Biological Potential and Essential Oil Profile of Two Wild Apiaceae Species from Algeria (Daucus carota L. and Foeniculum vulgare Mill.): Larvicidal and Antibacterial Effects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield
2.2. Chemical Profile of EOs
2.3. Larvicidal Activity against Culex pipiens Larvae
2.4. Antibacterial Activity
3. Materials and Methods
3.1. Plant Material and EO Extraction
3.2. GC/MS Characterization of EO
3.3. Larvicidal Effect against Culex pipiens
3.4. Antibacterial Activity Assay
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-akhal, F.; Alami, A.; Chahmi, N.; Mouatassem, T.F.; El Fattouhi, Y.; Benboubker, M.; Amaiach, R.; Benrezzouk, R.; Taghzouti, K.; Talbi, F.Z.; et al. Phytochemical Screening, Chemical Composition and Larvicidal Efficacy of Syzygium aromaticum Extracts and Essential Oil against Culex pipiens. Trop. J. Nat. Prod. Res. 2024, 8. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, X.; Cheng, J.; Zhou, H.; Zhang, Y.; Dai, Y. Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens. Mol. Med. Rep. 2023, 27, 104. [Google Scholar] [CrossRef] [PubMed]
- Djoudi, F.; Amir, N.; Chouikh, M.T. Transfusion-transmissible infections among blood donors in Bejaia, Algeria: Ten years retrospective and comparative study. J. Infect. Dev. Ctries. 2023, 17, 840–845. [Google Scholar] [CrossRef]
- Chaughule, R.S.; Barve, R.S. Role of herbal medicines in the treatment of infectious diseases. Vegetos 2024, 37, 41–51. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization) African Region. Available online: https://www.afro.who.int/ (accessed on 1 August 2024).
- The Algerian Antibiotic Resistance Network (AARN). Available online: https://pasteur.dz/aarn/ (accessed on 1 August 2024).
- Boulkenafet, F.; Benzazia, S.; Mellahi, L.; Al-Mekhlafi, F.; Abutaha, N.; Al-Khalifa, M.S.; Lambiase, S. Larvicidal activity and chemical compositions of Juniperus phoenicea L. leave extract against Culex pipiens L.: Larvicidal potential of Phoenician juniper against Cx. Pipiens. Indian J. Exp. Biol. 2024, 62, 687–692. [Google Scholar] [CrossRef]
- Ciliberti, M.G.; Albenzio, M.; Sevi, A.; Frabboni, L.; Marino, R.; Caroprese, M. Immunomodulatory Role of Rosmarinus officinalis L., Mentha x piperita L., and Lavandula angustifolia L. Essential Oils in Sheep Peripheral Blood Mononuclear Cells. Vet. Sci. 2024, 11, 157. [Google Scholar] [CrossRef]
- Thiviya, P.; Gamage, A.; Piumali, D.; Merah, O.; Madhujith, T. Apiaceae as an important source of antioxidants and their applications. Cosmetics 2021, 8, 111. [Google Scholar] [CrossRef]
- Jayakodi, Y.; Thiviya, P.; Gamage, A.; Evon, P.; Madhujith, T.; Merah, O. Antioxidant Activity of Essential Oils Extracted from Apiaceae Family Plants. Agrochemicals 2024, 3, 57–69. [Google Scholar] [CrossRef]
- Azi, M.; Flamini, G.I.; Mohammed, B.; Bontouhami, E. Chemical analysis, antioxidant, antimicrobial and enzyme inhibitory effects of Daucus virgatus (Poir.) Maire essential oil from Algeria. Anal. Bioanal. Chem. 2021, 8, 147–162. [Google Scholar] [CrossRef]
- Önder, S.; Periz, Ç.D.; Ulusoy, S.; Erbaş, S.; Önder, D.; Tonguç, M. Chemical composition and biological activities of essential oils of seven Cultivated Apiaceae species. Sci. Rep. 2024, 14, 10052. [Google Scholar] [CrossRef]
- Spinozzi, E.; Maggi, F.; Bonacucina, G.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Canale, A.; Romano, D.; Desneux, N.; Wilke, A.B.B.; et al. Apiaceae essential oils and their constituents as insecticides against mosquitoes—A review. Ind. Crops Prod. 2021, 171, 113892. [Google Scholar] [CrossRef]
- Di Napoli, M.; Castagliuolo, G.; Badalamenti, N.; Maresca, V.; Basile, A.; Bruno, M.; Varcamonti, M.; Zanfardino, A. Antimicrobial, antibiofilm, and antioxidant properties of essential oil of Foeniculum vulgare Mill. leaves. Plants 2022, 11, 3573. [Google Scholar] [CrossRef]
- Majdoub, S.; Chaabane-Banaoues, R.; El Mokni, R.; Chaieb, I.; Piras, A.; Falconieri, D.; Babba, H.; Porcedda, S.; Mighri, Z.; Hammami, S. Seasonal variation in the chemical profile, Antifungal and insecticidal activities of essential oils from Daucus reboudii. Waste Biomass Valorization 2022, 13, 1859–1871. [Google Scholar] [CrossRef]
- Mohammedi, H.; Mecherara-Idjeri, S.; Foudil-Cherif, Y.; Hassani, A. Chemical composition and antioxidant activity of essential oils from Algerian Daucus carota L. subsp. carota aerial parts. J. Essent. Oil. Bear. Plants 2015, 18, 873–883. [Google Scholar] [CrossRef]
