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Abstract: Uninterrupted breakthroughs in the room temperature piezoelectric properties of KNN-
based piezoceramics have been witnessed over the past two decades; however, poor temperature
stability presents a major challenge for KNN-based piezoelectric ceramics in their effort to replace
their lead-based counterparts. Herein, to enhance temperature stability in KNN-based ceramics
while preserving the high piezoelectric response, multilayer composite ceramics were fabricated
using textured thick films with distinct polymorphic phase transition temperatures. The results
demonstrated that the composite ceramics exhibited both outstanding piezoelectric performance
(d33~467 ± 16 pC/N; S~0.17% at 40 kV/cm) and excellent temperature stability with d33 and
strain variations of 9.1% and 2.9%, respectively, over a broad temperature range of 25–180 ◦C.
This superior piezoelectric temperature stability is attributed to the inter-inhibitive piezoelectric
fluctuations between the component layers, the diffused phase transition, and the stable phase
structure with a rising temperature, as well as the permanent contribution of crystal orientation to
piezoelectric performance over the studied temperature range. This novel strategy, which addresses
the piezoelectric and strain temperature sensitivity while maintaining high performance, is well-
positioned to advance the commercial application of KNN-based lead-free piezoelectric ceramics.

Keywords: potassium sodium niobate; crystal texture; multilayer composite; piezoelectric perfor-
mance; temperature stability

1. Introduction

Piezoelectric materials enable the conversion of mechanical energy into electrical
energy and vice versa. Piezoelectric materials are an essential component in various
technological applications due to their unique electromechanical conversion properties.
Notably, piezoelectric ceramics are extensively utilized in areas such as sensors, actuators,
aerospace engineering, medical imaging systems, and precision control systems, etc. [1–5].
Despite their widespread use, most piezoelectric ceramics in current use contain lead, a
toxic substance harmful to both the environment and human health [6,7]. This has led
to increasing concern and an urgent need to develop lead-free alternatives. Among the
potential candidates, potassium sodium niobate [(K,Na)NbO3, KNN] piezoelectric ceramics
are distinguished by their relatively superior electromechanical properties and higher Curie
temperature (Tc = 435 ◦C) compared to other lead-free alternatives [5,8–13].

Although KNN piezoelectric ceramics are environmentally friendly alternatives to
lead-based materials, they also face challenges, including a lower piezoelectric coefficient
(d33 < 80 pC/N) and inferior temperature stability related to the polycrystalline phase
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boundary [14]. From the previously reported research, several effective strategies have
been proposed to enhance the electromechanical properties of KNN-based ceramics. The
main approaches include phase boundary engineering, domain engineering, and the devel-
opment of single-crystal and textured ceramics. Phase boundary engineering focuses on
optimizing material composition by employing element doping or combining KNN with
other components to raise the rhombohedral–orthorhombic phase transition temperature
(TR-O) or lower the orthorhombic–tetragonal phase transition temperature (TO-T), thereby
constructing a two-phase or multiphase coexisting structure at room temperature. By
virtue of the reduced polarization anisotropy caused by the phase boundary, KNN-based
piezoelectric ceramics can achieve enhanced piezoelectric activity [15,16]. For instance,
Wang et al. developed KNN-based lead-free piezoelectric ceramics with O-T phase co-
existence at room temperature by partially substituting K with Li and Nb with Ta and
Sb, which resulted in a piezoelectric coefficient (d33) of up to 308 pC/N and excellent
electromechanical coupling properties (kp~51%, kt~47%) [17]. Domain engineering aims
to maximize the piezoelectric coefficient by manipulating the size of the electric domains,
as well as the movement and orientation of the domain walls. Furthermore, the texturing
process, which induces grain orientation growth by adding templates, can significantly
enhance the piezoelectric coefficient without lowering the Curie temperature. For example,
in 2004, Saito et al. reported KNN-based textured ceramics with O-T phase coexistence
at room temperature, achieving a piezoelectric coefficient (d33) of 416 pC/N, while in
2018, Li et al. developed <001>-textured KNN-based ceramics with R-O phase coexistence,
exhibiting a d33 value as high as 700 pC/N [18,19].

