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Abstract: Polycyclic aromatic compounds (PACs) exhibit rat aryl hydrocarbon receptor (rAhR)
activities, leading to diverse biological or toxic effects. In this study, the key amino residues and
molecular interactions that govern the rAhR activity of PACs were investigated using in silico
strategies. The homology model of rAhR was first docked with 90 PACs to yield complexes, and
the results of the molecular dynamics simulations of 16 typical complexes showed that the binding
energies of the complexes range from −7.37 to −26.39 kcal/mol. The major contribution to the
molecular interaction comes from van der Waals forces, and Pro295 and Arg316 become the key
residues involved in most complexes. Two QSAR models were further developed to predict the rAhR
activity of PACs (in terms of log IEQ for PACs without halogen substitutions and log%-TCDD-max
for halogenated PACs). Both models have good predictive ability, robustness, and extrapolation
ability. Molecular polarizability, electronegativity, size, and nucleophilicity are identified as the
important factors affecting the rAhR activity of PACs. The developed models could be employed to
predict the rAhR activity of other reactive PACs. This work provides insight into the mechanisms
and interactions of the rAhR activity of PACs and assists in the assessment of their fate and risk
in organisms.

Keywords: polycyclic aromatic compounds; rat aryl hydrocarbon receptor activity; molecular docking;
molecular dynamics simulations; QSAR model

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a group of widespread organic com-
pounds in various media [1–3]. In recent years, different types of PAH derivatives have
been determined to be the accompaniment of the parent PAHs [4–6], such as methylated
PAHs (M-PAHs), oxygenated PAHs (O-PAHs), nitrated PAHs (N-PAHs), chlorinated PAHs
(Cl-PAHs), and brominated PAHs (Br-PAHs), referred to as polycyclic aromatic compounds
(PACs). Previous experiments have suggested that exposure to many reactive PACs can
enhance oxidative stress and even produce mutagenicity and carcinogenicity [3,4,7,8].

The aryl hydrocarbon receptor (AhR) belongs to the basic helix–loop–helix/Per-Arnt-
Sim (bHLH/PAS) protein family [9]. In the PAS domain of AhR, PAS B functions as a
ligand-binding domain (LBD), which binds with ligands to form ligand–AhR complexes,
resulting in the conformational transition of AhRs [10]. An activated AhR can influence
the expression of multiple genes and induce diverse biological or toxic effects [9,11]. It
has been proven that many PACs, including M-PAHs, O-PAHs, and N-PAHs, can bind
with rat AhR (rAhR) and activate luciferase, causing AhR activity in a rat H4IIE-luc bioas-
say [12–16]. The results showed that M-PAHs were more potent than their parent com-
pounds [13], and the oxidation of M-PAHs seemed to increase the AhR-mediated potency
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of the compounds, with 2-methylanthracene-9,10-dione being almost twice as potent as
2-methylanthracene [14]. Moreover, O-PAHs (PAH ketones and quinones) have more
significant AhR activities than parent PAHs [11,17]. As a rodent who is closely homologous
to humans, the rat is an important biological model in toxicology research. Comparisons
for AhR genomic sequences [18] and studies summarizing the responses to various refer-
ence compounds in rat H4IIe cells and human HepG2 cells [19] have shown that the rat
AhR signaling pathway is easier to activate using ligands than human AhRs are. Human
AhR-mediated β-galactosidase activity for PACs has also been assessed in lacZ reporter
gene assays using yeast Saccharomyces cerevisiae YCM3 cells [11], and PAH ketones and
quinones showed significantly stronger activities than benzo[a]pyrene. The comparison
of AhR activities among halogenated PAHs indicated that Cl-PAHs yielded stronger AhR
activities, resulting in approximately 30–50 times higher toxicity being mediated through
AhR activation than through dioxins [20]. The AhR activity of Cl-PAHs tended to increase
with the number of chlorine atoms on the corresponding parent PAH skeletons [20]. These
bioassay results confirmed the AhR activities of several PACs in both rats and humans.
However, the mechanisms underlying rat AhR activity need further investigation, which
is significant for monitoring the endogenous AhR activation potential of new chemicals
in humans.