- Mehalaine, S.; Chenchouni, H. Plants of the same place do not have the same metabolic pace: Soil properties affect differently essential oil yields of plants growing wild in semiarid Mediterranean lands. Arab. J. Geosci. 2020, 13, 1263. [Google Scholar] [CrossRef]
- Mehalaine, S.; Chenchouni, H. Quantifying how climatic factors influence essential oil yield in wild-growing plants. Arab. J. Geosci. 2021, 14, 1257. [Google Scholar] [CrossRef]
- Stanojević, J.; Ilić, Z.S.; Stanojević, L.; Milenković, L.; Kovač, R.; Lalević, D.; Šunić, L.; Milenković, A.; Cvetković, D. Essential Oil Yield, Composition, and Antioxidant Activity in Two Umbel Maturity Stages of Wild Carrot (Daucus carota L. ssp. carota) from Montenegro. Horticulturae 2023, 9, 328. [Google Scholar] [CrossRef]
- Servi, H.; Şen, A.; Yildirim, S.; Doğan, A. Chemical composition and biological activities of essential oils of Foeniculum vulgare Mill. and Daucus carota L. growing wild in Turkey. J. Res. Pharm. 2021, 25, 142–152. [Google Scholar] [CrossRef]
- Meliani, N.; Dib, A.; Bendiabdellah, A.; Djabou, N.; Chikhi, I.; Allali, H.; Tabti, B. Evaluation of antioxidant activity of essential oil and extracts from Algerian Daucus carota L. aerial parts. Glob. J. Pharm. Res. 2012, 1, 1121–1129. [Google Scholar]
- Meliani, N.; Dib, M.E.A.; Allali, H.; Boufeldja, T. Comparative analysis of essential oil components of two Daucus species from Algeria and their antimicrobial activity. Int. Res. J. Biol. Sci. 2013, 2, 22–29. [Google Scholar]
- Ksouri, A.; Dob, T.; Belkebir, A.; Krimat, S.; Chelghoum, C. Chemical composition and antioxidant activity of the essential oil and the methanol extract of Algerian wild carrot Daucus carota L. ssp. carota. (L.) Thell. J. Mater. Environ. Sci. 2015, 6, 784–791. [Google Scholar]
- Alves-Silva, J.M.; Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Cardoso, S.M.; Salgueiro, L. New claims for wild carrot (Daucus carota subsp. carota) essential oil. Evid. Based Complement. Alternat. Med. 2016, 2016, 9045196. [Google Scholar] [CrossRef] [PubMed]
- Hamada, D.; Bekri, R.; Medjahid, A.; Kamaci, R.; Belkhalfa, H.; Salhi, N.; Ladjel, S. Biological control with essential oil of Foeniculum vulgare Mill. EJOSAT 2021, 28, 52–55. [Google Scholar] [CrossRef]
- Keffous, B.S.; Aissaoui, L. Determination of chemical characterization of Foeniculum vulgare Mill essential oil composition and its toxicological effects against mosquito (Aedes caspius, Pallas, 1771). Cutting Edge Res. Biol. 2023, 3, 66–78. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Mohamady, M.A.; Fernández-López, J.; Abd ElRazik, K.A.; Omer, E.A.; Pérez-Alvarez, J.A.; Sendra, E. In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control 2011, 22, 1715–1722. [Google Scholar] [CrossRef]
- Piccaglia, R.; Marotti, M. Characterization of some Italian types of wild fennel (Foeniculum vulgare Mill.). J. Agric. Food Chem. 2001, 49, 239–244. [Google Scholar] [CrossRef]
- Miguel, M.G.; Cruz, C.; Faleiro, L.; Simões, M.T.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Foeniculum vulgare essential oils: Chemical composition, antioxidant and antimicrobial activities. Nat. Prod. Commun. 2010, 5, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Sharopov, F.; Valiev, A.; Satyal, P.; Gulmurodov, I.; Yusufi, S.; Setzer, W.N.; Wink, M. Cytotoxicity of the essential oil of fennel (Foeniculum vulgare) from Tajikistan. Foods 2017, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.F.; Shi, M.; Liu, C.; Kang, W. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci. Hum. Wellness 2019, 8, 67–72. [Google Scholar] [CrossRef]
- Milenković, A.; Ilić, Z.; Stanojević, L.; Milenković, L.; Šunić, L.; Lalević, D.; Stanojević, J.; Danilović, B.; Cvetković, D. Essential oil yield, composition, antioxidant and microbial activity of wild fennel (Foeniculum vulgare Mill.) from Monte Negro Coast. Horticulturae 2022, 8, 1015. [Google Scholar] [CrossRef]
- Staniszewska, M.; Kula, J. Composition of the essential oil from wild carrot umbels (Daucus carota L. ssp. carota) growing in Poland. J. Essent. Oil Res. 2001, 13, 439–441. [Google Scholar] [CrossRef]
- Chizzola, R. Composition of the essential oil from Daucus carota ssp. carota growing wild in Vienna. J. Essent. Oil. Bear. Plants 2010, 13, 12–19. [Google Scholar] [CrossRef]
- Ihamdane, R.; Haida, S.; Oubihi, A.; Zelmat, L.; Tiskar, M.; Outemsaa, B.; Chaouch, A. Chemical composition, antibacterial and antioxidant activities of Moroccan Daucus carota essential oils. E3S Web Conf. 2021, 319, 01070. [Google Scholar] [CrossRef]
