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Abstract: In order to shed light on the usage of protein language model-based alignment procedures,
we attempted the classification of Glutathione S-transferases (GST; EC 2.5.1.18) and compared our
results with the ARBA/UNI rule-based annotation in UniProt. GST is a protein superfamily involved
in cellular detoxification from harmful xenobiotics and endobiotics, widely distributed in prokaryotes
and eukaryotes. What is particularly interesting is that the superfamily is characterized by different
classes, comprising proteins from different taxa that can act in different cell locations (cytosolic,
mitochondrial and microsomal compartments) with different folds and different levels of sequence
identity with remote homologs. For this reason, GST functional annotation in a specific class is
problematic: unless a structure is released, the protein can be classified only on the basis of sequence
similarity, which excludes the annotation of remote homologs. Here, we adopt an embedding-based
alignment to classify 15,061 GST proteins automatically annotated by the UniProt-ARBA/UNI rules.
Embedding is based on the Meta ESM2-15b protein language. The embedding-based alignment
reaches more than a 99% rate of perfect matching with the UniProt automatic procedure. Data
analysis indicates that 46% of the UniProt automatically classified proteins do not conserve the typical
length of canonical GSTs, whose structure is known. Therefore, 46% of the classified proteins do not
conserve the template/s structure required for their family classification. Our approach finds that
41% of 64,207 GST UniProt proteins not yet assigned to any class can be classified consistently with
the structural template length.

Keywords: Glutathione S-transferases; protein language models; protein classification; functional
annotation; embedding-based alignment

1. Introduction

After the success of Large Language Models (LLMs) for natural language processing
tasks, transformer-based deep-learning architectures [1] have taken hold in the field of
computational biology, with the consequent emergence of a counterpart adapted to protein
sequences, known as protein Language Models (pLMs) [2,3]. Several pLMs have been
implemented in the past few years, mainly differing in relation to the number of sequences
included in the training set (of particular relevance are the models developed by Rost’s
lab [3,4] and the more recent ESM family of models developed by the MetaAI group [5,6]).
Recently, pLMs have emerged as a new and powerful mapping procedure which allows the
representation of a protein sequence considering the knowledge that the protein can derive
from its family and/or superfamily, in the multifaceted protein universe [7]. This procedure,
referred to as “embedding”, is “context-aware” [7] and it is often adopted to generate input
to train downstream predictive tools with machine and/or deep learning approaches,
replacing the classic method based on the time-consuming generation of Multiple Sequence
Alignments (MSAs). The embedding procedures have been increasing the performance
of relevant predictive tasks, including protein secondary structure [3], protein–protein
interaction [8,9] and three-dimensional (3D) protein structure prediction [6]. Different
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embedding-based methods made it possible to quantify sequence similarity [3,10,11], to
cluster proteins into families [12], to generate evolutionary landscapes [13,14] and to search
for structure–structure similarities [15,16], just to mention some of the applications.

Summing up, we may conclude that the embedding procedures succeed in carry-
ing along information derived from the protein family/superfamily, including sequence
profile and template structure conservation. It is still debatable whether embedding is
sufficient to recognise remote homologs and perform functional annotation, as recently
discussed [17,18].

Now, in light of these advancements, a key question remains: to which extent can
we stress the embedding procedure for sequence alignments? In order to test this, here
we tackle the annotation problem of the GST superfamily, with a new method for deter-
mining sequence embedding distances, outperforming previous ones in remote homology
detection (EBA, embedding-based alignment, [18] and references therein). We choose
the Glutathione S-Transferases superfamily (GST, EC 2.5.1.18, [19]) for its functional and
structural characteristics. According to the literature, the superfamily includes three major
groups, cytosolic, mitochondrial and microsomal, with at least 20 documented families
(or classes), active in the different cell compartments. Although these enzymes function in
the same cellular compartment, their structure remains conserved despite low sequence
identity across classes and different organisms. A total of 75% of the classes share the same
functional fold and are active in the cytosol together with the other three structural classes;
two other folds are active in mitochondria and in microsomes, respectively [20–26]. The
complex relation between sequence and structure makes the annotation process difficult
(see Supplementary S1 [27–37] for an extended description of the classes).