Computational methods are important tools to explore the mechanisms of toxici-
ties/activities at the molecular level [21–23], which is necessary to understand the molecular
initiating events of various toxicities/activities. For example, molecular docking can predict
the non-covalent binding of ligands and macromolecules [24], determine the best binding
mode [25], and further provide bioaccumulation potential prediction [26], while molecular
dynamics (MD) simulates the dynamic behavior of systems based on the integration of
Newtonian equations [25]. They have already been applied to predict the mechanism of
the AhR-mediated immune response [27] and the developmental toxicity [28] of some
PACs. An immune response study [27] elucidated that PACs could form π-π interactions
and hydrogen bonds with AhRs while inhibiting the transcription of CYP and ultimately
inducing inflammatory cytokines. In addition, the docking results of 22 PACs with AhRs
of three zebrafish isoforms and human AhRs, together with experimental results, proved
their AhR activation and observable responses of developmental toxicity [28]. Another
frequently used in silico method is developing a quantitative structure–activity relationship
(QSAR) model, which employs a mathematical equation to quantitatively describe the
relationship between the toxicity of chemicals and molecular descriptors [29]. The estab-
lished QSAR models can provide estimated values of toxic indexes for organic chemicals
with difficult-to-obtain experimental measurements, filling in the data gap. QSAR models
have already been developed to predict the AhR activity [30] and the estrogen activity [31]
of PAHs.

Thus, in this study, molecular docking and MD simulations were first performed to
explore the binding affinity and interaction forces in PACs-rAhR complexes. Then, two
QSAR models were developed to predict the rAhR activities and to further investigate
the molecular mechanisms of rAhR-mediated activities according to the physicochemical
properties of the employed descriptors. The expected results will help to better understand
the rAhR activities of reactive PACs and provide an important basis for alerting structures
to reduce health risks.

2. Results and Discussion
2.1. Molecular Docking and MD Simulation Results

Among the 50 candidate rAhR homology structures, the one with the lowest Molpdf
value was selected as the optimal model structure because the smaller Molpdf score means
higher similarity to the template PDB structures [32]. The constructed rAhR was fur-
ther compared with the protein structures (3F1P, 3F1O, 3F1N, 3H7W, and 3H82) using
the Rampage web servers (https://warwick.ac.uk/fac/sci/moac/people/students/peter
cock/python/ramachandran/other/, accessed on 10 September 2024) and Protein Struc-
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ture Analysis (ProSA) (https://prosa.services.came.sbg.ac.at/prosa.php, accessed on 10
September 2024). The results from the validation of the constructed 3D model using the
Ramachandran plot from the MolProbity procedure showed that 89.5% of the total residues
were in the favored region of the Ramachandran plot, and 97.1% were in the allowed
region, with no bad bonds or angles in the protein geometry. This suggests that the protein
backbone dihedral angles phi (Φ) and psi (Ψ) were reasonably accurate positions in the
constructed 3D model (SI Figure S1). The results indicate that the Z-score (−1.94) for the
3D model was within the range of scores typically found for native proteins of similar size
(SI Figure S2). Furthermore, the comparison of the homology model with five template
models shows a slight difference in their backbone conformations, with the exception of
the loop region (residues 317–345, SI Figure S3). Consequently, the results of the analysis
of bond lengths, bond angles, Φ and Ψ angles from the Ramachandran plot, and total
Cα atoms of structure concluded that the generated structural model was reliable for
further studies.