- Mockute, D.; Nivinskiene, O. The sabinene chemotype of essential oil of seeds of Daucus carota L. ssp. carota growing wild in Lithuania. J. Essent. Oil Res. 2004, 16, 277–281. [Google Scholar] [CrossRef]
- Soković, M.; Stojković, D.; Glamočlija, J.; Ćirić, A.; Ristić, M.; Grubišić, D. Susceptibility of pathogenic bacteria and fungi to essential oils of wild Daucus carota. Pharm. Biol. 2009, 47, 38–43. [Google Scholar] [CrossRef]
- Aćimović, M.; Stanković, J.; Cvetković, M.; Ignjatov, M.; Nikolić, L. Chemical characterization of essential oil from seeds of wild and cultivated carrots from Serbia. Bot. Serb. 2016, 40, 55–60. [Google Scholar]
- Maxia, A.; Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical characterization and biological activity of essential oils from Daucus carota L. subsp. carota growing wild on the Mediterranean coast and on the Atlantic coast. Fitoterapia 2009, 80, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Marzouki, H.; Khaldi, A.; Falconieri, D.; Piras, A.; Marongiu, B.; Molicotti, P.; Zanetti, S. Essential oils of Daucus carota subsp. carota of Tunisia obtained by supercritical carbon dioxide extraction. Nat. Prod. Commun. 2010, 5, 1955–1958. [Google Scholar] [CrossRef]
- Rokbeni, N.; M’rabet, Y.; Dziri, S.; Chaabane, H.; Jemli, M.; Fernandez, X.; Boulila, A. Variation of the chemical composition and antimicrobial activity of the essential oils of natural populations of Tunisian Daucus carota L. (Apiaceae). Chem. Biodivers. 2013, 10, 2278–2290. [Google Scholar] [CrossRef]
- Rossi, P.G.; Bao, L.; Luciani, A.; Panighi, J.; Desjobert, J.M.; Costa, J.; Casanova, J.; Bolla, J.M.; Berti, L. (E)-Methylisoeugenol and elemicin: Antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J. Agric. Food Chem. 2007, 55, 7332–7336. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T.; Deans, S.G.; Dorman, H.D. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 2000, 66, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Napoli, E.M.; Curcuruto, G.; Ruberto, G. Screening the essential oil composition of wild Sicilian fennel. Biochem. Syst. Ecol. 2010, 38, 213–223. [Google Scholar] [CrossRef]
- Abdellaoui, M.; Derouich, M.; El-Rhaffari, L. Essential oil and chemical composition of wild and cultivated fennel (Foeniculum vulgare Mill.): A comparative study. S. Afr. J. Bot. 2020, 135, 93–100. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, S.; De Lampasona, M.P.; Catalan, C. Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 2006, 17, 745–752. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crops Prod. 2013, 44, 437–445. [Google Scholar] [CrossRef]
- Zoubiri, S.; Baaliouamer, A.; Seba, N.; Chamouni, N. Chemical composition and larvicidal activity of Algerian Foeniculum vulgare seed essential oil. Arab. J. Chem. 2014, 7, 480–485. [Google Scholar] [CrossRef]
- González-Rivera, J.; Duce, C.; Falconieri, D.; Ferrari, C.; Ghezzi, L.; Piras, A.; Tine, M.R. Coaxial microwave assisted hydrodistillation of essential oils from five different herbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermal analysis. IFSET 2016, 33, 308–318. [Google Scholar] [CrossRef]
- Barrahi, M.; Esmail, A.; Elhartiti, H.; Chahboun, N.; Benali, A.; Amiyare, R.; Lakhrissi, B.; Rhaiem, N.; Zarrouk, A.; Ouhssine, M. Chemical composition and evaluation of antibacterial activity of fennel (Foeniculum vulgare Mill) seed essential oil against some pathogenic bacterial strains. Casp. J. Environ. 2020, 18, 295–307. [Google Scholar] [CrossRef]
- Božović, M.; Garzoli, S.; Vujović, S.; Sapienza, F.; Ragno, R. Foeniculum vulgare Miller, a new chemotype from Montenegro. Plants 2021, 11, 42. [Google Scholar] [CrossRef]
- Dahmani, K.; Moghrani, H.; Deghbar, N.; Ouarek, S.; Allaf, K.; Arab, K. Algerian wild fennel essential oils: Chromatographic profile, acute toxicity, antioxidant, and antimicrobial activities. Chem. Pap. 2022, 76, 1639–1652. [Google Scholar] [CrossRef]
- Muturi, E.J.; Doll, K.; Ramirez, J.L.; Rooney, A.P. Bioactivity of wild carrot (Daucus carota, Apiaceae) essential oil against mosquito larvae. J. Med. Entomol. 2019, 56, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.M.O.; Rosa, J.S.; Silva, C.A.; Almeida, M.T.M.; Novo, M.T.; Cunha, A.C.; Fernandes-Ferreira, M. Larvicidal, molluscicidal and nematicidal activities of essential oils and compounds from Foeniculum vulgare. J. Pest Sci. 2015, 88, 413–426. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/ (accessed on 20 August 2024).