In the following, we test the capabilities of embedding-based alignment in the task
of assigning sequences to the different GST classes as done in UniProt with an automatic
procedure defined by the ARBA/Uni rules [38]. After the selection of a reference set, we
undertake large-scale testing, adopting the recent MetaAI ESM2-15b pLM and measuring
sequence distance with EBA [18]. We find that the procedure is successful in sequence an-
notation, particularly when the sequence length of the proteins is conserved with respect to
those included in the reference set. With this constraint, we classify another 26,180 proteins
from 64,207 unclassified GSTs in UniProt, enriching the number of proteins in the different
classes, and generating a set of sequences for future experimental investigations.

2. Results and Discussion
2.1. Fishing for Transfer of Annotation

Our procedure is described in Figure 1. Basically, we generate a reference set of the
GST protein superfamily which acts as a representative set of the functional and structural
properties of the proteins in the superfamily. The set is carefully selected and contains
proteins with a reference PDB structure and/or a high-quality AlphaFold2 model, along
with an experimental validation of the function. Then, each protein of the reference set is
embedded with the selected protein language model and becomes a bait. The encoding
procedure allows for carrying information on the structure and on the conserved sequence
motifs of the family [2–5]. The embedded bait is then aligned with the EBA alignment
procedure [18], with a testing set from UniProt, filtered with the UniProt/ARBA rules, and
annotated in a specific GST class. The different reference classes are color coded in Figure 1,
and fishing in shallow waters is successful when a prey with the same color is captured (in
this case, the assigned annotation obtained with embedding alignments matches with the
one already present in the testing set). Finally, we enter with the procedure into the deep
sea, to search for new proteins to add to a specific family. After validation of the procedure
in the previous step, we now classify proteins without any verification.
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Figure 1. Embedding-based alignment for GST protein classification. A reference protein set of
well-curated proteins (described in Table 1) is adopted as baits for “fishing” ARBA GST classified
proteins (testing set, in shallow waters, Table 2) and ARBA GST unclassified proteins (in deep sea,
Table 3). For details, see text and Section 3. Color matching is indicative of the affinity of baits and
preys.

2.2. The Reference Set

Our reference set (Ref set) is detailed in Table 1. It contains 284 well-annotated proteins
from SwissProt, with documented experimental evidence. When listing per taxon, the
presence of specific classes in particular taxon (e.g., Phi, Tau, Lambda only in Viridiplantae,
Beta and HSP 26 only in bacteria) is evident. A more detailed description of the GST
superfamily is available in Supplementary S1. It appears that, for the time being, four
different folds are adopted by GST proteins functionally active in the cytosol; however, the
most populated one is conserved for 15 classes, active in the cytosol and collecting proteins
that are or are not distantly related homologs (see rightmost columns in Table 1 where the
length variability together with the sequence identity range are reported). Considering
a 30% sequence identity, the threshold between homologs and distantly related ones, six
classes indeed contain distantly related homologs, where the conserved structure in the
PDB testifies to the inclusion in the class (family). Interestingly, in Table 1, 245 proteins
share the same fold and are distributed in 15 classes. Other folds are present in the cytosol
of fungi (omega-like), bacteria (FosA) and mammals (LanC). The length of these proteins
is different from the previous ones. Finally, kappa and MAPEG have been reported in
mammals and are active in the mitochondria and in the microsomes, respectively. Both
classes include remote homologs and folds different from the cytosolic ones. The proteins
in the different classes share less than 30% sequence identity (Table S1).
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Table 1. The reference dataset (REFset) with 284 sequences.

Classes Bact. Amoeb. Fungi Virid. Plat. Nem. Arth. Moll. Actin. Amph. Aves Mamm. Total
Class Length Seq. Id.