The docking results state that all PACs can bind tightly to rAhR, with the most negative
energy scores ranging from −9.6 to −4.9 kcal/mol based on repeated docking (n > 10)
(SI Table S1). It is found that the RMSD of template 3F1O and the rAhR homologous
model is 2.3 Å, and the distance of the docking centers is 2.1 Å after aligning the two
receptors to calibrate the docking protocols. Subsequently, the RMSD curves (SI Figure S4)
demonstrate that the simulated conformations of the 15 binding complexes reach their
respective equilibrium states. The RMSD values for all ligands are less than 2 Å, while
the RMSD values for rAhR reach up to 8 Å, suggesting the high conformational change
of rAhR during the MD simulations. In the case of the 7,12-benzo[a]anthraquinone-rAhR
binding complex, the superposition between docking and MD configurations reveals the
high fluctuation in the loop regions (residues 317–345, Figure 1), which thus leads to the
high RMSF values (SI Figure S5).

Molecules 2024, 29, x FOR PEER REVIEW 3 of 14 
 

 

2. Results and Discussion 
2.1. Molecular Docking and MD Simulation Results 

Among the 50 candidate rAhR homology structures, the one with the lowest Molpdf 
value was selected as the optimal model structure because the smaller Molpdf score means 
higher similarity to the template PDB structures [32]. The constructed rAhR was further 
compared with the protein structures (3F1P, 3F1O, 3F1N, 3H7W, and 3H82) using the 
Rampage web servers (https://warwick.ac.uk/fac/sci/moac/people/students/peter 
cock/python/ramachandran/other/, accessed on 10 September 2024) and Protein Structure 
Analysis (ProSA) (https://prosa.services.came.sbg.ac.at/prosa.php, accessed on 10 Sep-
tember 2024). The results from the validation of the constructed 3D model using the Ra-
machandran plot from the MolProbity procedure showed that 89.5% of the total residues 
were in the favored region of the Ramachandran plot, and 97.1% were in the allowed re-
gion, with no bad bonds or angles in the protein geometry. This suggests that the protein 
backbone dihedral angles phi (Φ) and psi (Ψ) were reasonably accurate positions in the 
constructed 3D model (SI Figure S1). The results indicate that the Z-score (−1.94) for the 
3D model was within the range of scores typically found for native proteins of similar size 
(SI Figure S2). Furthermore, the comparison of the homology model with five template 
models shows a slight difference in their backbone conformations, with the exception of 
the loop region (residues 317–345, SI Figure S3). Consequently, the results of the analysis 
of bond lengths, bond angles, Φ and Ψ angles from the Ramachandran plot, and total Cα 
atoms of structure concluded that the generated structural model was reliable for further 
studies. 

The docking results state that all PACs can bind tightly to rAhR, with the most neg-
ative energy scores ranging from −9.6 to −4.9 kcal/mol based on repeated docking (n > 10) 
(SI Table S1). It is found that the RMSD of template 3F1O and the rAhR homologous model 
is 2.3 Å, and the distance of the docking centers is 2.1 Å after aligning the two receptors to 
calibrate the docking protocols. Subsequently, the RMSD curves (SI Figure S4) demon-
strate that the simulated conformations of the 15 binding complexes reach their respective 
equilibrium states. The RMSD values for all ligands are less than 2 Å, while the RMSD 
values for rAhR reach up to 8 Å, suggesting the high conformational change of rAhR dur-
ing the MD simulations. In the case of the 7,12-benzo[a]anthraquinone-rAhR binding 
complex, the superposition between docking and MD configurations reveals the high fluc-
tuation in the loop regions (residues 317–345, Figure 1), which thus leads to the high RMSF 
values (SI Figure S5). 

 
Figure 1. The superposition of the initial docking conformation with the representative MD confor-
mation for the 7,12-benzo[a]anthraquinone-rAhR binding complex. 

Figure 1. The superposition of the initial docking conformation with the representative MD confor-
mation for the 7,12-benzo[a]anthraquinone-rAhR binding complex.