Despite these advances, significant challenges persist in achieving a balance between
high piezoelectric performance and temperature stability for KNN-based piezoceramics.
These strategies that have been reported to improve the temperature stability of piezo-
electric performance involve the creation of diffused phase boundaries and the design of
compositionally graded structures [20,21]. For instance, Li et al. developed KNN-based
piezoelectric ceramics that exhibited good temperature stability by constructing diffused
polymorphic phase boundaries and achieved a d33 variation rate of less than 10% in the
range of room temperature to 80 ◦C [22]. Another approach is the gradual variation in
material composition, known as compositional grading, which involves combining a se-
ries of KNN-based piezoelectric components with different phase transition temperatures.
This method utilizes the complementary effect of composite ceramics to maintain a stable
phase structure within a certain temperature range, thereby mitigating the impact of phase
structure changes on the temperature stability of piezoelectric performance. For example,
Li et al. developed KNN-based composite ceramics characterized by consecutive phase
transition gradients via layered distribution of dopants, resulting in both high piezoelectric
performance (d33 = 508 pC/N at ambient temperature) and excellent temperature stability
(a variation in d33 of less than 13%, and the unipolar strain (Suni) remained within 8% over
the temperature range of 25–150 ◦C) [23].

In order to develop KNN-based piezoelectric ceramics that combine high piezoelectric
performance with excellent temperature stability, herein, a novel approach was proposed
to fabricate multilayer composites using textured thick films. The research builds upon
prior findings by selecting specific compositions with distinct polymorphic phase transition
temperatures: 0.97 (K0.5Na0.5) (Nb0.96Sb0.04) O3-0.02BaZrO3-0.01 (Bi0.5K0.5) HfO3 (denoted
as KNN-T1) and 0.95 (K0.5Na0.5) (Nb0.96Sb0.04)O3-0.02BaZrO3-0.03 (Bi0.5K0.5) HfO3 (denoted
as KNN-T3). The O-T phase transition temperature is far from room temperature for KNN-
T1, while the R-O-T phase transition temperature is at approximately room temperature.
Therefore, the d33 and Suni values increase significantly with the increase in temperature for
KNN-T1, while they decrease gradually with elevated temperature for KNN-T3. In view of
the distinct structural and performance features, KNN-T1 and KNN-T3 were selected to
synthesize the multilayer composite ceramics through the stacking of textured thick films in
a specific ratio. The results indicate that the multilayer composites made from KNN-T1 and
KNN-T3 exhibit enhanced piezoelectric properties and exceptional temperature stability,
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offering a promising solution for high-performance, lead-free piezoelectric materials. This
study not only advances the development of KNN-based ceramics but also paves the way
for future research in developing environmentally friendly piezoelectric materials.

2. Results and Discussion

Figure 1a shows the schematic diagram for preparing multilayer composite ceramics
by stacking textured thick films KNN-T1 and KNN-T3 in accordance with a ratio of 1:6,
which is determined to be the optimal composite ratio by comparing both piezoelectric
properties and temperature stability among all designs. To obtain the phase structure
information of each component layer in the composite ceramic, a slant surface (red area)
was cut out (Figure 1b), and XRD tests were conducted, resulting in the XRD patterns of the
KNN-T1 and KNN-T3 layers, as well as multilayer composite textured ceramics, as shown
in Figure 1c. All samples exhibited a typical perovskite structure without the presence
of secondary phases, indicating a uniform solid solution was formed in the multilayer
composite ceramics. Notably, the relative intensities of the (001)/(100) and (002)/(200)
diffraction peaks were much higher than other diffraction peaks in all samples. The
Lotgering orientation factors F001 were determined to be 83%, 89%, and 88% for KNN-T1,
KNN-T3, and 1:6 multilayer composite ceramics, respectively, indicating a good alignment
of the grains along the <001> direction.
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Figure 1. (a) Schematic diagram for preparing multilayer composite ceramics by stacking textured
thick films KNN-T1 and KNN-T3 in accordance with a ratio of 1:6. (b) Schematic diagram of X-ray
diffraction surface. XRD patterns of KNN-T1, KNN-T3, and 1:6 multilayer composite ceramics in the
2θ ranges of 20–80◦ (c), and 44.5–46◦ (d) measured at room temperature.