- Taktak, N.E.; Badawy, M.E. Potential of hydrocarbon and oxygenated monoterpenes against Culex pipiens larvae: Toxicity, biochemical, pharmacophore modeling and molecular docking studies. Pestic Biochem. Physiol. 2019, 158, 156–165. [Google Scholar] [CrossRef]
- Zahran, H.E.D.M.; Abdelgaleil, S.A. Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae). J. Asia Pac. Entomol. 2011, 14, 46–51. [Google Scholar] [CrossRef]
- AnnaDurai, K.S.; Chandrasekaran, N.; Velraja, S.; Hikku, G.S.; Parvathi, V.D. Essential oil nanoemulsion: An emerging eco-friendly strategy towards mosquito control. Acta Trop. 2024, 257, 107290. [Google Scholar] [CrossRef]
- Pesavento, G.; Calonico, C.; Bilia, A.R.; Barnabei, M.; Calesini, F.F.; Addona, R.; Mencarelli, L.; Carmagnini, L.; Di Martino, M.C.; Lo Nostro, A. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control 2015, 54, 188–199. [Google Scholar] [CrossRef]
- Smigielski, K.B.; Majewska, M.; Kunicka-Styczyñska, A.; Gruska, R. The effect of ultrasound-assisted maceration on the bioactivity, chemical composition and yield of essential oil from waste carrot seeds (Daucus carota). J. Essent. Oil. Bear. Plants 2014, 17, 1075–1086. [Google Scholar] [CrossRef]
- Gupta, R.; Rath, C.C.; Dash, S.K.; Mishra, R.K. In vitro antibacterial potential assessment of carrot (Daucus carota) and celery (Apium graveolens) seed essential oils against twenty-one bacteria. J. Essent. Oil. Bear. Plants 2004, 7, 79–86. [Google Scholar] [CrossRef]
- Staniszewska, M.; Kula, J.; Wieczorkiewicz, M.; Kusewicz, D. Essential oils of wild and cultivated carrots—the chemical composition and antimicrobial activity. J. Essent. Oil Res. 2005, 17, 579–583. [Google Scholar] [CrossRef]
- Glišić, S.B.; Mišić, D.R.; Stamenić, M.D.; Zizovic, I.T.; Ašanin, R.M.; Skala, D.U. Supercritical carbon dioxide extraction of carrot fruit essential oil: Chemical composition and antimicrobial activity. Food Chem. 2007, 105, 346–352. [Google Scholar] [CrossRef]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. 2007, 62, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, A.; Al-Marzoqi, A.H.; Mostafavi, S.K.S.; Alghanimi, Y.K.; Teimouri, M. Chemical composition and antimicrobial and cytotoxic activities of Foeniculum vulgare Mill essential oils. J. Gastrointest. Cancer 2020, 51, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Ansari, M.A.; Yusuf, M.; Amir, M.; Wahab, S.; Alam, P.; Alomary, M.N.; Alhuwayri, A.A.; Khan, M.; Ali, A.; et al. Antibacterial, anticandidal, and antibiofilm potential of fenchone: In vitro, molecular docking and in silico/ADMET study. Plants 2022, 11, 2395. [Google Scholar] [CrossRef]
- Aelenei, P.; Miron, A.; Trifan, A.; Bujor, A.; Gille, E.; Aprotosoaie, A.C. Essential oils and their components as modulators of antibiotic activity against gram-negative bacteria. Medicines 2016, 3, 19. [Google Scholar] [CrossRef]
- Amin, M.; Akrami, S.; Haghparasty, F.; Hakimi, A. In vitro antibacterial activities of essential oils and extracts of six herbals against gram-positive and gram-negative bacteria. J. Toxicol. 2023, 15, 53–60. [Google Scholar] [CrossRef]
- Petrović, M.; Petrović, V.; Mlinar, Z.; Babić, S.; Jukić, J.; Prebeg, T.; Kremer, D. Duration of Steam Distillation Affects Essential Oil Fractions in Immortelle (Helichrysum italicum). Horticulturae 2024, 10, 183. [Google Scholar] [CrossRef]
- Lucero, M.; Estell, R.; Tellez, M.; Fredrickson, E. A retention index calculator simplifies identification of plant volatile organic compounds. Phytochem. Anal. 2009, 20, 378–384. [Google Scholar] [CrossRef]
- WHO (World Health Organization). WHO Guidelines for Laboratory and Field Testing of Mosquito Larvicides. WHO/CDS/WHOPES/GCDPP/2005.13. 2005. Available online: https://iris.who.int/handle/10665/69101 (accessed on 15 April 2024).
- Wangrawa, D.W.; Ochomo, E.; Upshur, F.; Zanré, N.; Dov Borovsky, D.; Lahondere, C.; Vinauger, C.; Badolo, A.; Antoine Sanon, A. Essential oils and their binary combinations have synergistic and antagonistic insecticidal properties against Anopheles gambiae sl (Diptera: Culicidae). Biocatal. Agric. Biotechnol. 2022, 42, 102347. [Google Scholar] [CrossRef]
- Yagoo, A.; Milton, M.J.; Vilvest, J. Mosquito larvicidal. pupicidal and ovicidal effects of the extracts of Peltophorum pterocarpum flowers on Aedes aegypti and Culex quinquefasciatus. Vet. Parasitol. Reg. Stud. Rep. 2023, 46, 100929. [Google Scholar] [CrossRef]
- Rocha, R.R.; Matos, M.N.C.; Guerrero, J.A.P.; Cavalcante, R.M.B.; Melo, R.S.; Azevedo, A.M.A.; Pereira, A.M.G.; Lopes, P.H.R.; Rodrigues, T.H.S.; Bandeira, P.N.; et al. Comparative study of the chemical composition, antibacterial activity and synergic effects of the essential oils of Croton tetradenius Baill. and C. pulegiodorus Baill. against Staphylococcus aureus isolates. Microb. Pathog. 2021, 156, 104934. [Google Scholar] [CrossRef]
- Fusani, P.; Ronga, D.; Carminati, D.; Mandrioli, M.; Manicardi, G.C.; Giannì, S.; Tava, A. Composition and biological activity of essential oils from Artemisia roxburghiana Besser and Elsholtzia fruticosa Rehder cultivated in Italy. Ind. Crops Prod. 2022, 187, 115317. [Google Scholar] [CrossRef]
- Hlina, B.L.; Birceanu, O.; Robinson, C.S.; Dhiyebi, H.; Wilkie, M.P. The relationship between thermal physiology and lampricide sensitivity in larval sea lamprey (Petromyzon marinus). J. Great Lakes Res. 2021, 47, S272–S284. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 10 June 2024).