The estimated ∆Gbind values range from −7.37 to −26.39 kcal/mol for the 15 com-
plexes, as shown in Table S2. ∆Gbind exhibits a high correlation with van der Waals
interaction Evdw (Pearson relativity coefficient R = 0.98) and nonpolar solvation GSA
(R = 0.90) for the 15 complexes, revealing that Evdw (−22.03 to −39.92 kcal/mol) and
GSA (−3.53 to −5.27 kcal/mol) play decisive effects on ligand binding. In contrast, the
entropy effects (TS: −14.43 to −18.02 kcal/mol) provide the most adverse contributions
to the binding of ligands. In addition, the electrostatic interaction energies (Eele: −0.45 to
−3.16 kcal/mol), nonpolar solvation energies, and polar solvation energies (GSA: −3.53 to
−5.27 kcal/mol, GGB: 2.67 to 4.99 kcal/mol) only make minor contributions.

As shown in Table S2, the binding affinity of ligand-rAhR complexes increases
with the number of benzene rings, especially for PAHs and Cl-PAHs complexes. For
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instance, four PAHs with varying numbers of rings result in their binding affinities
being the order of benzo[g]chrysene (−26.39 kcal/mol, five rings) > benzo[b]chrysene
(−24.02 kcal/mol, five rings) > triphenylene (−19.35 kcal/mol, three rings) > fluorene
(−15.24 kcal/mol, two rings). This trend has also been observed for benzo[g]chrysene and
benzo[b]chrysene (five rings, ∆Gbind of −26.39 kcal/mol and −24.02 kcal/mol, respectively)
vs. 2-methylchrysene (four rings, ∆Gbind of −19.10 kcal/mol). For Cl-PAHs, the ∆Gbind
value of 9,10-dichlorophenanthrene with three rings is −13.56 kcal/mol, much larger than
that of 7,12-dichlorobenz[a]anthracene with four rings (−25.06 kcal/mol), resulting in a
weaker binding affinity. Similarly, the presence of halogen atoms may also enhance binding
affinity, which can be confirmed by the comparison between 7-chlorobenz[a]anthracene
and 7,12-dichlorobenz[a]anthracene (∆Gbind: −22.84 vs. −25.06 kcal/mol).

The amino acid residues with energy contributions of less than −1 kcal/mol are
identified as key residues affecting ligand binding, as listed in SI Table S2. Among
these, Pro295 gives important contributions to 10 PACs, including all O-PAHs, S-PAH,
and Br-PAHs. Further analysis of specific PAH types revealed that Pro295 also has
important contributions to the binding of chrysene derivatives and benz[a]anthracene
derivatives. Another residue, Arg316, shows significant contributions to seven PACs,
benzo[b]chrysene, 2-methylphenanthrene, 11-methylbenzo[a]pyrene, 4-nitropyrene, 7,11-
dibromobenz[a]anthracene, and Cl-PAHs except for 7-chlorobenz[a]anthracene. Arg316
also plays an important role in the binding of all phenanthrene and pyrene derivatives.

Except for van der Waals interactions, hydrogen bond interactions [33] can be observed
in the binding conformations of 7H-benz[de]anthracen-7-one, 7,12-benzo[a]anthraquinone,
and 4-nitropyrene. The NH group of Met346 can combine with the oxygen atom of
7H-benz[de]anthracen-7-one to form a hydrogen bond. His289 has a close affinity for
4-nitropyrene due to its NH group. The MD simulation shows that π-π interactions [34]
occur in 7,12-benzo[a]anthraquinone and 9,10-dichlorophenanthrene complexes, and the
benzene rings of Tyr308 and Phe349 approach the aromatic rings of the two compounds
to form π-π interactions, respectively. The hydrogen bond and π-π interaction of 7,12-
benzo[a]anthraquinone with rAhR residues are illustrated in Figure 2, and other chemicals
are listed in SI Figure S6. Furthermore, the average distance between the oxygen atom
and the hydroxyl hydrogen of the Thr347 residue is 2.89 Å, within the distance range
for hydrogen bonds (generally taken as 3 Å). Meanwhile, the phenol ring of Tyr308 is
approximately parallel to the ligand, with an average distance of 3.56 Å and an energy of
−4.37 kcal/mol, producing π-π interaction to promote the binding of the ligand and rAhR.
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ranges from −7.37 to −26.39 kcal/mol and the numbers of benzene rings and halogen atom
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of PACs are the critical factors in binding affinities. Component analysis shows that van der
Waals interactions serve asthe main driving force for the binding of ligands, with Pro295
and Arg316 identified as the most important residues in most complexes. Furthermore,
hydrogen bonds and π-π interactions are formed between specific residues and PACs,
contributing to their binding complexes. In the following, the QSAR models were further
established for predictive purposes.

