 in [16]. However, SVM is less accurate when being compared with Random Forest
as reported in [15]. A recent study of H2S and CO2 prediction was initiated using Extreme
Gradient Boosting (XGBoost). As reported in [17], Yogesh implement different solvents
include MDEA + PZ, DEA, and MDEA. The result exhibits that the highest accuracy was
achieved by the single solvent of DEA. In contrast, XGBoost results in a low accuracy
compared with linear regression for MDEA + PZ.

Ultimately, the solvent optimization techniques available in the literature generally
focus on predicting the concentration of acid gases (H2S and CO2) by arbitrary determining
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the composition of single or blended amines. There has been limited study on predicting
the optimum composition of a solvent mixture as a strategy to optimize the absorption
rate on AGRU. Therefore, this paper aims to develop a novel predictive model to predict
the solvent composition. The combination of MDEA + PZ with variation in sour gas
composition will be observed in this study. XGBoost is selected for developing the model
due to its fast computation, superior accuracy, and advanced regularization capability to
handle overfitting. The proposed model will be further optimized and compared with
other comprehensive algorithms as a benchmark. The proposed model contributes to the
ease of the operator or stakeholders in a gas sweetening plant in determining the suitable
solvent composition. Hence, it will help to optimize their acid gas removal process.

2. Results and Discussion

In this section, the result of two models is presented numerically and graphically.
All performance metrics are deeply discussed to measure the accuracy of the model in
predicting the desired variables. The discussion begins with the correlation test result.
Then, the performance of the predictive model of H2S and CO2 concentration is evaluated.
Subsequently, the result of solvent composition prediction is presented. The proposed
model is further compared with other comprehensive algorithms such as Linear Regression
(LR), k-Nearest Neighbors (kNN), and Support Vector Machine (SVM).

2.1. Correlation Analysis

The correlation test result is mapped in Figure 1. MDEA and PZ are strongly correlated
with a negative coefficient of −0.50, showing an inverse relationship between these two
solvents. This means when the concentration of MDEA increases, the concentration of PZ
decreases, and vice versa. This inverse relationship indicates that the solvents may be sub-
stitutable to some extent depending on the specific needs for CO2 and H2S removal. Both
temperature and pressure exhibit a positive correlation of 0.50 with MDEA and a negative
coefficient of −0.50 with PZ. This indicates that increases in temperature and pressure are
associated with proportional increases in the concentrations of MDEA. Conversely, the
concentration of PZ decreases when temperature and pressure increase, and vice versa.
Such a relationship suggests that operational conditions like temperature and pressure can
be manipulated to optimize the solvent concentrations for better absorption efficiencies.
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CO2 has a slightly positive correlation with MDEA (0.12) but a negative correlation
with PZ (−0.56). This suggests that MDEA may slightly increase the presence of CO2 in
the sweet gas, whereas PZ helps to decrease its concentration. This relationship can be
explained by the drawback of MDEA which does not directly react with CO2. Thus, the
addition of PZ improves the absorption rate of CO2. To this end, the strategic adjustment
of PZ levels could be key in managing CO2 concentrations. H2S exhibits a weak negative
correlation with MDEA (−0.11) and a notably strong positive correlation with PZ (0.58).
This indicates that the increase in MDEA will capture the concentration of H2S more
effectively. On the other hand, the higher levels of PZ correlate with higher concentrations
of H2S in the sweet gas. Therefore, careful management of PZ levels is crucial for controlling
H2S concentrations effectively.

As mentioned previously, the data used in this paper are generated with five different
sour gas compositions. The variety of sour gas composition leads to distinct H2S and CO2
behavior and its absorption capability over the solvent composition. Table 1 presents the
statistics of the acid gases contained in sweet gas for each scenario.

Table 1. Statistics of the simulated data.

Concentration in
Sweet Gas Statistic Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

H2S (ppm) Max 104.2 35.78 101.2 121.8 66.62
Min 35.98 12.05 31.71 40.39 18.99
Avg 53.05 18.20 43.06 66.98 33.90

CO2 (%) Max 5.97 5.34 3.38 8.44 7.23
Min 0.73 0.65 0.46 0.97 0.84
Avg 1.31 1.16 0.84 1.71 1.51

Across five distinct scenarios of sour gas composition, Scenario 4 shows the highest
H2S and CO2 concentrations with peak amounts of 121.8 ppm and 8.44%, respectively. For
H2S, the next highest concentration is gained by Scenario 1 (104.2 ppm) and Scenario 3
(101.2 ppm). This order of H2S concentration amount in sweet gas highly relates with the
composition of its molar fraction in sour gas, as mentioned in Table 1. The highest CO2
concentration is found in Scenario 4, followed by Scenario 5 (7.23%) and Scenario 1 (5.97%).
Similarly, the concentration contained in sweet gas is highly influenced by the composition
of its molar fraction in sour gas.