N° | Compound Name | Identification | Chemical Family | KI Lit 1 | DCEO | FVEO | ||||
---|---|---|---|---|---|---|---|---|---|---|
Rt 2 (min) | KI Exp 3 | Area 4 (%) | Rt 2 (min) | KI Exp 3 | Area 4 (%) | |||||
1 | α-Thujene | S, MS, KI | Hydrocarbon monoterpene | 929 | 7.617 | 932 | 0.033 | 7.608 | 931 | 0.176 |
2 | α-Pinene | S, MS, KI | Hydrocarbon monoterpene | 937 | 7.850 | 939 | 5.437 | 7.842 | 938 | 7.360 |
3 | Camphene | S, MS, KI | Hydrocarbon monoterpene | 952 | 8.375 | 954 | 0.324 | 8.367 | 954 | 0.296 |
4 | Sabinene | S, MS, KI | Hydrocarbon monoterpene | 974 | 9.292 | 977 | 0.687 | 9.283 | 977 | 0.347 |
5 | β-Pinene | S, MS, KI | Hydrocarbon monoterpene | 979 | 9.408 | 980 | 0.658 | 9.400 | 980 | 0.825 |
6 | β-Myrcene | S, MS, KI | Hydrocarbon monoterpene | 991 | 9.958 | 993 | 2.063 | 9.950 | 993 | 2.884 |
7 | α-Phellandrene | S, MS, KI | Hydrocarbon monoterpene | 1005 | 10.483 | 1006 | 0.601 | 10.483 | 1006 | 17.958 |
8 | 3-Carene | S, MS, KI | Hydrocarbon monoterpene | 1011 | 10.717 | 1012 | 0.150 | 10.708 | 1012 | 0.476 |
9 | α-Terpinene | S, MS, KI | Hydrocarbon monoterpene | 1017 | - | - | - | 10.975 | 1019 | 0.076 |
10 | p-Cymene | S, MS, KI | Hydrocarbon monoterpene | 1025 | 11.300 | 1028 | 0.453 | 11.292 | 1028 | 4.879 |
11 | Limonene | S, MS, KI | Hydrocarbon monoterpene | 1030 | 11.475 | 1032 | 4.229 | - | - | - |
12 | β-Phellandrene | S, MS, KI | Hydrocarbon monoterpene | 1031 | - | - | - | 11.475 | 1032 | 9.144 |
13 | cis-β-Ocimene | MS, KI | Hydrocarbon monoterpene | 1038 | - | - | - | 11.867 | 1042 | 0.397 |
14 | trans-β-Ocimene | MS, KI | Hydrocarbon monoterpene | 1049 | 11.883 | 1043 | 0.028 | 12.308 | 1053 | 0.066 |
15 | α-Ocimene | MS, KI | Hydrocarbon monoterpene | 1047 | 12.325 | 1053 | 0.062 | - | - | - |
16 | γ-Terpinene | S, MS, KI | Hydrocarbon monoterpene | 1060 | 12.775 | 1063 | 0.037 | 12.758 | 1063 | 0.8 |
17 | Fenchone | S, MS, KI | Oxygenated monoterpene | 1096 | 14.025 | 1090 | 0.539 | 14.025 | 1090 | 20.202 |
18 | α-Pinene oxide | MS, KI | Oxygenated monoterpene | 1095 | 14.475 | 1099 | 0.025 | - | - | - |
19 | Linalool | S, MS, KI | Oxygenated monoterpene | 1099 | 14.558 | 1100 | 0.776 | 14.567 | 1101 | 0.075 |
20 | cis-p-Mentha-2,8-dien-1-ol | MS, KI | Oxygenated monoterpene | 1102 | 14.833 | 1107 | 0.213 | - | - | - |
21 | Fenchol | S, MS, KI | Oxygenated monoterpene | 1113 | 15.158 | 1116 | 0.017 | 15.150 | 1115 | 0.047 |
22 | Exo-Fenchol | MS, KI | Oxygenated monoterpene | 1116 | - | - | - | 15.325 | 1120 | 0.040 |
23 | cis-2-Menthenol | MS, KI | Oxygenated monoterpene | 1122 | 15.508 | 1124 | 0.104 | 15.517 | 1124 | 0.072 |
24 | Pinocarveol | S, MS, KI | Oxygenated monoterpene | 1139 | 16.292 | 1142 | 0.078 | - | - | - |
25 | trans-2-Menthenol | MS, KI | Oxygenated monoterpene | 1140 | - | - | - | 16.325 | 1143 | 0.042 |
26 | Camphor | S, MS, KI | Oxygenated monoterpene | 1145 | - | - | - | 16.525 | 1148 | 0.272 |
27 | trans-Verbenol | MS, KI | Oxygenated monoterpene | 1144 | 16.567 | 1148 | 0.261 | - | - | - |
28 | Pinocarvone | MS, KI | Oxygenated monoterpene | 1164 | 17.383 | 1166 | 0.02 | - | - | - |
29 | endo-Borneol | MS, KI | Oxygenated monoterpene | 1167 | 17.517 | 1169 | 0.046 | 17.642 | 1172 | 0.054 |
30 | 4-terpineol | S, MS, KI | Oxygenated monoterpene | 1182 | - | - | - | 18.050 | 1180 | 0.208 |
31 | Terpinen-4-ol | S, MS, KI | Oxygenated monoterpene | 1177 | 18.058 | 1180 | 0.386 | - | - | - |
32 | Dihydrocarvone | S, MS, KI | Oxygenated monoterpene | 1179 | - | - | - | 18.342 | 1186 | 0.009 |
33 | α-Terpineol | S, MS, KI | Oxygenated monoterpene | 1189 | 18.675 | 1192 | 0.101 | 18.658 | 1192 | 0.059 |