2.2. QSAR Models of IEQ for PAHs and Derivatives without Halogen

An optimal QSAR model for predicting log IEQ for 62 PACs without halogen was
obtained via MLR analysis:

log IEQ = 10.29SpMin2Bh(m) − 9.03 × HATS5p − 0.50 × σ− 6.82 × MATS5s

− 5.58 × H6e − 20.30 × E2v + 2.43 × SpMax8Bh(i) − 12.83
(1)

The selected descriptors are listed in Table 1, and the predicted log IEQ values and
molecular descriptor values are listed in Table S3. The statistical parameters (Table 2)
indicate a good fitting performance of the model. The results of the simulated external
validation are also listed in Table 2. The R2 (0.80), Q2 (0.80), and RMSE (0.53) values of
the re-established model, based on the training set (70% log IEQ experimental values), are
the same as those of model (1), indicating the intrinsic correlation between the descriptors
and the log IEQ values. The statistic parameters of the test set (R2 = 0.79, Q2 = 0.79 and
RMSE = 0.57) validate the good predictive ability of the QSAR model. As shown in
Figure 3a, the predicted log IEQ values are consistent with the experimental values for both
the training and test sets.

Table 1. Physical–chemical meanings of the descriptors used in QSAR models.

Descriptor Physical-Chemical Meanings

SpMin2Bh(m) Smallest eigenvalue n.2 of Burden matrix weighted by mass Burden eigenvalues

HATS5p
Leverage-weighted autocorrelation of lag 5 weighted by polarizability

GETAWAY descriptors
σ Softness

MATS5s Moran autocorrelation of lag 5 weighted by I-state 2D autocorrelations

H6e
H autocorrelation of lag 6 weighted by Sanderson electronegativity

GETAWAY descriptors

E2v
The 2nd component accessibility directional WHIM index weighted by van der

Waals volume WHIM descriptor

SpMax8Bh(i)
Largest eigenvalue n. 8 of Burden matrix weighted by ionization potential

Burden eigenvalues

Table 2. Statistical parameters of log IEQ models for 62 PACs without halogen and simulated external
validation results.

N R2 Q2 RMSE BIAS MAE MPE MNE

Model (1) 62 0.80 0.80 0.53 0.00 0.40 1.55 −1.14
Training set 43 0.80 0.80 0.53 0.00 0.40 1.40 −1.09

Test set 19 0.79 0.79 0.57 −0.03 0.46 1.02 −1.08

Moreover, Q2
F1 is 0.83, Q2

F2 is 0.82, Q2
F3 is 0.80, and CCC is 0.86, all of which meet

the acceptable criteria (Q2
Fn > 0.70, CCC > 0.85). Leave-one-out cross validation results

(Q2
CV is 0.85 and RMSECV is 0.64) reflect that the model demonstrates good robustness.