In Scenario 1, H2S exhibits substantial variability, ranging from 35.98 ppm to 104.2 ppm
with an average of 53.05 ppm. The CO2 levels, while relatively low across the board, range
from 0.7303% to 5.975% with an average of 1.312%, indicating that CO2 is consistently
removed efficiently. Moving to Scenario 2, the system shows a more stable concentration of
H2S, with concentrations stretching from 12.05 ppm to 35.78 ppm and a modest average
of 18.21 ppm. CO2 concentrations in this scenario also remain low, demonstrating that
the solvents consistently absorb the CO2. Scenario 3 presents a median performance in
H2S removal with concentrations peaking at 101.2 ppm and dipping to 31.71 ppm, while
maintaining a moderate average of 43.06 ppm. This indicates a balance in solvent efficacy,
particularly as CO2 levels remain particularly low, ranging from 0.4652% to 3.382%, with
an average of 0.843%.

Lastly, Scenario 5 indicates moderate H2S capture capabilities, with concentrations
ranging from 18.99 ppm to 66.62 ppm and averaging 33.90 ppm. CO2 removal is maintained
effectively, with concentrations from 0.8473% to 7.239% and an average of 1.516%. These
results underscore the necessity of finely tuning solvent compositions to specific gas
compositions to optimize the gas sweetening process, as higher PZ concentrations generally
correlate with increased H2S in the sweet gas while effectively reducing CO2 levels.

2.2. Predictive Model of H2S and CO2 Concentration

The performance metrics for the prediction of H2S and CO2 concentrations using
various models are tabulated in Table 2. The result underscores the robustness and effec-
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tiveness of the proposed XGBoost model in comparison to other algorithms such as Linear
Regression (LR), k-Nearest Neighbors (kNN), and Support Vector Machine (SVM).

Table 2. Performance metrics of the prediction for H2S and CO2 concentration.