34 | Myrtenal | S, MS, KI | Oxygenated monoterpene | 1193 | 18.925 | 1197 | 0.063 | - | - | - |
35 | Estragole | S, MS, KI | Phenylpropene | 1196 | 19.033 | 1199 | 0.091 | 19.050 | 1200 | 24.928 |
36 | cis-Piperitol | S, MS, KI | Oxygenated monoterpene | 1203 | - | - | - | 19.175 | 1201 | 0.222 |
37 | trans-Piperitol | S, MS, KI | Oxygenated monoterpene | 1208 | - | - | - | 19.458 | 1210 | 0.053 |
38 | Verbenone | MS, KI | Oxygenated monoterpene | 1205 | 19.508 | 1211 | 0.148 | - | - | - |
39 | cis-Carveol | MS, KI | Oxygenated monoterpene | 1229 | 19.967 | 1222 | 0.068 | - | - | - |
40 | Fenchyl acetate | S, MS, KI | Oxygenated monoterpene | 1223 | - | - | - | 19.975 | 1222 | 0.158 |
41 | exo-2-Hydroxycineole | MS, KI | Oxygenated monoterpene | 1224 | - | - | - | 20.15 | 1226 | 0.049 |
42 | Isogeraniol | MS, KI | Oxygenated monoterpene | 1240 | - | - | - | 20.592 | 1237 | 0.399 |
43 | cis-Sabinol | MS, KI | Oxygenated monoterpene | 1243 | - | - | - | 20.775 | 1241 | 0.019 |
44 | Pulegone | S, MS, KI | Oxygenated monoterpene | 1237 | 20.867 | 1243 | 0.136 | - | - | - |
45 | Carvone | S, MS, KI | Oxygenated monoterpene | 1242 | 21.075 | 1248 | 0.068 | - | - | - |
46 | Piperitone oxide | MS, KI | Oxygenated monoterpene | 1256 | - | - | - | 21.442 | 1256 | 0.486 |
47 | Geraniol | S, MS, KI | Oxygenated monoterpene | 1255 | 21.567 | 1259 | 0.277 | - | - | - |
48 | Geranial | S, MS, KI | Oxygenated monoterpene | 1270 | 22.292 | 1274 | 0.119 | - | - | - |
49 | Citronellyl formate | MS, KI | Oxygenated monoterpene | 1276 | 22.792 | 1285 | 0.020 | - | - | - |
50 | Anethole | S, MS, KI | Phenylpropene | 1283 | - | - | - | 22.933 | 1288 | 4.481 |
51 | Bornyl acetate | MS, KI | Oxygenated monoterpene | 1285 | 22.942 | 1288 | 0.495 | - | - | - |
52 | Carvacrol | S, MS, KI | Oxygenated monoterpene | 1299 | - | - | - | 23.717 | 1304 | 0.033 |
53 | Myrtenyl acetate | MS, KI | Oxygenated monoterpene | 1327 | 24.700 | 1328 | 0.065 | 25.008 | 1336 | 0.062 |
54 | Pinanediol | MS, KI | Oxygenated monoterpene | 1316 | - | - | - | 24.283 | 1318 | 0.771 |
55 | Limonene glycol | MS, KI | Oxygenated monoterpene | 1321 | - | - | - | 24.792 | 1331 | 0.026 |
56 | δ-Elemene | MS, KI | Hydrocarbon sesquiterpene | 1338 | 25.225 | 1341 | 0.091 | - | - | - |
57 | Longipinene | MS, KI | Hydrocarbon sesquiterpene | 1353 | 25.767 | 1354 | 0.309 | - | - | - |
58 | Longicyclene | MS, KI | Hydrocarbon sesquiterpene | 1374 | 26.167 | 1363 | 0.029 | - | - | - |
59 | Nerol acetate | MS, KI | Oxygenated monoterpene | 1364 | 26.392 | 1368 | 0.067 | - | - | - |
60 | Copaene | MS, KI | Hydrocarbon sesquiterpene | 1376 | 26.883 | 1379 | 0.180 | 26.875 | 1379 | 0.042 |
61 | Geranyl acetate | MS, KI | Oxygenated monoterpene | 1382 | 27.275 | 1387 | 50.074 | - | - | - |
62 | β-Cubebene | MS, KI | Hydrocarbon sesquiterpene | 1389 | 27.500 | 1392 | 0.047 | - | - | - |
63 | β-Elemene | MS, KI | Hydrocarbon sesquiterpene | 1391 | 27.583 | 1394 | 0.022 | - | - | - |
64 | 2,3-epoxy-Geranyl acetate | MS, KI | Oxygenated monoterpene | 1393 | - | - | - | 27.608 | 1394 | 0.202 |
65 | β-Longipinene | MS, KI | Hydrocarbon sesquiterpene | 1403 | 27.892 | 1401 | 0.031 | - | - | - |
66 | Longifolene | MS, KI | Hydrocarbon sesquiterpene | 1405 | 28.142 | 1407 | 0.158 | - | - | - |
67 | α-Cedrene | MS, KI | Hydrocarbon sesquiterpene | 1411 | 28.433 | 1415 | 0.056 | - | - | - |
68 | Caryophyllene | S, MS, KI | Hydrocarbon sesquiterpene | 1419 | 28.75 | 1423 | 0.294 | - | - | - |
69 | trans-α-Bergamotene | S, MS, KI | Hydrocarbon sesquiterpene | 1435 | 29.417 | 1439 | 0.120 | - | - | - |
