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Abstract: Regarding photocatalytic oxidative desulphurization (PODS), titanium oxide (TiO2) is a
promising contender as a catalyst due to its photocatalytic prowess and long-term performance in
desulphurization applications. This work demonstrates the effectiveness of double-doping TiO2

in silver (Ag) and molybdenum (Mo) for use as a novel catalyst in the desulphurization of light-
cut hydrocarbons. FESEM, EDS, and AFM were used to characterize the morphology, doping
concentration, surface features, grain size, and grain surface area of the Ag/Mo powder. On the
other hand, XRD, FTIR spectroscopy, UV-Vis, and PL were used for structure and functional group
detection and light absorption analysis based on TiO2’s illumination properties. The microscopic
images revealed nanoparticles with irregular shapes, and a 3D-AFM image was used to determine
the catalyst’s physiognomies: 0.612 nm roughness and a surface area of 811.79 m2/g. The average
sizes of the grains and particles were calculated to be 32.15 and 344.4 nm, respectively. The XRD
analysis revealed an anatase structure for the doped TiO2, and the FTIR analysis exposed localized
functional groups, while the absorption spectra of the catalyst, obtained via UV-Vis, revealed a
broad spectrum, including visible and near-infrared regions up to 1053.34 nm. The PL analysis
showed luminescence with a lower emission intensity, indicating that the charge carriers were
not thoroughly combined. This study’s findings indicate a desulphurization efficiency of 97%.
Additionally, the promise of a nano-homogeneous particle distribution bodes well for catalytic
reactions. The catalyst retains its efficiency when it is dried and reused, demonstrating its sustainable
use while maintaining the desulphurization efficacy. This study highlights the potential of the double
doping approach in enhancing the catalytic properties of TiO2, opening up new possibilities for
improving the performance of photo-oxidative processes.

Keywords: photodesulphurization; TiO2; double doping; silver and molybdenum; light cut

1. Introduction

Photocatalytic oxidative desulphurization (PODS) has recently attracted significant
attention as an effective method for removing sulphur from various sources. Unlike
traditional techniques such as hydrodesulphurization, PODS operates at lower temper-
atures and pressures and does not require hydrogen gas [1,2]. It can effectively reduce
the sulphur content in fuel that contains thiophene or dibenzothiophene by selectively
oxidizing them with photocatalysts, and it contributes to a cleaner air quality, as it re-
duces SOx emissions [3]. PODS requires the use of catalysts, with metal oxides, doped
semiconductors, ionic liquids, and metal–organic frameworks all having been effective in
eliminating sulphur compounds [4]. However, most semiconductor catalysts absorb only a
tiny fraction of the solar spectrum, necessitating further development of catalysts that can
utilize visible light. Desulphurization reactions have been conducted with titania-based
catalysts, exhibiting potential in eliminating sulphur-containing formulations from fuel,
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in addition to demonstrating stability and low toxicity. Several studies have investigated
the use of titania-based catalysts for photocatalytic oxidative desulphurization (PODS)
processes [5]; for example, a C/TiO2@MCM-41 nanoparticle catalyst was found to effi-
ciently remove sulphur-containing compounds within a short time [6]. The photocatalytic
activity of Cu–Fe/TiO2 was proven to be superior to that of a photocatalyst made solely of
TiO2 [7]. Furthermore, these catalysts have shown encouraging results in effectively remov-
ing sulphur-containing compounds from model fuels, achieving a minimal sulphur content,
including Pt-decorated carbon-doped TiO2, a microporous titania–silica nanocomposite,
and Co-TiO2/g-C3N4 ternary heterojunctions [8–10]. These studies have highlighted the
importance of titanium dioxide as a support material for desulphurization. Because of its
comparatively wide bandgap energy (about 3.2 eV), TiO2 can only absorb solar radiation
in the ultraviolet spectrum. Its use in solar-driven photocatalysis is limited by this energy
gap [11].