Target Model Scenario
Training Testing

R2 RMSE MAE R2 RMSE MAE

H2S

XGBoost

1 0.999 0.922 0.063 0.997 0.508 0.242

2 0.999 0.031 0.021 0.998 0.154 0.081

3 0.999 0.087 0.055 0.998 0.455 0.205

4 0.999 0.119 0.084 0.995 0.623 0.308

5 0.999 0.060 0.043 0.992 0.532 0.172

LR

1 0.563 6.168 4.846 0.508 6.094 4.830

2 0.601 2.296 1.804 0.555 2.267 1.793

3 0.724 5.863 4.461 0.704 5.734 4.403

4 0.415 7.549 5.890 0.392 7.300 5.691

5 0.562 4.118 3.231 0.592 3.976 3.136

kNN

1 0.995 0.650 0.153 0.995 0.559 0.179

2 0.996 0.213 0.055 0.997 0.185 0.064

3 0.996 0.686 0.129 0.996 0.589 0.164

4 0.989 1.010 0.226 0.983 1.205 0.295

5 0.994 0.481 0.109 0.991 0.551 0.137

SVM

1 0.979 1.341 0.359 0.977 1.309 0.371

2 0.987 0.412 0.142 0.987 0.383 0.142

3 0.992 0.952 0.222 0.996 0.597 0.214

4 0.931 2.597 0.523 0.915 2.732 0.562

5 0.974 0.996 0.228 0.963 1.101 0.254

CO2

XGBoost

1 0.999 0.003 0.002 0.994 0.038 0.011

2 0.999 0.003 0.002 0.995 0.028 0.008

3 0.999 0.002 0.001 0.995 0.019 0.006

4 0.999 0.004 0.003 0.992 0.064 0.016

5 0.999 0.004 0.002 0.991 0.059 0.013

LR

1 0.410 0.389 0.207 0.454 0.369 0.200

2 0.428 0.338 0.180 0.465 0.327 0.175

3 0.468 0.203 0.113 0.511 0.192 0.112

4 0.391 0.561 0.297 0.439 0.543 0.296

5 0.403 0.487 0.257 0.453 0.456 0.253

kNN

1 0.949 0.113 0.015 0.923 0.138 0.019

2 0.953 0.096 0.013 0.922 0.125 0.017

3 0.962 0.055 0.007 0.955 0.059 0.008

4 0.960 0.143 0.021 0.919 0.205 0.031

5 0.952 0.138 0.019 0.939 0.152 0.022

SVM

1 0.878 0.176 0.007 0.876 0.175 0.071

2 0.887 0.149 0.069 0.879 0.155 0.070

3 0.904 0.086 0.059 0.909 0.083 0.058

4 0.873 0.256 0.076 0.870 0.261 0.079

5 0.873 0.225 0.079 0.883 0.211 0.078
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For H2S concentration, the proposed XGBoost model consistently demonstrates supe-
rior performance across all scenarios in both the training and testing prediction. It achieves
a near-perfect prediction accuracy with an R2 value approaching 1.0 and extremely low
RMSE and MAE values. The highest performance is found in Scenario 2, where it reaches
R2 = 0.998 during testing with an RMSE of 0.154 and MAE of 0.081. This indicates the
minimal prediction error and high reliability of the model. Similarly, in predicting CO2
concentrations, XGBoost maintains an exemplary performance. It achieves R2 values again
close to 1.0, and negligible RMSE and MAE values across all scenarios. The precision of
XGBoost in the testing data for Scenario 3 is highlighted. It gained an R2 = 0.995, RMSE of
0.019, and MAE of 0.006, indicating highly accurate predictions.

In contrast, Linear Regression shows a significantly weaker performance, especially
for H2S. This model struggles with lower R2 values and higher error metrics, such as
in Scenario 4 where the R2 is only 0.415 with an RMSE of 7.549 and MAE of 5.89. For
CO2, although its performance slightly improves, it remains suboptimal compared to
XGBoost. On the other hand, the k-Nearest Neighbors algorithm performed better than
LR, particularly for H2S with R2 values above 0.98 in most scenarios. However, it still
does not match the near-perfect metrics of XGBoost. In CO2 predictions, kNN exhibits a
good accuracy but falls short of the high benchmarks set by the proposed XGBoost model.
Support Vector Machine demonstrates a moderate performance. For H2S, the R2 values are
consistently lower than those of XGBoost, and the error rates are higher, as seen in Scenario
4 (RMSE of 2.597). In CO2 predictions, the performance of SVM is stable at above 0.87 but
not as impressive as XGBoost.

To this end, the XGBoost model stands out as the most accurate model in predict-
ing H2S and CO2 concentrations. It is affirmed by its consistently high R2 values and
minimal error metrics across all tested scenarios. Its robustness and accuracy surpass the
performance of traditional models.

The proposed XGBoost model is further analyzed graphically in Figures 2–5. The
prediction of H2S concentrations showcases its precision in both training and testing data
as depicted in Figure 2a,b, respectively. In the training data, the prediction closely aligns
with the actual values. It is indicated by the overlap of the predicted (red circles) and actual
(blue lines) points across samples, with very few deviations. This indicates a high degree
of accuracy and a good fit of the model to the training dataset. The testing data show a
similar trend, where the predicted values mostly mirror the actual data. However, few
discrepancies are noticeable in higher concentration ranges.
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Similarly, for the CO2 predictions shown in Figure 3a,b, the model generally tracks
the actual data closely in both the training and testing data. The predicted values (orange
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circles) capture the overall trend of CO2 concentrations (blue lines), though there are
challenges in accurately predicting the peaks.
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The analysis is further continued to comprehensively evaluate the performance
through an analysis of the fit and residuals. Figure 4a depicts the actual over the pre-
dicted values. It is observed that the data points closely aligning with the fitted line,
indicating excellent model fit and high consistency between the predictions and actual val-
ues. This alignment indicates the model captures the trend in H2S concentration accurately
without significant bias. Figure 4b shows the residuals, the differences between predicted
and actual values. The prediction is centered around zero and mostly contained within a
narrow range, highlighting minor prediction errors.
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Similarly, for CO2 as depicted in Figure 5a, the model predictions closely follow the
actual data, also aligning well with the fitted line which reflects a strong model fit and accu-
rate capture of the CO2 concentration trends. The residuals for CO2 presented in Figure 5b
similarly show a distribution centered around zero, with the residuals predominantly lying
within a narrow band. The absence of any discernible patterns or systematic errors in the
residuals across all samples confirms the accuracy and reliability of the XGBoost model
across varying levels of H2S concentration.
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2.3. Predictive Model of Solvent Composition

The prediction result of the MDEA and PZ compositions is tabulated in Table 3.
XGBoost exhibits an outstanding performance in both MDEA and PZ predictions across
all scenarios.

For MDEA, the R2 of XGBoost for the training and testing data is exceptionally high
with value approaching 1.0. The performance is supported by minimal RMSE and MAE
values which range from 0.066 to 0.159 in training RMSE and as low as 0.045 to 0.107 in
training MAE. Similarly, the RMSE values for the testing dataset range from 0.448 to 0.668
and MAE from 0.135 to 0.274, which indicates precise predictions.