70 | cis-β-Farnesene | MS, KI | Hydrocarbon sesquiterpene | 1444 | 29.717 | 1447 | 0.187 | - | - | - |
71 | Humulene | S, MS, KI | Hydrocarbon sesquiterpene | 1454 | 30.15 | 1457 | 0.073 | - | - | - |
72 | trans-β-Farnesene | S, MS, KI | Hydrocarbon sesquiterpene | 1457 | 30.275 | 1460 | 0.180 | - | - | - |
73 | Germacrene D | S, MS, KI | Hydrocarbon sesquiterpene | 1481 | 31.100 | 1480 | 0.073 | 31.275 | 1484 | 0.094 |
74 | Methylvanillin | MS, KI | Aromatic aldehyde | 1495 | 31.283 | 1484 | 0.500 | - | - | - |
75 | 6-Hydroxy-3,7-dimethyl-2,7-octadienyl acetate(E) | MS, KI | Ester | 1496 | 31.592 | 1491 | 0.535 | - | - | - |
76 | Methylisoeugenol | MS, KI | Phenylpropene | 1492 | 31.950 | 1499 | 2.206 | - | - | - |
77 | β-Himachalene | MS, KI | Hydrocarbon sesquiterpene | 1500 | 32.083 | 1503 | 0.130 | - | - | - |
78 | β-Bisabolene | MS, KI | Hydrocarbon sesquiterpene | 1509 | 32.392 | 1511 | 2.401 | - | - | - |
79 | Isolongifolan-8-ol | MS, KI | Oxygenated sesquiterpene | 1523 | 32.733 | 1520 | 0.033 | - | - | - |
80 | δ-Cadinene | MS, KI | Hydrocarbon sesquiterpene | 1524 | 32.983 | 1527 | 0.137 | 32.975 | 1527 | 0.048 |
81 | ar-Himachalene | MS, KI | Hydrocarbon sesquiterpene | 1542 | 33.550 | 1542 | 0.168 | - | - | - |
82 | cis-Sesquisabinene hydrate | MS, KI | Oxygenated sesquiterpene | 1543 | 33.733 | 1546 | 0.145 | - | - | - |
83 | Myrtenyl isovalerate | MS, KI | Oxygenated sesquiterpene | 1552 | 33.983 | 1553 | 0.027 | - | - | - |
84 | Elemicin | MS, KI | Phenylpropene | 1554 | 34.317 | 1561 | 10.767 | - | - | - |
85 | Nerolidol | S, MS, KI | Oxygenated sesquiterpene | 1564 | 34.550 | 1567 | 0.071 | - | - | - |
86 | Spathulenol | MS, KI | Oxygenated sesquiterpene | 1576 | 35.125 | 1581 | 0.059 | - | - | - |
87 | Caryophyllene oxide | S, MS, KI | Oxygenated sesquiterpene | 1581 | 35.250 | 1586 | 0.032 | - | - | - |
88 | Viridiflorol | S, MS, KI | Oxygenated sesquiterpene | 1591 | 35.675 | 1595 | 0.083 | - | - | - |
89 | Longiborneol | MS, KI | Oxygenated sesquiterpene | 1592 | 35.875 | 1600 | 0.028 | - | - | - |
90 | Humulene epoxide 2 | MS, KI | Oxygenated sesquiterpene | 1606 | 36.342 | 1613 | 0.057 | - | - | - |
91 | β-Himachalene oxide | MS, KI | Oxygenated sesquiterpene | 1615 | 36.467 | 1616 | 0.063 | - | - | - |
92 | Farnesene epoxide | MS, KI | Oxygenated sesquiterpene | 1624 | 36.775 | 1625 | 0.040 | - | - | - |
93 | Isospathulenol | MS, KI | Oxygenated sesquiterpene | 1638 | 37.075 | 1633 | 0.094 | - | - | - |
94 | epi-Cubenol | MS, KI | Oxygenated sesquiterpene | 1627 | 37.200 | 1636 | 0.095 | - | - | - |
95 | Himachalol | MS, KI | Oxygenated sesquiterpene | 1647 | 37.683 | 1649 | 5.919 | - | - | - |
96 | Isoelemicin | MS, KI | Phenylpropene | 1654 | 37.908 | 1655 | 0.058 | - | - | - |
97 | α-Cadinol | MS, KI | Oxygenated sesquiterpene | 1653 | 38.025 | 1659 | 0.028 | - | - | - |
98 | cis-10-Hydroxycalamene | MS, KI | Oxygenated sesquiterpene | 1666 | 38.167 | 1662 | 0.037 | - | - | - |
99 | Triethyl citrate | MS, KI | Ester | 1658 | 38.325 | 1666 | 0.146 | - | - | - |
100 | Asarone | S, MS, KI | Phenylpropene | 1678 | 39.008 | 1684 | 0.493 | - | - | - |
101 | α-Bisabolol | S, MS, KI | Oxygenated sesquiterpene | 1684 | 39.175 | 1689 | 0.306 | - | - | - |
102 | Juniper camphor | MS, KI | Oxygenated sesquiterpene | 1692 | 39.567 | 1699 | 0.220 | - | - | - |
103 | β-Santalol | MS, KI | Oxygenated sesquiterpene | 1715 | 40.033 | 1712 | 0.132 | - | - | - |
104 | Acoramone | MS, KI | Oxygenated sesquiterpene | 1751 | 41.442 | 1753 | 0.090 | - | - | - |
Number of compounds | 84 | 42 | ||||||||