Researchers have discovered that adding metals or non-metals to a TiO2 structure or
doping the TiO2 structure with metals or non-metals can improve its catalytic properties.
This enhancement facilitates the oxidation of sulphur in hydrocarbons, thereby transform-
ing it into forms that are less harmful to the environment [12]. Researchers have conducted
extensive research on the mechanism of modification and the correlation between the crys-
talline structure and the catalytic activity of TiO2 doped with transition and noble metal
ions. Silver and molybdenum dopants were found to improve visible light absorption and
inhibit electron–hole recombination, which is beneficial for effectively removing sulphur.
As a result, in this study, the efficacy of using double-doped Ag/Mo-TiO2 to desulphurize
petroleum is investigated. Additionally, altering its structure using metals or non-metals
via incorporation or doping enhances its catalytic properties, facilitating the oxidation
of sulphur in hydrocarbons and transforming the petroleum into less environmentally
harmful forms [13,14]. Researchers have extensively studied and reviewed the mechanism
of modification, as well as the relationship between the crystalline structure and catalytic
activity, for TiO2 doped with transition and noble metals. Silver and molybdenum dopants
allow visible light to pass through and slow down the electron–hole grouping, which aids
in the elimination of sulphur reactions. Therefore, in this study, we explore the performance
of double-doped Ag/Mo-TiO2 when desulphurizing petroleum.

2. Results and Discussion
2.1. Characterization
2.1.1. Field Emission Scanning Electron Microscopy (FESEM) and Particle Size

The morphology of the Ag/Mo powder was investigated via field emission scanning
electron microscopy (FESEM), which provided insights into the surface structure and
particle size of the photocatalysts. The prepared photocatalyst appeared to be agglomerated
and had a uniform surface with semi-spherical particles, according to the FESEM images
presented in Figure 1a,b. The doped particles were evenly dispersed and exhibited a modest
size, with an estimated particle size range of 22 to 34 nm for the Ag/Mo-TiO2, as shown in
Figure 1b.

In Figure 1a, the catalyst exhibits multiple pores on its surface, and the Ag and Mo
are distributed in a non-uniform way. Figure 2 displays a histogram of the distributed
nanoparticles. The average particle size was determined to be 344.4 nm, with a dispersion
factor of 0.254. The sol–gel method precisely controlled the particle size and distribution,
which led to a moderate dispersion factor that worked well with the photocatalyst’s
features [15,16]. This uniform dispersion ensures that the dopants are effectively integrated
into the TiO2 matrix.
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2.1.2. Atomic Force Microscopy

Figure 3 displays mode-of-rhythm AFM micrographs of the doped TiO2 thin films
deposited on a glass substrate via spin coating. The average roughness and grain size of
the Ag/Mo-TiO2 were 0.612 and 32.15 nm, respectively, with a root mean square roughness
of 0.889 nm. The incorporation of Ag and Mo into the TiO2 lattice was responsible for the
mild surface roughness [17,18]. The sample’s skewness value was −0.079, indicating more
troughs than peaks. This negative skewness meant that the surface had more depressions,
which made it more wettable and less hydrophobic, allowing the light distillate to interact
with it better [19].
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Figure 3. Three- and two-dimensional AFM images of the deposited Ag/Mo-doped TiO2 powder.

Active catalytic sites are often found in surface irregularities. The negative skewness
thus improved the catalytic reactivity [20]. The doped TiO2 achieved a large particle surface
area of 811.79 nm² and an average height of 0.63 nm, which increased the likelihood of
successful collisions between the reactant molecules. The reduced average height facilitated
effective access to the active sites, enhancing the catalyst’s efficiency in desulphurization
and other catalytic approaches [21].

2.1.3. Energy-Dispersive X-ray Spectroscopy (EDS)

Figure 4 presents the energy-dispersive X-ray spectroscopy (EDS) spectra of the doped
titanium dioxide (TiO2) samples. The results indicate that the proportions of doped TiO2
varied, with the mapping showing the highest concentration of Ti in the catalyst. The abun-
dance of silver (Ag) was significantly lower than that of titanium (Ti), while molybdenum
(Mo) had the lowest concentration. The predicted percentage was achieved when Ag and
Mo were successfully doped into the TiO2 structure.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 16 
 

 

 

Figure 4. EDS spectrum with mapping of the Ag/Mo-doped TiO2 catalyst. 