Conversely, LR shows a significantly weaker performance for MDEA, with R2 values
in training never exceeding 0.443 and testing R2 values not improving beyond 0.462. The
associated RMSE and MAE are also high, with the training RMSE reaching up to 1.727 and
an MAE up to 1.336 which underscores a poor fit.

For PZ predictions, XGBoost maintains near-perfect R2 scores, with training dataset
values of 0.999 and testing values being equally robust. The error metrics remain im-
pressively low, with training RMSE and MAE not exceeding 0.041 and 0.019, respectively.
Similarly, the R2 of the testing values is equally low. On the other hand, kNN and SVM
show variable but mostly more promising results than LR. kNN achieves strong R2 values
in later scenarios for MDEA, such as 0.965 in training, and a similarly high performance for
PZ with minimal deviation from perfect predictions.

SVM also shows competent performance, particularly in PZ predictions, with testing
R2 values of 0.993 and an RMSE as low as 0.117, suggesting it can be a reliable model albeit
not as consistently high-performing as XGBoost.

Following this, the proposed XGBoost model shows an outstanding capability to
predict the solvent composition of MDEA and PZ. It shows that the solvent composition
can be accurately predicted which will be useful for optimizing the absorption rate in future.

The analysis for the XGBoost model is further continued through graphical evaluation
as depicted in Figures 6–9. As shown in Figure 6a for MDEA, the prediction on the training
dataset perfectly aligns with the actual values. Similarly, the testing dataset in Figure 6b
depicts an excellent prediction as represented by the predicted values (green circles) mostly
following the actual values (red lines). However, there are some discrepancies noticeable at
higher concentrations.
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Table 3. Performance metrics of prediction for MDEA and PZ concentrations.