Range (%) Structure

Mu - - - - 11 (9 *) - 3 (2 *) - - - 1 (1) 28 (8 *) 43 (20 *) 211–225 22–98
Sigma - - - - - 9 (2) 7 (4 *) 1 (1) - - 1 3 (2) 21 (9 *) 199–249 25–94
Alpha - 1 - - - - - - - - 2 (1) 18 (10 *) 21 (11 *) 222–229 29–96

Pi - - - - - 5 (2 *) - - - 2 - 12 (3) 19 (5 *) 207–210 32–99
Theta - - - - - - - - - - - 12 (3) 12 (3) 240–244 40–99

Delta-Epsilon - - - - - - 32 (15 *) - - - - - 32 (15 *) 208–271 25–99
Omega - - - - - 3 2 (2 *) - - - - 7 (2) 12 (4 *) 240–256 23–93

Zeta 3 (3 *) - 1 (1) 3 (1) - 1 - - - - - 3 (2) 11 (7 *) 212–221 33–95

Rho - - - - - - - 1 (1 *) 1 - - - 2 (1 *) 223–225 41
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Mu ‐  ‐  ‐  ‐  11 (9 *)  ‐  3 (2 *)  ‐  ‐  ‐  1 (1)  28 (8 *)  43 (20 *)  211–225  22–98   

Sigma ‐  ‐  ‐  ‐  ‐  9 (2)  7 (4 *)  1 (1)  ‐  ‐  1  3 (2)  21 (9 *)  199–249    25–94   

Alpha ‐  1  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  2 (1)  18 (10 *)  21 (11 *)  222–229  29–96   

Pi ‐  ‐  ‐  ‐  ‐  5 (2 *)  ‐  ‐  ‐  2  ‐  12 (3)  19 (5 *)  207–210  32–99   

Theta  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  12 (3)  12 (3)  240–244  40–99   

Delta‐Epsilon ‐  ‐  ‐  ‐  ‐  ‐  32 (15 *)  ‐  ‐  ‐  ‐  ‐  32 (15 *)  208–271  25–99   

Omega ‐  ‐  ‐  ‐  ‐  3  2 (2 *)  ‐  ‐  ‐  ‐  7 (2)  12 (4 *)  240–256  23–93   

Zeta 3 (3 *)  ‐  1 (1)  3 (1)  ‐  1  ‐  ‐  ‐  ‐  ‐  3 (2)  11 (7 *)  212–221  33–95   

Rho ‐  ‐  ‐  ‐  ‐  ‐  ‐  1 (1 *)  1  ‐  ‐  ‐  2 (1 *)  223–225  41 
DHAR ‐  ‐  ‐  3 (3)  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  3 (3)  213–213  66–76 

Tau ‐  ‐  ‐  34 (5 *)  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  34 (5 *)  217–231  30–98 

Phi ‐  ‐  ‐  25 (11 *)  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  25 (11 *)  212–221  31–95  (8GSS) 
Lambda ‐  ‐  ‐  3  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  3  235–237  56–73   

Beta 4 (3)  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  4 (3)  201–203  36–54   

HSP26 3 (3)  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  3 (3)  202–212  22–60   

Omega‐like ‐  ‐  4 (1)  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  4 (1)  313–370  44–63 
 

(5LKD) 

FosA 2 (2)  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  2 (2)  135–141  59 
 

(1NPB) 

LanC ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  1  ‐  ‐  4 (1)  5 (1)  399–405  63–96 
 

(8D19) 

Kappa ‐  ‐  ‐  ‐  ‐  2  ‐  ‐  ‐  ‐  ‐  3 (2)  5 (2)  225–226  28–86 
 

(3RPN) 

MAPEG ‐  1  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  22 (5)  23 (5)  146–155  12–98 
 

(4AL0)

Total Taxon 12 (11 *) 2 5 (2) 68 (20 *) 11 (9 *) 20 (4 *) 44 (23 *) 2 (2 *) 2 2 4 (2) 112 (38 *) 284 (111 *)