Figure 2a displays the temperature-dependent dielectric constant (Er-T) curves for
KNN-T1, KNN-T3, and 1:6 multilayer composite textured ceramics. The observations
reveal that: (i) KNN-T1 ceramics exhibit three distinct dielectric anomaly peaks away from
room temperature, corresponding to rhombohedral–orthorhombic (R-O) phase transition,
orthorhombic–tetragonal (O-T) phase transition, and tetragonal–cubic (T-C) phase tran-
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sition; and (ii) KNN-T3 ceramics and 1:6 multilayer composite ceramics have only two
dielectric anomaly peaks. This occurs because, with increasing (Bi0.5K0.5) HfO3 (BKH)
concentration, the R-O and O-T phase transition temperatures gradually approach room
temperature and merge to form a rhombohedral–orthorhombic–tetragonal (R-O-T) phase
transition, as marked in Figure 2a, which is consistent with previous studies [24–27]. The
high temperature dielectric anomaly is attributed to the tetragonal–cubic (T-C) phase
transition. The room temperature phase structure of the samples was evaluated by the
intensity ratio of the (002) and (200) peaks (Figure 1d) and the Er-T curves (Figure 2a). For
the sample with a single orthorhombic phase, the intensity ratio of the (002) and (200)
peaks (I(002)/I(200)) is about 2:1, while for the sample with single tetragonal phase, it is
approximately 1:2 [28,29]. Thus, it is inferred that the phase structure of KNN-T1 ceramics
is primarily the orthorhombic (O) phase, whereas KNN-T3 and 1:6 multilayer compos-
ite ceramics possess a phase structure with coexisting R-O-T phases (i.e., polymorphic
phase boundary, PPB). Additionally, KNN-T3 and 1:6 multilayer composite ceramics show
broadening of the dielectric peak for the R-O-T phase transition, which indicates enhanced
relaxor behavior. The degree of diffusion can be evaluated from the Er-T curves by fitting
the modified Curie–Weiss law [30]:

1
ε
− 1

εm
=

(T − Tm)γ

C

where ε is the dielectric constant, εm is the maximum dielectric constant, T is temperature,
Tm is the temperature at which the dielectric constant reaches its maximum, γ is the
degree of diffusion, and C is the Curie constant. The value of γ ranges from 1 to 2, where
higher values indicate stronger relaxor behavior. As shown in Figure 2b, the γ value of
1:6 multilayer composite ceramics is as high as 1.82, while those of KNN-T1 and KNN-
T3 are 1.65 and 1.79, respectively, confirming a more diffused phase transition in the
1:6 multilayer composite ceramics. Figure 3 presents cross-sectional SEM images of all
samples. It is evident that all samples have a dense microstructure and the grains’ growth
is perpendicular to the tape casting direction, i.e., crystallography <001> direction. In
addition, no specific grain morphology was observed in the cross-section of the multilayer
composite ceramics, which can be attributed to two aspects. Firstly, the liquid phase formed
during the high temperature sintering (1180 ◦C) blurred the grain morphology. Secondly,
the SEM morphology was captured from the cross-section of the cutting-off sample, where
trans-granular fracturing occurred.
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ceramics.