Target Model Scenario
Training Testing

R2 RMSE MAE R2 RMSE MAE

MDEA

XGBoost

1 0.993 0.174 0.066 0.931 0.543 0.274

2 0.991 0.193 0.081 0.905 0.638 0.244

3 0.994 0.160 0.107 0.896 0.666 0.300

4 0.994 0.159 0.045 0.953 0.448 0.135

5 0.991 0.200 0.066 0.921 0.583 0.198

LR

1 0.351 1.721 1.336 0.355 1.663 1.292

2 0.342 1.733 1.351 0.534 1.682 1.309

3 0.352 1.720 1.366 0.332 1.692 1.331

4 0.443 1.594 1.216 0.462 1.518 1.167

5 0.384 1.677 1.287 0.398 1.607 1.240

kNN

1 0.949 0.480 0.160 0.901 0.650 0.229

2 0.935 0.541 0.200 0.867 0.752 0.311

3 0.905 0.658 0.341 0.814 0.893 0.526

4 0.965 0.396 0.094 0.948 0.470 0.127

5 0.951 0.469 0.137 0.928 0.555 0.175

SVM

1 0.856 0.810 0.482 0.842 0.822 0.502

2 0.826 0.891 0.556 0.808 0.905 0.579

3 0.711 1.147 0.601 0.679 1.170 0.635

4 0.891 0.703 0.288 0.888 0.691 0.281

5 0.857 0.806 0.393 0.841 0.823 0.410

PZ

XGBoost

1 0.999 0.030 0.017 0.997 0.105 0.051

2 0.999 0.035 0.020 0.997 0.114 0.050

3 0.999 0.024 0.015 0.998 0.078 0.047

4 0.999 0.035 0.010 0.997 0.105 0.054

5 0.999 0.041 0.019 0.996 0.136 0.057

LR

1 0.759 1.046 0.729 0.766 1.009 0.702

2 0.794 0.966 0.668 0.797 0.938 0.645

3 0.908 0.643 0.448 0.913 0.614 0.422

4 0.617 1.314 0.964 0.651 1.232 0.919

5 0.689 1.187 0.843 0.715 1.113 0.802

kNN

1 0.998 0.090 0.029 0.996 0.128 0.042

2 0.998 0.090 0.029 0.996 0.115 0.039

3 0.999 0.064 0.022 0.999 0.061 0.028

4 0.997 0.107 0.034 0.996 0.130 0.048

5 0.997 0.097 0.032 0.996 0.117 0.042

SVM

1 0.992 0.188 0.122 0.991 0.191 0.126

2 0.993 0.177 0.114 0.993 0.174 0.118

3 0.996 0.130 0.083 0.995 0.143 0.086

4 0.989 0.212 0.107 0.990 0.204 0.104

5 0.989 0.215 0.124 0.987 0.237 0.130
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A deeper analysis is further performed to evaluate the performance of the proposed 
XGBoost model by observing the fitness and residual plot. For MDEA, Figure 8a shows 
that most of prediction falls under the fitness line. However, some predictions deviate 
from the fitted line. It is observed that about 20 points are located away which indicates 
slight discrepancies in the model. Nevertheless, the closeness of most points to the fitted 
line demonstrates that predictions are very close to the actual values. The residual plot in 
Figure 8b also depicts less error as shown by most of the data points being distributed 
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For PZ, Figure 9a demonstrates the predicted values precisely fit with the fitted line. 
It is observed that only one point has deviated from the line. The plot reflects a highly 
effective model with consistent predictive accuracy. In term of residuals in Figure 9b, most 
of the data are distributed closely with zero. It represents the model that accurately pre-
dicts the actual values with much less error. 

Figure 6. Prediction of MDEA composition; (a) Training sample (b) Testing sample.

Similarly, for the PZ predictions shown in Figure 7a,b, the model mostly follows the
actual data closely in both the training and testing data. Furthermore, the predicted values
(blue circles) capture the overall trend of PZ concentrations (red lines).
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A deeper analysis is further performed to evaluate the performance of the proposed
XGBoost model by observing the fitness and residual plot. For MDEA, Figure 8a shows
that most of prediction falls under the fitness line. However, some predictions deviate
from the fitted line. It is observed that about 20 points are located away which indicates
slight discrepancies in the model. Nevertheless, the closeness of most points to the fitted
line demonstrates that predictions are very close to the actual values. The residual plot
in Figure 8b also depicts less error as shown by most of the data points being distributed
closely with the fitted line.

For PZ, Figure 9a demonstrates the predicted values precisely fit with the fitted line.
It is observed that only one point has deviated from the line. The plot reflects a highly
effective model with consistent predictive accuracy. In term of residuals in Figure 9b, most
of the data are distributed closely with zero. It represents the model that accurately predicts
the actual values with much less error.
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2.4. Effect of Solvent Composition over H2S and CO2 Concentration in Sweet Gas

The predicted H2S and CO2 concentration along with the predicted MDEA and PZ
composition from previous models are then used to observe the behavior of acid gas
absorption for each scenario. The effect of solvent composition over the concentration of
H2S and CO2 in sweet gas is evaluated through a contour plot.

Figure 10 depicts the distribution of the H2S and CO2 concentration in sweet gas over
the composition of MDEA and PZ for each scenario. Lower concentrations, as represented
by a darker blue hue, represent a better absorption performance.

In Scenario 1, the contour plot for H2S in Figure 10a shows high concentrations mostly
occurring at higher percentages of PZ, as represented by a dark red color. This pattern
suggests that increasing PZ does not effectively enhance H2S absorption, while a lower
concentration is found at a high percentage of MDEA and low percentage of PZ, as shown
by the dark blue color. Conversely, the CO2 plot in Figure 10b reveals higher concentrations
primarily at higher MDEA levels with moderate PZ percentages, as represented by the
dark red color at the bottom of the contour. This indicates that MDEA as single solvent
might not suffice for efficient CO2 capture.
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Figure 10. Predicted solvent composition against predicted acid gases in sweet gas for different sour
gas compositions of (a) H2S in Scenario 1; (c) H2S in Scenario 2; (e) H2S in Scenario 3; (g) H2S in
Scenario 4; (i) H2S in Scenario 5; and for (b) CO2 in Scenario 1; (d) CO2 in Scenario 2; (f) CO2 in
Scenario 3; (h) CO2 in Scenario 4; (j) CO2 in Scenario 5.
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Scenario 2 exhibits a broad distribution of H2S concentrations across varying percent-
ages of MDEA and PZ. Figure 10c shows relatively low concentrations of H2S across a range
of MDEA and PZ percentages. This suggests that the solvent composition is quite effective
at capturing H2S under this specific scenario of sour gas composition. The distribution
being more spread out across different solvent compositions indicates that even at varied
levels of MDEA and PZ, the system is capable of maintaining low H2S concentrations effec-
tively. Figure 10d clearly shows that CO2 concentrations are lowest at higher percentages
of MDEA and moderate percentages of PZ. This insight indicates that PZ enhances the
kinetics of CO2 absorption.