Legend to Table 1. The 284 proteins of the reference set are listed according to their classes (rows) and taxonomic groups (columns). The GST superfamily includes four folds in the
cytosol and two folds in mitochondria and microsomes, respectively. Cytosolic GSTs comprise 15 classes with the same fold. Three other folds are cytosolic, and two are found in
mitochondria (Kappa) and in microsomes (MAPEG), respectively, for a grand total of 20 classes. Taxa are listed, according to the classification adopted in NCBI at phylum (Mollusca,
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Arthropoda, Nematoda and Platyhelminthes), superclass (Actinopterygii) or class (Mammalia, Aves and Amphibia) for metazoan, at kingdom level for Viridiplantae and Fungi and at
superkingdom level for Bacteria. Amoebozoa are also included. The number of proteins with a PDB reference is specified inside round brackets; (*) indicates that at least one entry in the set
belongs to TrEMBL. Entries without a PDB reference are endowed with high-quality AlphaFold2 models (see Materials). Dashed horizontal lines discriminate classes in the same sub-cellular
location. The “Length” column displays the shortest and the longest protein sequence found in each class. The Seq.Id. (%) column shows the minimum and maximum sequence identity
percentage found within each class (for classes with only two representatives, the sequence identity between the two is shown). Abbreviations used: Bact., Bacteria; Am., Amoebozoa; Fu., Fungi;
Vir., Viridiplantae; Plat., Platyhelminthes; Nem., Nematoda; Arth., Arthropoda; Moll., Mollusca; Act., Actinopterygii; Amph., Amphibia; Mamm., Mammalia., DHAR, dehydroascorbate reductase;
HSP26, Heat Shock protein 26 kDa; FosA, Fosfomycin resistance; and LanC, LanC-like. A close inspection of the literature on the arthropoda proteins indicates that they belong to the delta or
epsilon classes, closely related in both sequence and structure [39,40], and we included these proteins in one single delta-epsilon class (as also suggested by the Conserved Domain Database
(CDD), https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. (accessed on 14 June 2024)). As to the Rho class, we added it after the reclassification of previous theta into rho GST proteins,
found in marine organisms [41]. All of the structures shown are from PDB current release (https://www.rcsb.org/ (accessed on 1 January 2024)). From structural alignment we find that the root
mean square deviation (RMSD) within class is less than 3 Å.

Table 2. Testing the embedding-based alignment (EBA) towards the ARBA GST classification.

ARBA* Within Reference Length Range (RLR)* Below Reference Length Range (< RLR)* Above Reference Range (>RLR)*

Class Total ◦Exp ◦Pred ◦Pred SI* ◦Exp ◦Pred ◦Pred SI* Errors ◦Exp ◦Pred ◦Pred SI* Errors

(#) (#) (#) RLR (%) (#) (#) <RLR (%) (#) (#) (#) >RLR (%) (#)

Mu 1706 981 979 211–225 10–99 355 349 140–210 8–99 6 370 335 226–475 9–99 35
Sigma 694 592 592 199–249 20–99 66 66 109–198 21–99 - 36 36 250–499 3–99 -
Alpha 1520 734 734 222–229 17–99 495 471 113–221 13–99 24 291 289 230–487 10–99 2

Pi 609 323 323 207–210 24–99 158 158 120–206 21–99 - 128 124 211–488 20–99 4
Theta 1428 560 560 240–244 25–99 545 540 104–239 16–99 5 323 323 245–491 1–99 -

Delta-Epsilon 822 715 715 208–271 18–99 68 68 102–207 15–99 - 39 39 272–478 10–99 -
Omega 1349 556 556 240–256 11–99 617 597 101–239 6–99 20 176 176 257–474 10–99 -

Zeta 728 268 268 212–221 26–99 122 122 139–211 22–99 - 338 338 222–433 2–99 -
DHAR 10 - - 213–213 - 7 7 107–212 6–97 - 3 3 214–465 37–99 -

Tau 1342 851 851 217–231 23–99 222 219 202–216 6–99 3 269 268 232–449 3–99 1
Phi 1711 1066 1066 212–221 25–99 177 177 149–211 20–99 - 468 468 222–491 2–99 -

HSP26 433 363 363 202–212 33–99 48 48 196–211 40–99 - 22 22 213–227 40–99 -
LanC 450 177 177 399–405 45–99 109 109 126–398 4–99 - 164 164 406–490 32–99 -

