Composite Nanostructures for the Production of White Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composite 1 Series—Ga0.9In0.1N/Ce:YAG
2.2. Composite 2 Series—YAG:Ce/Ga0.9In0.1N
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaffuri, P.; Stolyarova, E.; Llerena, D.; Appert, E.; Consonni, M.; Robin, S.; Consonni, V. Potential substitutes for critical materi-als in white LEDs: Technological challenges and market opportunities. Renew. Sustain. Energy Rev. 2021, 143, 110869. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, H.; Rao, A.S.; Prakash, G.V. A review on photoluminescence phosphors for biomedical, temperature sensing, photovoltaic cell, anti-counterfeiting and white LED applications. Phys. B Condens. Matter 2024, 690, 416224. [Google Scholar] [CrossRef]
- Reddy, L. A Review of the Efficiency of White Light (or Other) Emissions in Singly and Co-Doped Dy3+ Ions in Different Host (Phosphate, Silicate, Aluminate) Materials. J. Fluoresc. 2023, 33, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Taki, T.; Strassburg, M. Review—Visible LEDs: More than Efficient Light. ECS J. Solid. State Sci. Technol. 2020, 9, 015017. [Google Scholar] [CrossRef]
- Tikale, R.V.; Kadam, A.R.; Dhoble, S.J. Synthesis and optical properties of LiZr2(PO4)3: Eu3+, Dy3+ phosphor for display devices application. Chem. Phys. Impact 2024, 8, 100525. [Google Scholar] [CrossRef]
- Guo, Y.; Moon, B.K.; Choi, B.C.; Jeong, J.H.; Kim, J.H. Color–tunable luminescence and energy transfer behaviors of Dy3+/Eu3+ co–doped SrLaMgTaO6 phosphors for solid state lighting applications. Mater. Res. Bull. 2017, 88, 166–173. [Google Scholar] [CrossRef]
- Chung, D.N.; Tuan, L.T.; Hao, T.C.; Hieu, D.N.; Fing, N.N. Organic-inorganic Hybrid luminescent composite for solid state lighting. Commun. Phys. 2013, 23, 57–63. [Google Scholar] [CrossRef]
- Piprek, J. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 2010, 207, 2217. [Google Scholar] [CrossRef]
- Berends, A.C.; van de Haar, M.A.; Krames, M.R. YAG:Ce3+ Phosphor: From Micron-Sized Workhorse for General Lighting to a Bright Future on the Nanoscale. Chem. Rev. 2020, 120, 13461–13479. [Google Scholar] [CrossRef]
- Krames, M.R.; Schekin, O.B.; Muller-Mach, R.; Mueller, G.O.; Zhou, L.; Harbers, G.; Craford, M.G. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting. J. Disp. Tachnol. 2007, 3, 160–175. [Google Scholar] [CrossRef]
- Wang, F.; Lin, Y.; Shi, H.; Wang, W.; Deng, Z.; Chen, J.; Yuan, X.; Cao, Y. Introduction on the fabrication technique of phosphor in glass by tape-casting and investigation on the chromaticity property. Opt. Express 2014, 22, A1355–A1362. [Google Scholar] [CrossRef] [PubMed]
- Saladino, M.L.; Zanotto, A.; Martino, D.C.; Spinella, A.; Nasillo, G.; Caponetti, E. Ce:YAG nanoparticles embedded in a PMMA matrix: Preparation and characterization. Langmuir 2010, 26, 13442–13449. [Google Scholar] [CrossRef]
- Saladino, M.L.; Chillura Martino, D.; Floriano, M.A.; Hreniak, D.; Marciniak, Ł.; Stręk, W.; Caponetti, E. Ce:Y3Al5O12-polymethylmethacrylate composite for White Light Emitting Diode. J. Phys. Chem. C 2014, 118, 9107–9113. [Google Scholar] [CrossRef]
- Saladino, M.L.; Armetta, F.; Sibeko, M.; Luyt, A.S.; Chillura Martino, D.F.; Caponetti, E. Preparation and characterization of Ce:YAG-polycarbonate composites for white LED. J. Alloys Compd. 2016, 664, 726–731. [Google Scholar] [CrossRef]
- Sibeko, M.A.; Luyt, A.S.; Saladino, M.L. Thermomechanical properties and thermal degradation kinetics of poly(methyl methacrylate) (PMMA) and polycarbonate (PC) filled with cerium doped yttrium aluminium garnet doped (Ce:YAG) prepared by melt compounding. Polym. Bull. 2017, 74, 2841–2859. [Google Scholar] [CrossRef]
- Inkrataite, G.; Zabiliute-Karaliune, A.; Aglinskaite, J.; Vitta, P.; Kristinaityte, K.; Marsalka, A.; Skaudzius, R. Study of YAG: Ce and Polymer Composite Properties for Application in LED Devices. ChemSusChem 2020, 85, 1504–1510. [Google Scholar] [CrossRef]
- Podhorodecki, A.; Nyk, M.; Kudrawiec, R.; Misiewicz, J.; Pivin, J.C.; Strek, W. Optical properties of GaN nanocrystals embedded into silica matrices. Superlattices Microstruct. 2006, 40, 533–536. [Google Scholar] [CrossRef]