In Scenario 3, the distribution of H2S concentrations in Figure 10e depicts that higher
concentrations of MDEA coupled with relatively low levels of PZ optimize H2S absorption
in sweet gas. This is shown by the significant region of low H2S concentration (deep blue
area) spanning from approximately 40% to 44% MDEA with PZ levels up to 5%. The effec-
tiveness in absorbing H2S decreases noticeably as the PZ concentration increases beyond
this range, demonstrated by a steep transition to warmer colors indicating higher H2S con-
centrations. The plot distinctly exhibits that MDEA is the primary driver for H2S absorption
efficiency in this scenario, with its performance notably diminished by increasing levels
of PZ. The CO2 plot in Figure 10f indicates a slight improvement in absorption at higher
levels of both solvents, yet the rates remain suboptimal, reflecting challenges in achieving
efficient CO2 capture with the given solvent ratios. Nevertheless, the concentration of the
averaged CO2 of such a sour gas composition is the lowest compared to the others.

Scenario 4 reveals that the highest concentrations of H2S in Figure 10g are found at
the highest solvent levels, suggesting a negative impact of increased solvent concentrations
on H2S removal efficiency. It is observed that effective absorption occurs at moderate
concentrations of MDEA, particularly around 42% to 44% MDEA, with PZ levels maintained
at or below 5%. This region is characterized by lower H2S concentrations, visible in the
deeper blue hues indicating values potentially below 50 ppm. As the PZ concentration
increases above 5%, the effectiveness of the solvent mixture in absorbing H2S decreases,
indicated by the gradient shifting to warmer colors and higher concentrations, likely
exceeding 100 ppm. For CO2 in Figure 10h, a low concentration is found when MDEA is
at its highest between 42% and 44% and PZ is at its lowest, around 0% to 5%. This area,
indicated by the darkest blues, suggests CO2 concentrations potentially as low as 2% or
less. Based on the contour, it has a broader area of dark blue when the PZ exceeds 5% with
MDEA arranging from 40% to 45%.

In Scenario 5, the H2S in Figure 10i and CO2 in Figure 10j show that as the PZ
concentration increases beyond this range, the effectiveness in absorbing H2S declines, with
H2S concentrations exceeding 50 ppm. Conversely, the increase in PZ improves the CO2
absorption.

These contour plots highlight the complex and varied impacts of MDEA and PZ con-
centrations on H2S and CO2 absorption rates across different scenarios. They demonstrate
that optimal solvent compositions for effective gas sweetening treatment can vary signifi-
cantly, depending on the specific gas composition and operational conditions. This analysis
underscores the need for the careful tuning of solvent composition ratios to improve
absorption efficiencies in industrial applications.

3. Materials and Methods

The framework of this study is illustrated in Figure 11. The initial step is creating a
process flowsheet of AGRU using Hysys software. The validated flowsheet is further used
to generate data with various sour gas compositions. Subsequently, the generated data
undergo pre-processing to examine the correlation between variables.

In this study, two predictive models will be developed. The first model aims to predict
the concentration of H2S and CO2. This model eliminates the complexity of simulation to
predict the concentration of both acid gases. The second model predicts the solvent compo-
sition of MDEA and PZ. These models will be further compared with other comprehensive
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algorithms to assess the advantages of the proposed model. The developed models will
be evaluated according to their performance. Lastly, the predicted concentration of H2S
and CO2 together with the predicted MDEA and PZ composition are plotted to observe the
effect of solvent composition on absorption performance.
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3.1. Process Flowsheet Creation of AGRU System in Hysys

The process flowsheet intends to mimic the actual operation of the AGRU system. As
previously highlighted, chemical absorption has become the most widely used technique
in the gas sweetening process. Figure 12 depicts the process flow diagram of a typical
AGRU system. It has two main operational units, namely an absorber and stripper. The
gas sweetening process is performed in an absorber column. The feed stream of sour gas
initially enters a separator to remove unnecessary liquids or solids before being delivered
to the absorber. The filtered sour gas further flows to the absorber from the bottom, while
the solvent is fed from the top flowing counter-currently [18]. The chemical reaction
between these two elements is represented in Equation (1) for H2S and Equation (2) for
CO2 removals.

2RNH2 + H2S ⇌ (RNH3)S (1)

2RNH2 + CO2 ⇌ (RNH2)2 HCO3 (2)

where R in mono-, di-, or tri-ethanol; N, H, S, C, and O indicate nitrogen, hydrogen, sulfur,
carbon, and oxygen, respectively. The reaction is reversible under endothermic conditions.
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Figure 12. Chemical absorption-based gas sweetening flow diagram of AGRU.

The cleaned gas or sweet gas enters the absorber from the top of the absorber column,
then is further processed to the outlet separator, ensuring the sweet gas is free from the
entrained solvent. On the other hand, the absorbed acid gas in rich solvent leaves the
absorber from the bottom side to the stripper unit [19,20].