Kappa 1148 230 230 225–226 17–99 554 554 189–224 12–99 - 364 364 227–257 12–99 -

MAPEG 1111 687 687 146–155 7–99 143 143 101–145 3–99 - 281 281 157–363 6–99 -

Total 15,061 8103 8101 3686 3628 58 3272 3230 42

Legend to Table 2. * The testing set includes 15,061 GST proteins classified by the ARBA rule system [38]. * From Table 1, we derived the reference length range (RLR) of GST proteins
with a reference fold per each class present in the set (see Section 3, Table 1). For the sake of fold conservation, we clustered GST proteins as proteins with a length included in the range
(RLR), below the range (<RLR) and above range (>RLR). We show also the range of sequence identity per EBA-found GST class (Pred SI). EBA errors are particularly on GST proteins
with lower or higher length than those in the range of fold conservation. See text for details and discussion. Only two mu proteins in the reference length range are misclassified by
EBA: (UniProt IDs: A0A1I8FWQ8, A0A1I8J3A2) are classified as sigma by the embedding procedure. A sequence comparison of the two proteins with the sigma and mu GST proteins
indicates that they share higher sequence identity with the sigma than with mu GST reference proteins (33% and 28% sequence identity, respectively). Moreover, the sigma classification
is supported by the presence of CDD sigma domains in the annotation. ◦Exp = ARBA expected; Pred = EBA classification. Pred SI = Sequence identity among predicted and reference
class (Table 1); # = Number of. In the testing dataset, among the mu-class GSTs, a set of 29 similar sequences (sequence identity >40%) above the reference length range are misclassified.

https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://www.rcsb.org/
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InterPro annotations for this group of proteins reveal the presence of canonical GST domains together with an extra Elongation Factor 1B domain, suggesting that the canonical fold is
not conserved. Most of the remaining errors are found in the “below reference length range” region of the alpha and omega classes. Among these, 30 are due to the normalization
procedure of the method, as the similarity alignment score (s_align) is higher for the correct class. Indeed, when a test protein is shorter than the representative entries of the class in the
reference dataset, the EBAmin score for the correct classification is penalized with respect to shorter sequences of a different class, possibly resulting in misclassifications. In the case of
omega errors they are always classified as tau, with the former class showing longer sequences in the reference dataset with respect to the latter. Interestingly, these two classes show
deep structural similarities, with the tau class lacking an N-terminal extension typical of omega cGSTs [42]. The remaining misclassifications are either normalization-derived or driven
by sequence similarity with the bait proteins.

Table 3. Classifying GST proteins in the “deep sea” with the embedding-based alignment method.

Class Bacteria Amoeb. Fungi Virid. Plat. Nematoda Arth. Moll. Actin. Amph. Aves Mamm. Others Total Class

Mu 5 - 33 4 6 12 74 7 5 - - 7 96 249
Sigma 30 - 87 14 - 480 133 82 11 3 73 130 376 1419
Alpha 21 - 13 7 - 11 1 1 2 - 1 6 49 112

Pi - - 37 2 - 6 4 - - 1 - 4 33 87
Theta 13 - - 10 - - 1 3 2 - - 30 5 64

Delta-Epsilon 1949 9 498 8 - - 1642 1 5 - - 4 74 4190
Omega 87 - 112 5 1 - 1 - - - - - 10 216

Zeta 1397 - 22 7 - - - - - - 1 - 21 1448
Rho 524 - 22 - - - - 5 197 - - - 9 757

DHAR 1 - - - - - - - - - - - - 1
Tau 1555 - 30 2401 - 1 - - 1 - - - 41 4029
Phi 3694 5 772 60 - - - 1 1 - - 1 57 4591

Lambda - - 3 63 - - - - - - - - - 66
Beta 1569 - 4 - - - 1 - - - - - 15 1589

HSP26 2539 - 9 1 - - - - - - - - 27 2576
Omega-like 2746 1 298 39 - - 2 - 4 - 2 21 200 3313

FosA 306 - - - - - - - - - - - 2 308
LanC - - - - - - - - - - - - 1 1

Kappa - - 8 - - - - - 1 - - - - 9

MAPEG 39 1 230 108 3 - 347 24 141 11 48 44 159 1155

Within RLR 16,475 16 2178 2729 10 510 2206 124 370 15 125 247 1175 26,180
Below RLR 11,288 6 626 1493 66 237 443 52 426 39 159 509 677 16,021
Above RLR 12,917 22 3743 2260 18 119 388 45 342 15 56 148 1007 21,080

