Persulfated Ascorbic Acid Glycoside as a Safe and Stable Derivative of Ascorbic Acid for Skin Care Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Synthesis
2.2. Cell Culture Studies
2.2.1. Cellular Metabolic Activity
2.2.2. Anti-Inflammatory Activity in RAW 264.7 Cell Line
2.2.3. Inhibition of Maturation in THP-1 Cell Line
2.2.4. Mitochondrial Antioxidant Activity
2.2.5. DPPH Assay
2.3. Preformulation Studies
2.3.1. Stability Studies
pH
Temperature
Metals
Photostability
Compatibility with Excipients
3. Materials and Methods
3.1. Materials
3.2. Synthesis
Synthesis of 2-O-α-d-glucopyranosyl-l-ascorbic Acid Persulfate
3.3. Cell Culture
3.3.1. Cellular Metabolic Activity in Different Cell Lines
3.3.2. Anti-Inflammatory Activity in Macrophage Cell Line
3.3.3. Inhibition of THP-1 Maturation Profile Induced by the Strong Allergen DNFB
3.3.4. Mitochondrial Antioxidant Activity
3.3.5. Flow Cytometry Analysis
3.4. DPPH Activity
3.5. Preformulation Studies
3.5.1. Stability
pH
Temperature
Metals
Photostability
Compatibility with Excipients
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef]
- Packer, L. Handbook of Antioxidants, 2nd ed.; Packer, L., Ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Telang, P.S. Vitamin C in dermatology. Indian Dermatol. Online J. 2013, 4, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Dosedel, M.; Jirkovsky, E.; Macakova, K.; Krcmova, L.K.; Javorska, L.; Pourova, J.; Mercolini, L.; Remiao, F.; Novakova, L.; Mladenka, P.; et al. Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef] [PubMed]
- Waggner, A.E.; Hueber, P.; Konishi, T.; Rahman, M.M.; Nakahara, M.; Matsugo, S.; Rimbach, G. Free Radical Scavenging and Antioxidant Activity of Ascorbigen Versus Ascorbic Acid: Studies in Vitro and in Cultured Human Keratinocytes. J. Agric. Food Chem. 2008, 56, 11694–11699. [Google Scholar] [CrossRef]
- Jesus, A.; Mota, S.; Torres, A.; Cruz, M.T.; Sousa, E.; Almeida, I.F.; Cidade, H. Antioxidants in Sunscreens: Which and What For? Antioxidants 2023, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani-Nasab, M.; Del Bakhshayesh, A.R.; Akbari-Gharalari, N.; Mehdipour, A. Biomolecular and cellular effects in skin wound healing: The association between ascorbic acid and hypoxia-induced factor. J. Biol. Eng. 2023, 17, 62. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Ferreira, M.S.; Lobo, J.M.S.; Sousa, E.; Almeida, I.F. Skin Depigmenting Agents in Anti-Aging Cosmetics: A Medicinal Perspective on Emerging Ingredients. Appl. Sci. 2022, 12, 775. [Google Scholar] [CrossRef]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhaes, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the use of antioxidants in anti-ageing cosmetics. Int. J. Cosmet. Sci. 2019, 41, 378–386. [Google Scholar] [CrossRef]
- Sheraz, M.A.; Ahmad, I.; Vaid, F.M.; Ahmed, S.; Shaikh, R.H.; Iqbal, K. Formulation and stability of ascorbic acid in topical preparations. Syst. Rev. Pharm. 2011, 2, 86. [Google Scholar] [CrossRef]
- Pinnell, S.R.; Yang, H.; Omar, M.; Riviere, N.M.; Debuys, H.V.; Walker, L.C.; Wang, Y.; Levine, M. Topical L-Ascorbic Acid: Percutaneous Absorption Studies. Dermatol. Surg. 2001, 27, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Thiele, N.A.; McGowan, J.; Sloan, K.B. 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes. Pharmaceutics 2016, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Silva, S. Trends in the Use of Antioxidants in Anti-Aging Cosmetics. Master’s Thesis, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal, 2016. [Google Scholar]
- Ascorbic Acid 2-Glucoside (AA2G™). Available online: https://cellbone.com/pages/ascorbic-acid-2-glucoside-aa2g%E2%84%A2 (accessed on 30 January 2024).