The rich solvent then flows to the flash tank separator to remove unwanted liquid
hydrocarbon. It further undergoes a reheating process before entering the stripper col-
umn. Since the reaction of the gas sweetening process is reversible, as mentioned in
Equations (1) and (2), the process can be facilitated by heating the solvent. Thus, in the
stripper unit, heat is used to remove the absorbed acid gas from the rich solvent stream.
Subsequently, the regenerated lean solvent solution is circulated back to the absorber unit
for reuse in the next absorption cycle.

The whole AGRU system is modelled using the Hysys version 14 environment as
depicted in Figure 13. This process flowsheet has been validated in previous work [12].
Employing a case study from industry from literature, this flowsheet gained acceptable
accuracy with an averaged error of 2%. Thus, this flowsheet is accepted for data generation.
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3.2. Data Generation from the Developed Process Flowsheet of AGRU

Several potential variables which influence absorption performance during the gas
sweetening process are selected. These variables include sour gas properties, solvent
composition, operating temperature, and absorber pressure. The sour gas properties consist
of methane (CH4), ethane (C2H6), propane (C3H8), i-Butane (C4H10), n-Butane (C4H10),
i-Pentane (C5H12), n-Pentane (C5H12), water (H2O), carbon dioxide (CO2), hydrogen sulfide
(H2S), and nitrogen (N2). As a part of the investigation, the sour gas composition variety
is applied to the simulation. It aims to discover the impact of sour gas composition
over AGRU performance. Five scenarios of various different compositions of natural gas
referred from previous studies [12,21] are chosen, as tabulated in Table 4. All properties are
presented as the molar fraction.

Table 4. Specification of sour gas composition.

Properties
Mol Fraction

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Methane 0.7903 0.7274 0.8294 0.7515 0.7875
Ethane 0.0646 0.1089 0.0632 0.0864 0.0318
Propane 0.0226 0.0498 0.0266 0.0219 0.0464
i-Butane 0.0122 0.0112 0.0067 0.0070 0.0081
n-Butane 0.0141 0.0157 0.0079 0.0074 0.0158
i-Pentane 0.0032 0.0047 0.0034 0.0045 0.0032
n-Pentane 0.0055 0.0050 0.0056 0.0033 0.0055
Water 0.0004 0.0008 0.0004 0.0019 0.0020
Carbon Dioxide 0.0722 0.0651 0.0416 0.1013 0.0873
Hydrogen Sulfide 0.0078 0.0025 0.0057 0.0087 0.0049
Nitrogen 0.0072 0.0089 0.0094 0.0061 0.0075
Total 1.0000 1.0000 1.0000 1.0000 1.0000

To generate data, the Case Study tool in Aspen Hysys software is implemented. The
independent variable will be iteratively simulated using a certain generation framework.
Table 5 shows the framework for generating the data. For each case, it will generate
201 sample and repetitively run until the 15th case. Since there are five different sour
gas compositions, the total data were generated and utilized for model development
representing 15,075 samples. The generated data were further split 70:30 for the training
and testing dataset. The upper limit and lower limit of MDEA composition are 35.50 wt%
and 45.50 wt%, with a base value of 40.50 wt%. For PZ, the upper and lower limit are 0
wt% and 10 wt%, respectively, with a basis of 5 wt%. The temperature ranges from 38.50 ◦C
to 71.50 ◦C, with the basis of 55 ◦C. The pressure of the absorber ranges from 37.90 bar
to 77 bar, with a base value of 57.45 bar. The variables of MDEA and PZ concentrations,
temperature, and pressure will be utilized to predict the concentration of H2S as the first
predictive model. The second predictive model, solvent composition prediction, will utilize
the concentration of H2S and CO2, temperature, and pressure as independent variables to
predict the composition of MDEA and PZ.

Table 5. Framework of data generation in Hysys.

Case Study MDEA (%) PZ (%) Temperature (◦C) Pressure (bar)

1 35.50–45.50 Base Base Base
2 Base 0–10 Base Base
3 Base Base 38.50–71.50 Base
4 Base Base Base 37.30–70.32
5 35.50–45.50 0–10 Base Base
6 Base 0–10 38.50–71.50 Base
7 Base Base 38.50–71.50 37.30–70.32
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Table 5. Cont.