Total per Taxon 41,075 44 6582 6851 99 883 3063 222 1157 69 345 928 2889 64,207

Legend to Table 3. The trial set contains 64,207 GST ARBA unclassified proteins. The EBA method classifies 26,180 proteins whose range of lengths (within reference length range
(RLR)) ensures structure conservation with respect to baits, about 41% of the total. A total of 58% is classified below and above the range (below and above RLR), and another 1% is not
classified. The spreading of the classes in different taxa from those in Table 1 is discussed in the text. The trial dataset contains more bacteria genera (700) than the reference and testing
dataset (200). Proteins classified in the reference length region belong to plant symbionts (Rhizobium, Sinorhizobium and Rhizobiales), plant pathogens (Acidovorax), photosynthetic
bacteria (Synechoccus and Nostoc) and soil bacteria (Acinetobacter, Azospirillum, Myxococcus, Streptomyces, Sphingomonas and Variovorax). The classification led to the enrichment
of new GST classes for bacteria not found in the reference and testing datasets. As an example, a couple of “new” alpha-class bacterial Myxococcus proteins (UniProt IDs: F8CAS1,
Q1D6B3) share 34% sequence identity with alpha-class proteins in the reference dataset. More functional and structural studies are necessary for data validation.
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2.3. Testing the Embedding Alignment Method

After embedding the reference proteins, we tested the EBA procedure (see Section 3)
to classify the protein of the testing set, already classified by the UniRule/ARBA automatic
annotation system of UniProt. Results are shown in Table 2. The main difference between
ARBA and EBA is that ARBA classifies after finding conserved domains and/or motifs
that are typical of the GST superfamily, without any constraint on the sequence length
of the protein, while EBA considers the pairwise global alignment of any two protein
embedded sequences. One should also consider that 15 different classes of the canoni-
cal cytosolic GSTs share the same fold, and therefore the same InterPro domains. This
makes their classification difficult, considering that within classes remote homologs are
also present. In this respect, Table 1 lists our baits along with the length range associated
with the different folds, and their range of sequence identity. Since all of the baits are
complete proteins, we follow the knowledge that a transfer of classification is reliable
when the protein fold is conserved [43], and this implies that the protein length is con-
served. Accordingly, in Table 2, we divide EBA-classified GST proteins into three groups:
within, below and above the length range of fold conservation. This division identifies
the fraction of the GST proteins (within the range of length of the of the baits) which
conserve the structure. In this subset, the number of remote homologs with respect to the
reference set is 76 (five in mu, three in sigma, thirteen in omega and fifty-five in kappa, see
https://bar.biocomp.unibo.it/GST_Datasets/index.htm (accessed on 19 September 2024).
Out of the 3D conservation range, the method is any way successful (Table 2). Overall, the
prediction accuracy of our method with respect to ARBA in classifying proteins is very
high (99.3%). Interestingly enough, it appears that the differences in classification between
our method and ARBA rules in Table 2 are mainly confined in regions below and above the
range of fold conservation (Table 2), when the protein length is lower or higher than those
of the reference set. A closer inspection indicates that in these regions, the predicted protein
can be included into the prey (lower length) or can include it (higher length). In other
words, in these regions, the embedding-based alignment captures domains and motifs like
the ARBA rules. Proteins in the below regions contain fewer motifs/domains than the prey
while in the above regions they include extra motifs/domains. This is consistent with the
notion that structure is not conserved; therefore, the definition of remote homologs fails. In
these regions, errors are mainly due to the fact that baits from other classes share a higher
identity with the GST protein at hand. Results are also detailed by taxon (Table S2).

2.4. Fishing in the Deep Sea

We tried EBA to classify 64,207 ARBA-unclassified GST proteins (Table 3). We show
only results obtained on GST proteins whose length is in the length range of fold conserva-
tion and classify 41% of the total. Out of the safety range we can transfer class to another
58% GST proteins. The range of classes seems to increase, particularly in GST proteins
from bacteria, and this can be explained by considering the new bacterial genomes re-
cently included in TrEMBL. However, more functional and structural studies are necessary
for data validation. Setting a length interval for structure conservation highlights more
reliable predictions.

3. Materials and Methods
3.1. Dataset Generation

In order to address our task, we downloaded three different datasets from UniProt
(release 2024_01, https://www.uniprot.org/ (accessed on 24 January 2024)).