- Al-Niaimi, F.; Chang, N.Y.Z. Topical Vitamin C and the skin: Mechanisms of action and Clinical applications. J. Clini Aesthet. Dermatol. 2017, 10, 14–17. [Google Scholar]
- Taketuchi, K. Advantages of AA-2G over Vitamin C Ethyl; Cosmetic Science Institute, Hayashibara Biochemical laboratories, Inc.: Okayama, Japan, 2016. [Google Scholar]
- Al-Horani, R.A.; Desai, U.R. Chemical Sulfation of Small Molecules—Advances and Challenges. Tetrahedron 2010, 66, 2907–2918. [Google Scholar] [CrossRef] [PubMed]
- Grizaud, C.-M. Topical Composition Comprising Bioactive Sulfated Oligosaccharides and Cosmetic. Uses. Patent WO 2013/144909, 3 October 2013. [Google Scholar]
- Wang, L.; Jayawardena, T.U.; Yang, H.W.; Lee, H.G.; Jeon, Y.J. The Potential of Sulfated Polysaccharides Isolated from the Brown Seaweed Ecklonia maxima in Cosmetics: Antioxidant, Anti-melanogenesis, and Photoprotective Activities. Antioxidants 2020, 9, 724. [Google Scholar] [CrossRef]
- Correia-da-Silva, M.; Rocha, V.; Marques, C.; Deus, C.M.; Marques-Carvalho, A.; Oliveira, P.J.; Palmeira, A.; Pinto, M.; Sousa, E.; Lobo, J.M.S.; et al. Potential benefits of a sulfated resveratrol derivative for topical application. J. Mol. Endocrinol. 2018, 61, M27–M39. [Google Scholar] [CrossRef]
- Jesus, A.; Sebastiao, A.I.; Brites, G.; Correia-da-Silva, M.; Cidade, H.; Cruz, M.T.; Sousa, E.; Almeida, I.F. A Hydrophilic Sulfated Resveratrol Derivative for Topical Application: Sensitization and Anti-Allergic Potential. Molecules 2023, 28, 3158. [Google Scholar] [CrossRef]
- Correia-da-Silva, M.; Sousa, E.; Duarte, B.; Marques, F.; Cunha-Ribeiro, L.M.; Pinto, M.M. Dual anticoagulant/antiplatelet persulfated small molecules. Eur. J. Med. Chem. 2011, 46, 2347–2358. [Google Scholar] [CrossRef]
- OECD. In Vitro Skin Sensitisation assays addressing the Key Event on activation of dendritic cells on the Adverse Outcome Pathway for Skin Sensitisation. In Test Guideline 442E; OECD: Paris, France, 2022. [Google Scholar]
- Chen, J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative stress in the skin: Impact and related protection. Int. J. Cosmet. Sci. 2021, 43, 495–509. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef]
- Austria, R.; Semenzato, A.; Bettero, A. Stability of vitamin C derivatives in solution and topical formulations. J. Pharm. Biomed. Anal. 1997, 15, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.M.; Lima, C.R.R.C.; Quenca-Guillen, J.S.; Filho, E.M.; Mercuri, L.P.; SAantoro, M.I.R.M.; Kedor-Hackmann, E.R.M. Stability evaluation of tocopheryl acetate and ascorbyl tetraisopalmitate in isolation and incorporated in cosmetic formulations using thermal analysis. Braz. J. Pharm. Sci. 2010, 46, 129–134. [Google Scholar] [CrossRef]
- Bae, H.K.; Lee, S.-B.; Park, C.-S.; Shim, J.-H.; Lee, H.-Y.; Kim, M.-J.; Baek, J.-S.; Roh, H.-J.; Cjoi, J.-H.; Choe, E.-O.; et al. Modification of Ascorbic Acid Using Transglycosylation Activity of Bacillus stearothermophilus Maltogenic Amylase to Enhance Its Oxidative Stability. J. Agric. Food Chem. 2002, 50, 3309–3316. [Google Scholar] [CrossRef]
- Daneluti, A.; Velasco, M.; Baby, A.; Matos, J. Thermal Behavior and Free-Radical-Scavenging Activity of Phytic Acid Alone and Incorporated in Cosmetic Emulsions. Cosmetics 2015, 2, 248–258. [Google Scholar] [CrossRef]
- Burke, K.E. Photodamage of the skin: Protection and reversal with topical antioxidants. J. Cosmet. Dermatol. 2004, 3, 149–155. [Google Scholar] [CrossRef]
- Mota, S.; Rosa, G.P.; Barreto, M.C.; Garrido, J.; Sousa, E.; Cruz, M.T.; Almeida, I.F.; Quintas, C. Comparative Studies on the Photoreactivity, Efficacy, and Safety of Depigmenting Agents. Pharmaceuticals 2023, 17, 55. [Google Scholar] [CrossRef]