Figure 4a shows the quasi-static piezoelectric coefficient d33 at room temperature for
KNN-T1, KNN-T3, and 1:6 multilayer composite ceramics. The 1:6 multilayer composite
ceramics exhibit a d33 value of up to 467 ± 16 pC/N, much higher than the d33 value
of KNN-T1 ceramics (253 ± 15 pC/N) and slightly lower than the d33 value of KNN-T3
ceramics (484 ± 18 pC/N). The high piezoelectric response of 1:6 ceramics can be attributed
to the coexistence of R-O-T phases as well as the crystal texture. The polymorphic phase
boundary of the R-O-T multiphase structure reduces the energy barrier for polarization
rotation, facilitating saturation polarization under an external electric field, thereby en-
hancing the piezoelectric response. The piezoelectric anisotropy resulting from the grain
orientation along the <001> direction, and the advantageous “4R” and “4O” engineered
domain configurations formed by the polarization of the rhombohedral and orthorhombic
phases along the <001> direction, contribute to the high piezoelectric properties [21,31–34].
As compared to the monomer KNN-T3 ceramics, the slight reduction in d33 for the 1:6 mul-
tilayer composite ceramics can be attributed to the effect of the component layer KNN-T1
with low piezoresponse on the overall piezoelectric properties of the composite ceramics.
In addition, the variation in R/O/T phase content and the interface between the constituent
layer may also deteriorate the piezoelectric properties to some extent for the 1:6 multilayer
composite ceramics [35]. From the practical application point of view, the temperature
stability of piezoelectric properties is crucial. Figure 4b shows the temperature-dependent
P-E loops of 1:6 multilayer composite ceramics measured at a frequency of 10 Hz and an
electric field of 40 kV/cm. All P-E loops maintain a saturated hysteretic characteristic, while
a slight decrease in remnant polarization (Pr) with elevating temperature was observed. To
evaluate the temperature stability of d33, in situ measurements of d33 (E) hysteresis loops at
varying temperatures were conducted, and the results are shown in Figure 4c. The small sig-
nal piezoelectric coefficient d33 was extracted approximately from the d33 (E) loops at E = 0,
and the data were normalized, as illustrated in Figure 4d [30,36]. One can see the d33 values
of KNN-T1 ceramics first significantly increase in the temperature range of 25 ◦C-TO-T, and
then rapidly decline when the temperature exceeds TO-T, exhibiting a variation ratio as high
as 66.2% relative to their room temperature values over the same temperature range. The
d33 values of KNN-T3 ceramics almost monotonically decrease from 25 to 180 ◦C, likewise
showing a large variation of 64.6%. As compared to each constituent layer (KNN-T1 and
KNN-T3), the d33 values of 1:6 multilayer composite ceramics exhibit a slight fluctuation
with elevating temperature, giving rise to a variation ratio as low as 9.1% over a wide
temperature range from 25 to 180 ◦C, indicating a marked enhancement in the temperature
stability of d33. Compared to single-component ceramics, the d33 temperature stability of
1:6 multilayer composite ceramics is markedly enhanced. It is worth noting that the d33
can still maintain up to 426 pC/N when the temperature is as high as 180 ◦C. Figure 4e
compares the temperature stability of d33 (denoted as ∆d33, ∆d33 = (d33,T-d33,RT)/d33,RT
× 100%) between the 1:6 multilayer composite ceramics and some previously reported
KNN-based piezoelectric ceramics [23,37–42]. It can be clearly observed that previously
reported KNN-based ceramics always exhibit large fluctuations (>10%) of d33 values with
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increasing temperature, while the 1:6 multilayer composite ceramics reported in this work
only show a variation below 10% over a broad temperature range (25–180 ◦C). The excellent
temperature stability of the 1:6 multilayer composite ceramics may benefit from the diffused
phase transition and the complementary effects of each constituent layer with a distinct
phase transition temperature [22,37]. According to the phenomenological relationship
d33 = 2Q·εr·Pr, d33 is strongly correlated with the remnant polarization Pr and the relative
dielectric constant εr [43]. Thus, the Pr·εr values with rising temperature relative to their
room temperature values (Pr·εr (T)/Pr·εr (RT)) for KNN-T1, KNN-T3, and 1:6 multilayer
composite ceramics are given in Figure 4f. It is evident that compared to KNN-T1 and
KNN-T3 ceramics, the Pr·εr of 1:6 multilayer composite ceramics demonstrates superior
temperature stability, which contributed to the excellent temperature stability of the d33 of
1:6 ceramics.
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Figure 4. (a) d33 values of KNN-T1, KNN-T3, and 1:6 multilayer composite textured ceramics at room
temperature. Temperature dependence of P-E (b) and d33 (E) loops (c) of 1:6 multilayer composite
ceramics measured in the temperature range of 25 ◦C to 180 ◦C. (d) d33 (T)/d33 (RT) of KNN-T1,
KNN-T3 and 1:6 ceramics as a function of temperature. (e) Comparison of piezoelectric temperature
stability (denoted as ∆d33) between the 1:6 multilayer composite ceramics and other piezoelectric
ceramics reported in the literature. (f) Temperature-dependent Pr·εr (T)/Pr·εr (RT) of KNN-T1,
KNN-T3 and 1:6 ceramics.