2.1.4. X-ray Diffraction Analysis 

The XRD patterns of the four different samples are shown in Figure 5. These samples 

were (a) pure TiO2, (b) Ag-doped TiO2, (c) Mo-doped TiO2, and (d) Ag/Mo-doped TiO2. 

With the introduction of the dopants, the film’s characteristic peaks changed. The Joint 

Committee on Powder Diffraction Standards (JCPDS card no. 21-1272) determined that 

the pure TiO2 samples had unique summits that matched the anatase phase of TiO2 and 

had tetragonal structures. 

The original 2θ angles of the pure TiO2 peaks (25.26° and 37.84°) moved to higher 

angles (25.57° and 38.2°) in the Ag-doped samples, indicating that the lattice spacing 

decreased [22,23]. The nano-sized Ag doping induced compressive strain within the 

crystal lattice, leading to decreased lattice parameters [24,25]. Conversely, the third peak 

(2θ angle: 47.97°) exhibited a lower angle (44°), suggesting lattice expansion. 

In Mo-doped TiO2, the 2θ angles shifted to higher values (12.686°, 25.57°, and 

27.1988°), indicating an increase in lattice spacing. Mo doping introduced tensile strain, 

causing lattice expansion and a potential reduction in the lattice parameters. The XRD 

peaks of Ag/Mo-doped TiO2 were moved to higher (28.3897° and 37.17°) and lower 

(55.32°) angles than those of the pure TiO2. The shift to higher angles suggests reduced 

lattice spacing, whereas the shift to a lower angle indicates lattice expansion. The 

molybdenum atoms substituting some of the Ti atoms introduced strain, leading to lattice 

expansion, whereas the Ag atoms were associated with the TiO2 atom’s surface. The 

presence of two peaks indicating compressive strain suggests that Ag ions function 

similarly to Mo ions. This double-doped TiO2 system might have a better photocatalytic 

performance since the addition of Ag changes the lattice strain. 

Figure 4. EDS spectrum with mapping of the Ag/Mo-doped TiO2 catalyst.



Molecules 2024, 29, 4603 5 of 14

2.1.4. X-ray Diffraction Analysis

The XRD patterns of the four different samples are shown in Figure 5. These samples
were (a) pure TiO2, (b) Ag-doped TiO2, (c) Mo-doped TiO2, and (d) Ag/Mo-doped TiO2.
With the introduction of the dopants, the film’s characteristic peaks changed. The Joint
Committee on Powder Diffraction Standards (JCPDS card no. 21-1272) determined that the
pure TiO2 samples had unique summits that matched the anatase phase of TiO2 and had
tetragonal structures.
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Figure 5. X-ray diffraction of TiO2, Ag-doped TiO2, Mo-doped TiO2, and Ag/Mo-doped TiO2.

The original 2θ angles of the pure TiO2 peaks (25.26◦ and 37.84◦) moved to higher
angles (25.57◦ and 38.2◦) in the Ag-doped samples, indicating that the lattice spacing
decreased [22,23]. The nano-sized Ag doping induced compressive strain within the crystal
lattice, leading to decreased lattice parameters [24,25]. Conversely, the third peak (2θ angle:
47.97◦) exhibited a lower angle (44◦), suggesting lattice expansion.

In Mo-doped TiO2, the 2θ angles shifted to higher values (12.686◦, 25.57◦, and
27.1988◦), indicating an increase in lattice spacing. Mo doping introduced tensile strain,
causing lattice expansion and a potential reduction in the lattice parameters. The XRD
peaks of Ag/Mo-doped TiO2 were moved to higher (28.3897◦ and 37.17◦) and lower (55.32◦)
angles than those of the pure TiO2. The shift to higher angles suggests reduced lattice
spacing, whereas the shift to a lower angle indicates lattice expansion. The molybdenum
atoms substituting some of the Ti atoms introduced strain, leading to lattice expansion,
whereas the Ag atoms were associated with the TiO2 atom’s surface. The presence of two
peaks indicating compressive strain suggests that Ag ions function similarly to Mo ions.
This double-doped TiO2 system might have a better photocatalytic performance since the
addition of Ag changes the lattice strain.