- Bezerra, G.S.N.; Pereira, M.A.V.; Ostrosky, E.A.; Barbosa, E.G.; de Moura, M.d.F.V.; Ferrari, M.; Aragão, C.F.S.; Gomes, A.P.B. Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J. Therm. Anal. Calorim. 2016, 127, 1683–1691. [Google Scholar] [CrossRef]
- Silva, D.; Ferreira, M.S.; Sousa-Lobo, J.M.; Cruz, M.T.; Almeida, I.F. Anti-Inflammatory Activity of Calendula officinalis L. Flower Extract. Cosmetics 2021, 8, 31. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.T. Analysis of Nitrate, Nitrite, and [15N]Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef]
- Takebayashi, J.; Tai, A.; Yakamoto, I. Long-Term Radical Scavenging Activity of AA-2G and 6-Acyl-AA-2G against 1,1-Diphenyl-2-picrylhydrazyl. Biol. Pharm. Bull. 2002, 25, 1503–1505. [Google Scholar] [CrossRef]
- Afsar, T.; Razak, S.; Shabbir, M.; Khan, M.R. Antioxidant activity of polyphenolic compounds isolated from ethyl-acetate fraction of Acacia hydaspica R. Parker. Chem. Cent. J. 2018, 12, 5. [Google Scholar] [CrossRef]
Thermoanalytical Data | Stearilic Alcohol (SA) | Carbopol 980 (CP) | Ethylenediamine Tetraacetic Acid (EDTA) | Hydroxyethylcellulose (HEC) | Miglyol 812 (MIG) | Potassium Cetyl Phosphate (PCP) | Tocopherol (TP) | |
---|---|---|---|---|---|---|---|---|
AA | Tonset (°C) = 192.9 Tpeak (°C) = 197.1 ΔH (J/g) = −328.6 | |||||||
AAG | Tonset (°C) = 173.0 Tpeak (°C) = 176.4 ΔH (J/g) = −139.8 | |||||||
AAGS | Tonset (°C) = 195.0 Tpeak (°C) = 200.5 ΔH (J/g) = 223.1 |
Cytotoxicity | HaCaT Cells: AAGS > AA > AAG RAW264.7 and THP-1 Cells: AA, AAG, and AAGS with Similar Profiles |
---|---|
Anti-inflammatory activity | AA > AAG > AAGS |
Non-sensitization profile | AA, AAG, and AAGS with non-sensitizer profile |
Anti-allergic activity | AA > AAGS > AAG |
Mitochondrial antioxidant activity | AA, AAG, and AAGS with no pro-oxidant profile % inhibition of rotenone-induced SO2− production: AA > AAG > AAGS |
DPPH activity | AA > AAGS > AAG |
pH stability | AAGS > AAG > AA |
Thermostability | AAGS > AAG > AA |
Metals stability | AAG > AAGS ≈ AA |
Photostability | AAGS > AAG > AA |
Excipient compatibility | AA, AAG and AAGS with similar profile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, A.; Correia-da-Silva, M.; Confraria, C.; Silva, S.; Brites, G.; Sebastião, A.I.; Carrascal, M.; Pinto, M.; Cidade, H.; Costa, P.; et al. Persulfated Ascorbic Acid Glycoside as a Safe and Stable Derivative of Ascorbic Acid for Skin Care Application. Molecules 2024, 29, 4604. https://doi.org/10.3390/molecules29194604
Jesus A, Correia-da-Silva M, Confraria C, Silva S, Brites G, Sebastião AI, Carrascal M, Pinto M, Cidade H, Costa P, et al. Persulfated Ascorbic Acid Glycoside as a Safe and Stable Derivative of Ascorbic Acid for Skin Care Application. Molecules. 2024; 29(19):4604. https://doi.org/10.3390/molecules29194604
Chicago/Turabian StyleJesus, Ana, Marta Correia-da-Silva, Catarina Confraria, Sílvia Silva, Gonçalo Brites, Ana I. Sebastião, Mylène Carrascal, Madalena Pinto, Honorina Cidade, Paulo Costa, and et al. 2024. "Persulfated Ascorbic Acid Glycoside as a Safe and Stable Derivative of Ascorbic Acid for Skin Care Application" Molecules 29, no. 19: 4604. https://doi.org/10.3390/molecules29194604
APA StyleJesus, A., Correia-da-Silva, M., Confraria, C., Silva, S., Brites, G., Sebastião, A. I., Carrascal, M., Pinto, M., Cidade, H., Costa, P., Cruz, M. T., Sousa, E., & Almeida, I. F. (2024). Persulfated Ascorbic Acid Glycoside as a Safe and Stable Derivative of Ascorbic Acid for Skin Care Application. Molecules, 29(19), 4604. https://doi.org/10.3390/molecules29194604