In order to reveal the effect of phase structure with temperature on the piezoelectric
temperature stability, the in situ temperature-dependent XRD measurement was performed,
and the results are presented in Figure 5a. The representative results of the Rietveld
refinement of XRD patterns measured at 25 ◦C, 85 ◦C, 150 ◦C, and 180 ◦C are given in
Figure 5b–e. The low values of the weighted pattern reliability factor (Rwp ≤ 3.87%) and
pattern reliability factor (Rp ≤ 3.00%), and the goodness of fit indicator (χ2 ≤ 1.59) indicate
that all XRD patterns are accurately refined and the selected phase structures are reliable.
The structural refinement results show that the 1:6 multilayer composite ceramics exhibit
coexisting R, O, and T phases within the temperature range of 25 ◦C to 180 ◦C. Moreover,
as the temperature increases, the content of the R and O phases gradually decreases, while
the content of the T phase increases, which is consistent with the temperature-dependent
dielectric constant curves (Figure 2a). Therefore, we can deduce that the stable phase
structure with rising temperature also contributed to the excellent temperature stability of
piezoelectric properties.
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In addition to piezoelectric temperature stability, the strain temperature dependence
is also an important indicator for piezoelectric actuator application. The unipolar electric-
field-induced strain (Suni) of approximately 0.17% at 40 kV/cm and room temperature was
observed in the 1:6 multilayer composite ceramics, which is between that of constituent
layers KNN-T1 (Suni~0.12%) and KNN-T3 (Suni~0.18%), as shown in Figure 6a. To inves-
tigate the strain temperature stability, the in situ temperature-dependent strain test was
conducted in the temperature range of room temperature to 180 ◦C, as shown in Figure 6b.
The temperature stability of the strain for KNN-T1, KNN-T3, and 1:6 multilayer composite
ceramics was compared in Figure 6c using the calculated values of Suni (T)/Suni (RT),
which represent the ratio of electric-field-induced strain measured at a specific temperature
(T) to that measured at room temperature (RT). The results indicate that the 1:6 ceramics
exhibit good temperature stability of strain, with a variation rate of less than 2.9% over
a broad temperature range of room temperature to 180 ◦C, which is significantly lower
than that of the constituent layers of KNN-T1 (~57.4%) and KNN-T3 (~10.6%). Notably, the
strain temperature stability of the 1:6 ceramics is far superior to that of previously reported
KNN-based lead-free ceramics, and even better than some lead-based piezoelectric ceram-
ics, as displayed in Figure 6d [41,43–47]. The excellent strain temperature stability of the
1:6 multilayer composite ceramics can be attributed to their strong dispersion characteristic
of phase transition, and the stable phase structure with respect to temperature from room
temperature to 180 ◦C. The above results demonstrate that the 1:6 multilayer composite
ceramics exhibit promising development prospects in high-temperature transducer and
actuator applications.
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piezoelectric ceramics reported in the literature.