Hydrocarbon monoterpenes | 14.762 | 45.710 | ||||||||
Oxygenated monoterpenes | 54.166 | 23.534 | ||||||||
Hydrocarbon sesquiterpenes | 4.686 | 0.184 | ||||||||
Oxygenated sesquiterpenes | 7.559 | - | ||||||||
Others * | 14.796 | 29.409 | ||||||||
Sum (%) | 95.97 | 98.84 | ||||||||
Yield (%) | 0.80 | 0.85 |
Treatment | Conc. (ppm) | Mortality (%) ± SE | LC50 (ppm) ± SE (LCL–UCL) | LC95 (ppm) ± SE (LCL–UCL) | LC99 (ppm) ± SE (LCL–UCL) | Slope ± SE | χ2 |
---|---|---|---|---|---|---|---|
DCEO | 6.25 | 0.00 ± 0.00 | 30.6 ± 1.06 (27.1–34.3) | 86.5 ± 1.1 (73–108) | 133 ± 1.14 (107–178) | 3.65 ± 0.307 | 11.4 |
12.5 | 13.33 ± 2.57 | ||||||
25 | 28.33 ± 6.01 | ||||||
50 | 80.00 ± 2.89 | ||||||
75 | 91.67 ± 1.67 | ||||||
100 | 96.67 ± 3.33 | ||||||
FVEO | 6.25 | 0.00 ± 0.00 | 34.7 ± 1.06 (30.6–39) | 106 ± 1.11 (88.4–135) | 169 ± 1.15 (133–233) | 3.38 ± 0.29 | 13.2 |
12.5 | 11.67 ± 1.67 | ||||||
25 | 28.33 ± 1.67 | ||||||
50 | 63.33 ± 7.26 | ||||||
75 | 85.00 ± 2.89 | ||||||
100 | 100.00 ± 0.00 | ||||||
Deltamethrin | 0.1 | 0.00 ± 0.00 | 0.367 ± 1.03 (0.345–0.388) | 0.626 ± 1.06 (0.571–0.712) | 0.782 ± 1.08 (0.691–0.931) | 7.08 ± 0.683 | 14.8 |
0.2 | 6.67 ± 1.67 | ||||||
0.3 | 26.67 ± 3.33 | ||||||
0.4 | 46.67 ± 3.33 | ||||||
0.5 | 83.33 ± 3.33 | ||||||
0.6 | 100.00 ± 0.00 |
Bacterial Species | Values | EO Source | GMN10 | ANOVA | ||
---|---|---|---|---|---|---|
DCEO | FVEO | F-Statistics | p-Value | |||
Escherichia coli ATCC 25922 | IZD (mm) | 7.0 ± 0.0 A | 9.3 ± 0.6 B | 30.0 ± 0.0 C | 4327 | <0.001 |
MIC (mg/mL) | ND | ND | ND | — | — | |
Klebsiella pneumonia ATCC 700603 | IZD (mm) | 8.0 ± 0.0 A | 9.3 ± 0.6 B | 25.0 ± 0.0 C | 2413 | <0.001 |
MIC (mg/mL) | ND | ND | ND | — | — | |
Staphylococcus aureus ATCC 25923 | IZD (mm) | 24.0 ± 1.7 C | 10.7 ± 0.6 A | 20.3 ± 0.6 B | 116.5 | <0.001 |
MIC (mg/mL) | 10.0 ± 0.0 | >20.0 | ND | — | — | |
Staphylococcus aureus MRSA ATCC 43300 | IZD (mm) | 18.7 ± 1.2 B | 10.3 ± 0.6 A | 25.0 ± 0.0 C | 292.2 | <0.001 |
MIC (mg/mL) | 20.0 ± 0.0 | >20.0 | ND | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khemili, A.; Bensizerara, D.; Chenchouni, H.; Chaibi, R.; Aissani, N.; Tegegne, D.T.; El-Sayed, E.-S.R.; Szumny, A. Biological Potential and Essential Oil Profile of Two Wild Apiaceae Species from Algeria (Daucus carota L. and Foeniculum vulgare Mill.): Larvicidal and Antibacterial Effects. Molecules 2024, 29, 4614. https://doi.org/10.3390/molecules29194614
Khemili A, Bensizerara D, Chenchouni H, Chaibi R, Aissani N, Tegegne DT, El-Sayed E-SR, Szumny A. Biological Potential and Essential Oil Profile of Two Wild Apiaceae Species from Algeria (Daucus carota L. and Foeniculum vulgare Mill.): Larvicidal and Antibacterial Effects. Molecules. 2024; 29(19):4614. https://doi.org/10.3390/molecules29194614
Chicago/Turabian StyleKhemili, Aicha, Djamel Bensizerara, Haroun Chenchouni, Rachid Chaibi, Nadjwa Aissani, Desiye Tesfaye Tegegne, El-Sayed R. El-Sayed, and Antoni Szumny. 2024. "Biological Potential and Essential Oil Profile of Two Wild Apiaceae Species from Algeria (Daucus carota L. and Foeniculum vulgare Mill.): Larvicidal and Antibacterial Effects" Molecules 29, no. 19: 4614. https://doi.org/10.3390/molecules29194614
APA StyleKhemili, A., Bensizerara, D., Chenchouni, H., Chaibi, R., Aissani, N., Tegegne, D. T., El-Sayed, E. -S. R., & Szumny, A. (2024). Biological Potential and Essential Oil Profile of Two Wild Apiaceae Species from Algeria (Daucus carota L. and Foeniculum vulgare Mill.): Larvicidal and Antibacterial Effects. Molecules, 29(19), 4614. https://doi.org/10.3390/molecules29194614