2.1.5. Fourier Transform Infrared (FTIR) Spectroscopy

In Figure 6a, the Fourier transform infrared (FTIR) spectroscopy transmittance data
obtained for the prepared TiO2 correspond closely with the reference spectrum for TiO2
(anatase) sourced from the NIST Chemistry WebBook [26]. This reference spectrum repre-
sents pure anatase TiO2, denoted by the O=Ti=O structure. Impurities, such as hexamethy-
lene amine, could potentially cause discrepancies in the data.
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doped TiO2.

Key features observed in the FTIR data include peaks and fluctuations across various
wavelengths. Anatase TiO2 typically demonstrates distinctive vibrational modes or strong
absorption bands around 400 cm−1, primarily ascribed to Ti-O stretching modes. Additional
bands may arise from lattice vibrations and surface modes, contributing to the overall
spectrum [27].

The transmittance values observed for Ag-doped TiO2 (Figure 6b) ranged from approx-
imately 0.88 to 0.93. Notable wavenumbers such as 3989, 3837, and 3801 cm−1 correspond
to Ti-O stretching vibrations, with 3751 cm−1 potentially associated with lattice vibrations
or surface modes due to Ag ion integration. The region around 3650 cm−1 typically involves
bending modes or lattice vibrations, while the 2981 cm−1 region may relate to catalyst
functional groups created by lattice doping [28]. Additionally, the presence of peaks at
1772 cm−1 suggests C=O stretching vibrations, indicating the presence of organic impurities.
Finally, the peak at 588 cm−1 is often associated with lattice vibrations or Ti-O modes.

In Figure 6c, the high wavenumber peak at 3386 cm−1 may correspond to Ti-O stretch-
ing vibrations within the Mo-doped TiO2 lattice. Mo doping introduces additional peaks
at 2878, 2816, and 2345 cm−1, while Ti-O stretching vibrations might subsidize the peak
at 463 cm−1 [29]. The addition of Ag and Mo dopants may change these peaks. Ag may
have added more vibrational modes, especially in the high wavenumber region, while Mo
altered the lattice vibrations and overall spectral characteristics. The transmittance values
for Mo-doped TiO2 ranged from approximately 0.62 to 0.67.

The data shown in Figure 6d indicate high transmittance values across the full spec-
trum, ranging from approximately 0.99 to 1.0. It is likely that the peak at 3648.62 cm−1

is caused by OH (Ti-OH) stretching vibrations, which are functional groups that are key
for desulphurization [30,31]. The peaks at 2061.61 and 2037.97 cm−1, observed at high
transmittance, indicate vibration and stretching in the lattice due to double doping. Low
transmittance peaks at wavenumbers of 474.27, 466.79, 444.63, 430.29, and 414.62 cm−1 are
usually linked to metal oxide lattice vibrations.
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2.1.6. Optical Properties

The ultraviolet–visible (UV-Vis) absorption spectra of the four different TiO2 photo-
catalysts are shown in Figure 7. The absorption edge for TiO2 falls within the range of
300–350 nm, and the peaks indicate the excitation of electrons from the valence band to the
conduction band. This behaviour is characteristic of anatase TiO2 and indicates its primary
UV light absorption. Doping Ag into TiO2 causes a slight shift compared to pure TiO2. The
absorption values are higher than those of TiO2, especially in the visible range, suggesting
that Ag doping improved TiO2’s light absorption capacity. Mo-TiO2 exhibits absorption
that extends into longer wavelengths, up to approximately 1022.43 nm. Furthermore,
Ag/Mo-TiO2 exhibits significantly higher absorption across all the measured wavelengths,
from the visible to infrared regions, up to about 1053 nm. Subsequently, energy bandgaps
were calculated by Equation (1) based on absorbed wavelengths and related standards
parameters (Table 1) [32].
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Table 1. Energy Band Gaps for TiO2 Catalysts.