- Chitara, B.; Bhat, S.V.; Vivekchand, S.R.C.; Gomathi, A.; Rao, C.N.R. White-light sources based on composites of GaN nanocrystals with conducting polymers and nanophosphors. Solid. State Commun. 2008, 147, 409–413. [Google Scholar] [CrossRef]
- Kumar, P.; Panchakarla, L.S.; Bhat, S.V.; Maitra, U.; Subrahmanyam, K.S.; Rao, C.N.R. Photoluminescence, white light emitting properties and related aspects of ZnO nanoparticles admixed with graphene and GaN. Nanotechnology 2010, 21, 385701. [Google Scholar] [CrossRef]
- Meierhofer, F.; Krieg, L.; Voss, T. GaN meets organic: Technologies and devices based on gallium-nitride/organic composite struc-tures. Semicond. Sci. Technol. 2008, 33, 083001. [Google Scholar] [CrossRef]
- Stefanski, M.; Głuchowski, P.; Strek, W. Laser induced emission spectra of gallium nitride nanoceramics. Ceram. Int. 2020, 46, 29060–29066. [Google Scholar] [CrossRef]
- Drygas, M.; Leida, K.; Janik, J.F.; Łyszczarz, K.; Gierlotka, S.; Stelmakh, S.; Pałosz, B. New Nitride Nanoceramics from Synthesis-Mixed Nanopowders in the Composite System Gallium Nitride GaN–Titanium Nitride TiN. Materials 2021, 14, 3794. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, J.; Yi, X.; Zhao, D.; Weng, Z.; Tang, Y.; Lin, H.; Zhou, S. A new BaAl2O4-YAG: Ce composite ceramic phosphor for white LEDs and LDs lighting. J. Eur. Ceram. Soc. 2021, 41, 4343–4348. [Google Scholar] [CrossRef]
- Chung, S.R.; Wang, K.W.; Wang, M.W. Hybrid YAG/CdSe Quantum Dots Phosphors for White Light-Emitting Diodes. J. Nanosci. Nanotechnol. 2013, 13, 4358–4363. [Google Scholar] [CrossRef] [PubMed]
- Armetta, F.; Defilippi, C.; Giordano, C.; Caponetti, E.; Marciniak, Ł.; Hreniak, D.; Saladino, M.L. Influence of cerium content and heat treatment on Ce:YAG@glass wool nanostructures. J. Nanopart. Res. 2019, 21, 152–161. [Google Scholar] [CrossRef]
- Armetta, F.; Gaboardi, M.; Plaisier, J.; Saladino, M.L. Role of the thermal treatment on the microstructure of YAGG nanopowders prepared by Urea Glass Route. Opt. Mater. 2023, 140, 113896. [Google Scholar] [CrossRef]
- Armetta, F.; Sibeko, M.A.; Luyt, A.S.; Chillura Martino, D.F.; Spinella, A.; Saladino, M.L. Influence of the Ce:YAG amount on structure and optical properties of Ce:YAG-PMMA composites for white LED. Z. Phys. Chem. 2016, 230, 1219–1231. [Google Scholar] [CrossRef]
- Armetta, F.; Giordano, C.; Defilippi, C.; Marciniak, Ł.; Hreniak, D.; Caponetti, E.; Saladino, M.L. Non-conventional Ce: YAG nanostructures via urea complexes. Sci. Rep. 2019, 9, 3368. [Google Scholar] [CrossRef]
- Lei, W.; Willinger, M.G.; Antonietti, M.; Giordano, C. GaN and GaxIn1-xN nanoparticles with tuneable indium content: Synthesis and characterization Chem. Eur. J. 2015, 21, 18976–18982. [Google Scholar] [CrossRef]
- Young, R.A. (Ed.) The Rietveld Method; University Press: Oxford, UK, 1993. [Google Scholar]
- Lutterotti, L.; Gialanella, S. X-ray diffraction characterization of heavily deformed metallic specimens. Acta Mater. 1998, 46, 101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, G.; Armetta, F.; Rao, T.; Yuan, W.; Boiko, V.; Hreniak, D.; Giordano, C.; Saladino, M.L. Composite Nanostructures for the Production of White Light. Molecules 2024, 29, 4605. https://doi.org/10.3390/molecules29194605
Russo G, Armetta F, Rao T, Yuan W, Boiko V, Hreniak D, Giordano C, Saladino ML. Composite Nanostructures for the Production of White Light. Molecules. 2024; 29(19):4605. https://doi.org/10.3390/molecules29194605
Chicago/Turabian StyleRusso, Giovanni, Francesco Armetta, Tingke Rao, Wangchao Yuan, Vitalii Boiko, Dariusz Hreniak, Cristina Giordano, and Maria Luisa Saladino. 2024. "Composite Nanostructures for the Production of White Light" Molecules 29, no. 19: 4605. https://doi.org/10.3390/molecules29194605
APA StyleRusso, G., Armetta, F., Rao, T., Yuan, W., Boiko, V., Hreniak, D., Giordano, C., & Saladino, M. L. (2024). Composite Nanostructures for the Production of White Light. Molecules, 29(19), 4605. https://doi.org/10.3390/molecules29194605