Case Study MDEA (%) PZ (%) Temperature (◦C) Pressure (bar)

8 35.50–45.50 Base 38.50–71.50 Base
9 35.50–45.50 Base Base 37.30–70.32
10 Base 0–10 38.50–71.50 Base
11 Base 0–10 Base 37.30–70.32
12 35.50–45.50 0–10 38.50–71.50 Base
13 35.50–45.50 0–10 Base 37.30–70.32
14 Base 0–10 38.50–71.50 37.30–70.32
15 35.50–45.50 0–10 38.50–71.50 37.30–70.32

3.3. Model Development Using XGBoost

Extreme Gradient Boosting (XGBoost) is a robust machine-learning algorithm renowned
for its utility in supervised learning tasks such as classification and regression. The fun-
damental principle of XGBoost involves sequentially constructing an ensemble of weak
models, primarily decision trees, where each successive model addresses the errors of its
predecessors [22]. XGBoost integrates several enhancements to boost performance, includ-
ing parallel processing for rapid tree construction, depth-first tree pruning, and internal
management of missing data. It also features regularization (both L1 and L2) to handle
overfitting, thereby enhancing the model’s effectiveness on new data. The algorithm’s
versatility is further amplified by its ability to accommodate custom optimization objectives
and evaluation metrics, making it suitable for a broad array of challenges [23]. This blend of
precision, speed, and adaptability has made XGBoost a favored choice in both competitive
machine learning and practical applications [24].

In this research, XGBoost regression is utilized to estimate the concentrations of H2S
and CO2 as well as the composition of the solvent mixture. XGBoost achieves this by
modeling continuous output values through the interrelationships among features. It fits
numerous decision trees sequentially, each aimed at refining the predictions by correcting
the preceding residuals or errors, optimizing a loss function that quantifies the discrepancy
between the predicted and actual values. The architecture of XGBoost is illustrated in
Figure 14.
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The conceptual basis of XG-Boost originates from the boosting method, represented
by Equation (3):

ŷi
k = ŷi

k−1 + fk(xi) (3)

Here, ŷi
k denotes the predicted output for the ith data point at iteration k, with fk(xi)

being the estimator that enhances the previous prediction ŷi
k−1.

To prevent overfitting and optimize performance, XG-Boost introduces a regularization
function into its objective or loss function for regression issues, shown in Equation (4):

J =
n

∑
i=0

L(yi, ŷi) +
n

∑
k=0

Ω( fk) (4)

Here, n is the number of training samples, and Ω( fk) represents the regularization
function, detailed in Equation (5):

Ω( fk) = γT + 0.5λ
T

∑
j=0

w2
j (5)

In this equation, T denotes the number of leaf nodes, w represents the weight of the
leaves, and γ and λ are tunable hyperparameters that enhance model performance and
prediction accuracy. The training proceeds iteratively, with new trees added to address the
residuals of previous ones, cumulatively refining the overall prediction.

3.4. Model Performance Evaluation Metric

The model will be evaluated numerically through several performance metrics. The
evaluation is based on three performance parameters: R-squared (R2), Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE), as represented by Equations (6)–(8), where
yi is the actual data, ŷ is the predicted values, y is the mean of the actual data, and n is the
number of observed data. The predictive model is accepted when the R2 achieves 0.9 and
both of the errors are less than 1, ensuring a high prediction performance.

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − yi)
2 (6)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

4. Conclusions

This paper presents predictive techniques to predict the solvent composition for
absorption-based AGRUs using MDEA and PZ as the solvent. In this paper, a predictive
model of H2S and CO2 concentration has been developed. The predicted solvent composi-
tion and acid gas concentration are then evaluated to observe the behavior of absorption
performance within different sour gas compositions.

Five different sour gas composition are observed. Scenario 4 produces the highest H2S
with a peak value of 121.8 ppm and the highest CO2 peaking at 8.44%, while the lowest
concentration of H2S and CO2 is found at Scenario 2. This resultant amount of H2S and
CO2 in sweet gas is highly correlated with the molar fraction of such variables in sour gas.

The proposed model of XGBoost successfully predicts the solvent composition of
MDEA and PZ, as well as the concentration of H2S and CO2. An outstanding accuracy
as represented by an R2 of more than 0.99 is achieved at most of the tested scenarios.
Compared with other comprehensive algorithms such as Linear Regression, k-Nearest
Neighbors, and Support Vector Machine, the proposed XGBoost exhibits a reliable result
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with consistent accuracy. Thus, it can be concluded that the proposed model is robust for
such application.

Finally, based on the contour plot, the composition of MDEA and PZ highly influences
the absorption performance of H2S and CO2. In most scenarios, a higher MDEA compo-
sition leads to more effective absorption of H2S, and a higher PZ composition helps to
improve the absorption of CO2. Both developed models will be useful to determine the
suitable solvent composition for optimized absorption-based AGRUs with MDEA and PZ
as the selected solvent.
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