Energy band
gap (e.v)

TiO2 Ag-Doped TiO2 Mo-Doped TiO2 Ag/Mo-Doped TiO2

3.54 1.23 2.7 1.18

The bandgaps were calculated using Equation (1) as follows:

E = hc/λ (1)

where: h, c, λ are Plancks ’constant, light speed and wavelength correspondingly.
Anatase’s bandgap is around 3.54 eV, which means that it only absorbs UV light

from the solar spectrum due to its large band energy [33,34]. Ag adds new electronic
states, thus lowering the bandgap. It can also cause localized surface plasmon resonance
(LSPR), which increases the electromagnetic field in the area [35,36]. This improves the
photocatalytic activity by enhancing light absorption, particularly under visible light. Mo
doping introduces new energy levels within the bandgap, effectively narrowing it. Mo can
generate mid-gap states and new energy levels that encourage the absorption of visible
light [37–39]. When Ag and Mo are co-doped, they create new electronic states within
the bandgap or significantly modify its width; the highest absorption values among all
the samples indicate the most effective light absorption. The combination of Ag and
Mo doping creates synergistic effects, with Ag providing plasmonic enhancement and
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Mo introducing new energy levels. This combination results in the best charge carrier
dynamics and light absorption. Potentially, a longer range of wavelengths could enhance
the penetration, irradiating the entire fuel volume and enhancing the photoactivity for
desulphurization [40]. This increased photoactivity makes the photocatalyst more reactive,
as it absorbs longer-range wavelengths, ultimately enhancing its overall effectiveness in
desulphurization.

2.1.7. Photoluminescence (PL)

In photocatalytic materials, photoluminescence (PL) spectroscopy is used to investigate
the electronic structure and the recombination rate of electrons and holes. Figure 8 displays
the photoluminescence (PL) emission spectra of the undoped TiO2, 5% Ag-TiO2, 2% Mo-
TiO2, and 5% Ag/2% Mo-TiO2 photocatalysts.
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The photocatalysts exhibited different emission spectra in various nm ranges. Nev-
ertheless, the photoluminescence (PL) intensities of both 5% Ag-TiO2 and Ag/Mo-TiO2
were significantly reduced compared to those of pure TiO2 and 2% Mo-TiO2. The PL
emission intensity is directly related to the recombination of electron–hole pairs in the TiO2
photocatalyst [41]. A lower photoluminescence (PL) intensity means that photo-excited
electrons and holes are recombining more slowly, which is good for the photocatalytic
process. The interaction between silver (Ag) and molybdenum (Mo) can result in a syner-
gistic effect, causing alterations in energy levels and the dynamics of the charge carriers.
This combined effect may make the photoluminescence (PL) less bright because there are
more recombination centres (Ag) and localized states (Mo) [42]. For this reason, the Ag
particles on the surface of TiO2 can effectively catch and store the photo-excited electrons.
Additionally, Mo can stop e–h recombination by creating localized electronic states close to
the band edges. These states facilitate radiative recombination, leading to increased charge
carrier lifetimes.