3.1.1. The Reference Dataset

We collected all of the GST proteins including “Glutathione S-transferase” and/or
“Glutathione transferase” in the protein name, endowed with a PDB structure or a high-
quality AlphaFold2 model [44], and excluding fragments. For each of the proteins linked
to a PDB structure, we selected a representative based on resolution, sequence coverage

https://bar.biocomp.unibo.it/GST_Datasets/index.htm
https://www.uniprot.org/
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(higher than 70%) and, when possible, in complex with the glutathione substrate. We
checked that proteins lacking PDB structures are endowed with high-quality AlphaFold2
models (with a per protein average pLDDT (predicted Local Distance Difference Test) value
≥ 70 [44]), whose root mean square value (RMSD) to the backbone of the 3D representatives
of the class is ≤1.5 Å. We retained 284 proteins (Table 1), characterized by six structural
types, and grouped into 20 GST classes. We also grouped GST reference proteins in relation
to their taxa (https://www.ncbi.nlm.nih.gov/taxonomy (accessed on 15 June 2024), [45]).
The reference dataset is available at https://bar.biocomp.unibo.it/GST_Datasets/index.
htm (accessed on 19 September 2024).

3.1.2. The Testing and Trial Datasets

With a similar search we collected all of the TrEMBL (https://www.uniprot.org/
(accessed on 24 January 2024) sequences named “Glutathione S-transferase” and/or “Glu-
tathione Transferase”. Routinely, the protein name is automatically assigned, together with
the Enzyme Commission (EC) number, when the sequence entry annotation satisfies either
UniRule ID UR000000494 or ARBA ID ARBA00012452, respectively
(https://www.uniprot.org/help/arba (accessed on 24 January 2024), [38,46]). The rules
are routinely based on the automatic recognition of GST-specific motifs and/or domains
in the sequence. In some cases, ARBA rules, satisfying class-specific InterPro [47] signa-
tures, assign a specific class to the protein (ARBA rules are present for 14 of the 20 classes,
https://www.uniprot.org/arba (accessed on 19 September 2024) (see above)). After filter-
ing out all of the entries with a “Caution” statement in the “Function” field of the protein
file and proteins with sequence identity values higher than 95% to the reference set, we
retained a testing set with 15,061 GST proteins annotated with an assigned class and a trial
set with 64,207 GST proteins without classification.

3.2. Embedding Procedure
3.2.1. Embedding Generation

Among the pLMs currently available, the MetaAI ESM2 encoding set has been used
to train ESMFold [6], an advanced protein tertiary structure prediction method ([48],
and references therein). We adopt the most recent ESM2 pLM: ESM2-15b trained on
65 million proteins [6]. For each protein in the three datasets, we extracted the ESM2-15b
representations following the instructions and scripts available at https://github.com/
facebookresearch/esm (accessed on 1 November 2022). Given an input protein sequence of
length l, the pLM outputs meaningful distributed vector representations for each amino
acid residue of the protein at hand. The size D of the vectors depends on the number
of hidden states of the transformer layers from which the representations are extracted
(routinely the last one). ESM2-15b outputs vectors with D = 5120. The final encoding of
the protein is therefore a matrix e ∈ Rl×D, (with l as the protein length), routinely referred
to as per-residue protein embedding.

3.2.2. Embedding-Based Alignment

We compared per-residue GST protein embeddings exploiting the embedding-based
alignment (EBA) method [18]. The algorithm (available at https://git.scicore.unibas.ch/
schwede/EBA (accessed on 1 January 2023)) computes a pairwise distance matrix of per-
residue embeddings, evaluating the Euclidean distance of all embedded residues. These
values fill a matrix of dimension l1 × l2 (where l1 and l2 are the lengths of the two proteins,
respectively), which provides the substitution scores for the pairwise alignment based on a
classic dynamic programming approach. The tool includes also an optimizing intermediate
step, called “signal enhancement” [18], where each score of a residue pair is normalized to
the scores of all residue pairs of the two aligned proteins. We adopt this enhanced similarity
matrix to score the pairwise global alignment obtained with the Needleman–Wunsch (NW)
method [18]. Following the procedure, we normalize the alignment similarity score salign
by the length l of the longer sequence in the pair (lmax), according to the following:

https://www.ncbi.nlm.nih.gov/taxonomy
https://bar.biocomp.unibo.it/GST_Datasets/index.htm
https://bar.biocomp.unibo.it/GST_Datasets/index.htm
https://www.uniprot.org/
https://www.uniprot.org/help/arba
https://www.uniprot.org/arba
https://github.com/facebookresearch/esm
https://github.com/facebookresearch/esm
https://git.scicore.unibas.ch/schwede/EBA
https://git.scicore.unibas.ch/schwede/EBA
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EBAmin =
salign

lmax

Following [18], the length normalization is an important factor on the final score
when the proteins being compared are very different in length. Whenever the difference is
large, a high EBAmax score, obtained by normalizing by the length of the shortest protein,
reflects the fact that the shorter sequence is entirely contained in the longest [18]. In this
case, EBAmin is much lower since the longer sequence is only partially aligned. Following
the author’s suggestion and considering template structure conservation as an essential
element of knowledge transfer [43], we adopted the EBAmin to score any two protein
sequences during our procedure. In any case, each protein after embedding is aligned with
all of the other ones. For a given query protein, we compute EBAmin by aligning to all of
the proteins in the reference set. The query protein assumes the class annotation of the best
scoring protein among the references and then classification (annotation) is transferred. By
this a bait can “fish” a prey (Figure 1).

The main difference of our method, as compared to [18], is the adoption of ESM2-15b
with an embedding vector dimension of 5120 and a different procedure for the output
selection (ProstT5 [4] with a vector dimension of 1024 was adopted in the original imple-
mentation [18]). We analyze results considering that the transfer of knowledge requires
structure template conservation [43] and for this reason, present the results as a function of
the protein length.

3.3. Computational Time

After downloading EBA in house, the time required to align 100,000 proteins with
our reference set (284) was one week with a machine endowed with 80 CPUs and a
754 gigabyte RAM.

4. Conclusions and Perspectives

In this paper, we exploit the capabilities of an embedding-based alignment method
[EBA, 18] to annotate proteins like the UniProt ARBA system of automatic annotation. For
this, we focused on the GST protein superfamily, given the complex relationship among
sequence and structure in the different protein classes which in different taxa characterize
the group. GST main characteristics include sequences of different lengths, sharing the same
folding when active in the same cellular compartments (Table 1). This blurs the classification
of GST proteins in newly sequenced proteomes. The UniProt ARBA automatic annotation
system annotates into GST classes proteins of any length, provided that InterPro motifs
and/or domains are conserved, without taking into consideration the fold conservation,
which obviously sets a limit for the protein length. We find that EBA performance compares
well with the ARBA rule annotation system (over 99% of accuracy), and from error analysis
(Table 2), we derive as a rule of thumb that classification is optimal when fold is also
conserved. We find that at least 46% of GSTs of a selected subset of classified TrEMBL GST
proteins do not conserve the length of the reference protein folding typical of the class.
These proteins, beyond the conservation of the typical GST domains, are often endowed
with other domains, possibly suggesting new folds, not yet experimentally available. EBA
routinely does not misclassify protein fold, and as to misclassification within a class, it
may happen that when the bait is contained or contains the prey, matrix alignment is not
sufficient to recognize the subdomain. In this case, sequence alignment to another close
class can prevail over the ARBA annotation. The EBA assignment in the fold conservation
region is able to recover remote homologs in four classes (mu, sigma, omega and kappa),
confirming the capability of the system to also assign to a class/family proteins sharing low
sequence identity [18]. We also classify proteins not yet classified in UniProt, releasing a list
of proteins for experimental validation. This can encourage experiments to further cluster
GST proteins in more functional classes, for a better definition of their role in cell complexity.
We propose the EBA classification procedure as a valid complement to the ARBA rule
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classification system for the GST superfamily, considering that sequence embeddings carry
along information on structural templates, motifs and domains of the family.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29194616/s1, Supplementary S1: The GST superfamily;
Table S1: Interclass sequence identity between proteins in the reference set; Table S2: Embedding based
GST classification on the ARBA Test set.
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