3. Materials and Methods
3.1. Materials and Synthesis

Textured thick films 0.97(K0.5Na0.5)(Nb0.96Sb0.04)O3-0.02BaZrO3-0.01(Bi0.5K0.5)HfO3 (ab-
breviated as KNN-T1) and 0.95(K0.5Na0.5)(Nb0.96Sb0.04)O3-0.02BaZrO3-0.03(Bi0.5K0.5)HfO3 (ab-
breviated as KNN-T3) were fabricated via the template grain growth (TGG) method. Initially, the
KNN-T1 and KNN-T3 powders were synthesized through the conventional high-temperature
solid-state reaction method. High-purity reagents, K2CO3 (99%), Na2CO3 (99.95%), Nb2O5
(99.98%), Sb2O3 (99.9%), BaCO3 (99.99%), ZrO2 (99%), Bi2O3 (99.975%), and HfO2 (99.99%)
powders were weighed according to stoichiometric ratios and mixed in anhydrous ethanol
by ball milling for 24 h, then calcined at 850 ◦C for 5 h to form the primary perovskite struc-
ture. The calcined powders were subjected to an additional 48 h of ball milling to ensure a
sufficiently fine particle size. Subsequently, to obtain film slurries, the matrix powders were
mixed with 3 mol% NaNbO3 templates, 0.5 wt.% MnO2 sintering aid, 40 wt.% polyvinyl butyral
(PVB) binder, and 170 wt.% solvents (a mixture of anhydrous ethanol and methylbenzene
in a 2:1 weight ratio) using a roller mill mixer. The uniform slurry was then tape-cast into
green tapes with a thickness of 30–60 µm using a doctor blade. After drying, the KNN-T1
and KNN-T3 green tapes were cut, stacked in ratios of KNN-T1:KNN-T3 = 1:x (x = 3, 4, 5,
6), followed by uniaxial pressing at 12 MPa and 65 ◦C for 5 min. After removing the or-
ganic binder at 600 ◦C, the samples were sintered using a two-step process, i.e., they were
first heated to 1180 ◦C at a rate of 3 ◦C/min without dwell time, and then rapidly cooled to
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1080 ◦C at a rate of 10 ◦C/min and held for 10 h. It is worth noting that in order to improve
the orientation of grains and density of the textured ceramics, a relative high temperature of
1180 ◦C (higher than the melting temperature of KNN) was specially designed in the first step
to form some liquid phase on the surface of NaNbO3 templates.

3.2. Characterization

The room temperature phase structure and grain orientation, as well as temperature-
dependent phase evolution, were characterized by X-ray diffractometer (XRD, TD-3700,
Dandong Tongda Technology Co., Ltd., Dandong, China). Full-profile Rietveld refinements
of XRD data were performed using the EXPGUI 3.0 software package. The microstructure
of the sintered samples was examined using field-emission scanning electron microscopy
(FE-SEM, Carl Zeiss, Oberkochen, Germany). The temperature dependence of dielectric
behavior was measured using an LCR meter (E4980A, Agilent Technologies, Santa Clara,
CA, USA) connecting a computer-controlled heating and cooling system. The polarization
hysteresis (P-E) loops, electric-field-induced strain (S-E) curves, and d33 (E) hysteresis
loops were assessed using a ferroelectric analysis system (TF Analyzer 2000, aixACCT,
Frankfurt, Germany) coupled with a laser interferometric vibrometer (AE SP-S120 E, SIOS
Meßtechnik GmbH, Lower Saxony, Germany) and a temperature controller (TFA 401-8,
aixACCT, Frankfurt, Germany). The d33 values were determined using a quasi-static d33 m
(ZG-4, Institute of Acoustics, Beijing, China) after the samples were poled at 20 kV/cm for
20 min.

4. Conclusions

In summary, the novel strategy of creating a multilayer composite using textured
thick films with distinct phase transition behavior effectively mitigates the piezoelectric
and strain temperature sensitivity of KNN-based piezoelectric ceramics. A high piezo-
electric response (d33~467 ± 16 pC/N) and unipolar strain (Suni~0.17%) were achieved
in the 1:6 multilayer composite ceramics. Benefiting from the complementary effects of
piezoelectric fluctuations between constituent layers of KNN-T1 and KNN-T3, a diffused
phase transition, and a stable phase structure with respect to temperature as well as the
grain orientation, the 1:6 multilayer composite ceramics exhibit excellent piezoelectric
and strain temperature stability with variations in small signal d33 and strain of less than
9.1% and 2.9%, respectively, over a broad temperature range from room temperature to
180 ◦C. The strategy proposed in this work successfully addresses the critical challenge
of temperature-sensitive piezoelectric performance for KNN-based lead-free piezoelectric
ceramics, further promoting their commercial applications in high-temperature transducers
and actuators.
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