2.2. Photodesulphurization

Pure TiO2 has a limited desulphurization efficiency of approximately 23%, as seen
in Figure 9, due to its relatively large bandgap (~3.54 eV). This restricts its absorption of
UV light, and it also has a high PL intensity, as shown in the PL results, which means that
the electrons and holes are recombining quickly [43]. This makes fewer charge carriers
available for the desulphurization reaction. Mo-doped TiO2 increases the efficiency of
desulphurization to 34% by changing the bandgap (2.7 eV) and adding new energy levels
within the bandgap, which improves the charge carrier dynamics. However, the addition of
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5% silver (Ag) significantly increases the desulphurization efficiency to 51% by extending
the light absorption into the infrared range, as seen in Figure 7, and improving the charge
separation at low PL intensities, as indicated by Figure 8. This is due to plasmonic effects
and reduced electron–hole recombination, although Mo-doped TiO2 may not provide the
same level of plasmonic enhancement as Ag doping [44]. Similarly, when it is exposed to
light, Ag/Mo-TiO2 becomes more active, especially when it absorbs and emits 778 nm at
low intensities. The wide absorption range and decreased recombination rates lead to a
higher concentration of active charge carriers. These carriers can effectively take part in
the redox reactions needed for desulphurization, streamlining the breakdown of sulphur-
containing compounds. When the catalyst absorbs photons, electrons in the valence band
are excited to the conduction band, leaving behind holes in the valence band. This process
creates electron–hole pairs, which are vital for photocatalytic reactions [45]. The presence of
Ag and Mo aids in reducing the recombination rate of electron–hole pairs. Ag nanoparticles
act as electron traps, while Mo introduces new energy levels that enable better charge
separation. The separated electrons and holes move to the surface of the TiO2 particles,
where they participate in redox reactions. The photogenerated holes (h+) on the surface
of the TiO2 can oxidize sulphur-containing compounds (e.g., thiols and sulphides) to
produce sulphur oxides (SOx) or other oxidized sulphur compounds. Light (e-) electrons
can break down the oxygen molecules stuck to the catalyst surface to produce reactive
oxygen species (ROS), which include superoxide radicals (O−2) and hydroxyl radicals
(•OH), to then be expelled [46]. The sulphur content was quantified using Equation (1),
revealing a desulphurization efficiency of about 97%.
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The large surface area of the particles obtained (811.79 nm2) improves adsorption and
allows more sulphur-containing molecules to be attracted to the catalytic surface. This
also increases the number of active sites where photogenerated electrons and holes can
participate in redox reactions [47]. As a result, the efficiency of photodesulphurization is
significantly improved, as the catalyst can efficiently adsorb and react with the sulphur.
Nanoscale particles have quantum effects that become significant when the electron–hole
mobility is limited and hinder the recombination within small particles to enhance their
reactivity. They absorb visible light due to their quantum confinement effect, expanding
the range of wavelengths for photodesulphurization [48]. As the temperature gradually
increased (from 40 ◦C to 70 ◦C), the desulphurization efficiency declined due to an excess
of electrons and the recombination of electron–hole pairs stemming from the narrow
bandgap of the catalyst [49]. However, the catalyst was recycled for three months, and we
intermittently examined the sulphur concentrations, noting that the efficiency decreased by
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3.4%, as displayed in Figure 10. The catalyst retained its efficiency upon drying and reuse,
demonstrating its sustainable use while maintaining the desulphurization efficacy.
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Figure 10. Desulphurization efficiency of the catalysts with exposure over time.

3. Experiments

To investigate double doping in TiO2, four catalysts were prepared following the
sol–gel method using titanium (IV) isopropoxide (TTIP) (97%) (Sigma Aldrich, CAS No.
546-68-9), silver nitrate (Daejung Chemicals, Busan, Republic of Korea, CAS No. 7761-88-8),
ammonium molybdate (Thomas Baker, Mumbai, India, CAS No. 12054-85-2), sodium
borohydride (99%) (Sigma Aldrich, St. Louis, MA, USA, CAS No. 16940-66-2), and hexam-
ethylenetetramine (Thomas Baker Chemicals Pvt. Ltd., Mumbai, India, CAS No. 100-97-0).
Distilled water, ethanol (99%), 97% nitric acid, and 37% hydrogen peroxide were used
for oxidation.

The Sol–Gel Method

A mixture of ethanol and TTIP at a 3:1 ratio was stirred with a magnetic stirrer, and
a few drops of nitric acid were added to adjust the pH to 1. Distilled water was then
gradually added until titanium oxide particles formed, resulting in a white emulsion; this
was then stirred at 80 ◦C for 3 h and aged for 12 h.

After the gel formed, it was washed, dried at 100 ◦C in the furnace, and then calcined
at 400 °C for four h. TiO2 was doped with Ag and Mo separately following the same
procedure: 5 M silver nitrate and 2 M ammonium molybdate solutions were added, and
then the resultant solution was stirred, aged for 24 h, reduced using NaBH4, and calcinated
for 2 h at 500 ◦C. To dope silver and molybdenum into TiO2, we repeated the process and
stirred the same ratio of TTIP to ethanol and the drops of nitric acid into the mixture for
30 min at 80 ◦C.

The solution was stirred for 3 h after the addition of distilled water, after which a
5 M silver nitrate solution was introduced to form a homogenous slurry. Subsequently, a
2 M ammonium molybdate solution was added. Sodium borohydride was also used for
reduction, which turned the mixture black. Hexamethylenetetramine was added to all the
synthesized powders to improve the dispersion. The resultant mixture was stirred for 5 h
and aged for 24 h. The gel then formed, was washed several times with distilled water,
was dried at 100 ◦C for 2 h, was calcined at 550 ◦C for 2 h, and was allowed to cool slowly.
Figure 11 illustrates these steps.
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The catalysts underwent analysis using various techniques. X-ray diffraction (XRD)
was carried out with an Empyrean XRD instrument (Huston, TX, USA) using Cu (1.54060 Å)
with a voltage of 40.0 kV, a current of 30.0 mA, a scan range of 10–80◦, and a step size
of 0.0400◦.

Fourier transform infrared (FTIR) spectra were acquired using a TENSOR-27/Bruker
spectrometer (Billerica, MA, USA). The elemental composition was determined via energy-
dispersive spectroscopy (EDS, Thermo Fisher Scientific, Waltham, MA, USA). A field
emission scanning electron microscope (Inspect F 50 FEI, FEI Company, Eindhoven, The
Netherlands) and an atomic force microscope (AFM, Suwon, Republic of Korea) were
used to investigate the particle size, surface features, roughness, and surface area. To
achieve an agglomerated size distribution, a Brookhaven (Holtsville, NY, USA) particle size
analyser was employed. The substance was thoroughly dispersed in distilled water using
an ultrasonicator and was analysed using 90Plus particle sizing software v3. UV–visible
diffuse reflectance spectroscopy was performed using a spectrometer (SP-8001, Bruker,
Billerica, MA, USA) within the wavelength range of 190–1100 nm. Photoluminescence (PL)
spectra were obtained using a Shimadzu spectrofluorometer (Kyoto, Japan). A light cut
(distillate), including heavy naphtha and kerosene, was supplied by the South Refineries
Company (Basra, Iraq), with its specifications shown in Table 2.
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Table 2. Specification of Light Distillate.

Light Distillate Value

Specific gravity at 60 ◦C 0.733
Flash point 64
Viscosity 0.97

Sulphur content 892.5 ppm

The photocatalytic desulphurization reaction was evaluated by adding 0.7 g of the
catalyst powder to 7 mL of the light cut in a dark box. Following that, 0.082 mL of hydrogen
peroxide was dissolved in the mixture and stirred. In a dark container, the mixture was
subsequently exposed to a 60-watt LED light bulb (simulating sunlight) under ambient
conditions (25 ◦C) and atmospheric pressure (30, 45, and 60 min) and then filtered. The
efficiency of the desulphurization was measured using a Petra sulphur analyser (Petra
4294) for petroleum and calculated using the following formula [50]:

D = (x◦ − x f )/(x◦)× 100% (2)

where x
◦

and xf are the initial and final concentrations of sulphur, respectively.
After the specified practice durations, the photocatalytic activity dropped. To reacti-

vate the catalyst, it was soaked in a 5% HNO3 solution for 2 h, then washed with distilled
water, and dried. Later, the catalyst was dunked in ethanol to extract any impurities and
left to dry.

4. Conclusions

A double-doped Ag/Mo-TiO2 catalyst was used, along with H2O2, to perform photo-
catalytic oxidative desulphurization (PODS), a method that effectively eliminates sulphur-
containing compounds from light fuels. The results of the FTIR, XRD, AFM, and UV-Vis
analyses showed that doping TiO2 with two types of elements changes its structure and
optical properties in a way that improves its ability to speed up reactions. Ag/Mo doping
introduced active sites, creating a highly efficient catalyst and narrowing the bandgap.
Ag/Mo-doped TiO2 took in higher light wavelengths and experienced less electron–hole
recombination, eliminating sulphur quickly and effectively 97% of the time. This sug-
gests that such doped photocatalysts have the potential to effectively remove sulphur
compounds from fuels while maintaining their ability over time. This catalyst’s ability to
absorb a broad spectrum of light regions and its high desulphurization efficiency make it a
promising candidate for industrial applications in refineries. This development can provide
economic benefits by eliminating the need for elevated temperatures and pressures, thereby
facilitating the process in tanks. The promise of a nano-homogeneous particle distribution
with a high surface area also bodes well for future coating applications, offering a cleaner
and more sustainable process.
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