The application domain (Figure 3b) illustrates that the leverage of fluorine (0.50) is larger
than the threshold value (h* = 0.39), but its |SR| is less than 3, indicating that model (1)
has good extrapolation ability.
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The descriptors SpMin2Bh(m) and SpMax8Bh(i) belong to Burden matrix descriptors
relating to molecular mass [35] and molecular ionization potential [36], respectively. The
positive correlation between SpMin2Bh(m) and SpMax8Bh(i) with log IEQ indicates that
greater molecular mass and stronger ionization potential can cause lower rAhR activity.
HATS5p stands for molecular polarizability [37], and larger HATS5p can lead to increased
rAhR activity. Softness (σ), which reflects electron activity and molecular reactivity [38], is
negatively associated with log IEQ, indicating that rAhR activity increases with chemical
reactivity. MATS5s is related to the electron distribution within molecules [39,40], and a
larger value results in a larger probability of the molecule binding to rAhR, further yielding
stronger rAhR activity. H6e characterizes the electronegativity of hydrogen atoms [41], and a
smaller H6e value indicates that the chemical is less likely to bind with amino acids, leading
to weaker rAhR activity. E2v is a WHIM index weighted by atomic van der Waals volumes,
and a larger E2v value can cause a larger rAhR activity, as shown by the negative correlation
in the model [42,43]. In conclusion, the rAhR activity of 62 PACs without halogen is mainly
governed by molecular mass, ionization potential, polarizability, electronegativity, and van
der Waals volumes.

2.3. QSAR Models of Log%-TCDD-Max for Cl-PAHs and Br-PAHs

The QSAR model of log%-TCDD-max for 21 halogenated PAHs was successfully
constructed, as shown in Equation (2):

log % − TCDD − max = −0.80 × HGM − 33.75 × EEHOMO + 31.71 × ATSC1e − 3.34 (2)

The experimental and predictive log%-TCDD-max values, description, and calculated
values of the selected descriptors are provided in Table 3 and Table S4, respectively. The
statistical parameters (listed in Table 4) reveal a good regression performance of model (2)
(R2 = 0.89, Q2 = 0.89, and RMSE = 0.21).

Table 3. Physical–chemical meanings of the descriptors.

Descriptor Physical–Chemical Meanings

HGM Geometric mean on the leverage magnitude GETAWAY descriptors
EHOMO The energy of the highest occupied molecular orbital

ATSC1e
Centred Broto–Moreau autocorrelation of lag 1 weighted by Sanderson

electronegativity 2D autocorrelations
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Table 4. Statistical parameters of log%-TCDD-max models for 21 halogenated PAHs and simulated
external validation results.

N R2 Q2 RMSE BIAS MAE MPE MNE

Model (2) 21 0.89 0.89 0.21 −0.00 0.16 0.37 −0.44
Training set 15 0.88 0.88 0.23 −0.00 0.18 0.36 −0.44

Test set 6 0.93 0.92 0.19 0.02 0.15 0.27 −0.25

The results of the simulated external validation (R2 = 0.88, Q2 = 0.88, and RMSE = 0.23
for the training set and R2 = 0.93, Q2 = 0.92, and RMSE = 0.19 for the test set, respectively)
and the favorable consistency of experimental and predictive log%-TCDD-max values for
both the training set and test set, as shown in Figure 4a, as well as the statistical parameters
Q2

F1 (0.93), Q2
F2 (0.93), Q2

F3 (0.93), and CCC (0.96), prove the good predictive ability of
model (2). The internal validation results, Q2

CV = 0.92 and RMSECV = 0.24, indicate the
preferable robustness of the model. The Williams plot (Figure 4b) illustrates no outliers.
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HGM is a GETAWAY descriptor that inversely relates to molecular size, decreasing
with the increase in atom number in the molecule [44,45]. The negative coefficient indi-
cates that increasing the complexity of halogenated PAHs can increase its rAhR activity.
It is interesting that EHOMO was selected in the model instead of ELUMO, which reflects
the molecular nucleophilicity [46]. Generally, halogenated PAHs act as electrophilic com-
pounds to react with the amino acid residues of rAhR as described above. Thus, a higher
EHOMO value may impede such interactions and subsequently result in lower rAhR activity.
ATSC1e is related to Sanderson electronegativity [47], the molecular equalized electroneg-
ativity when the electronegativities of the constituent atoms are equal [48]. The positive
regression coefficient between ATSC1e and log%-TCDD-max means that a higher Sanderson
electronegativity of a chemical accounts for higher rAhR activity. Therefore, the rAhR
activity of halogenated PAHs is greatly influenced by molecular size, nucleophilicity, and
Sanderson electronegativity.

The results of MD simulation indicate that van der Waals interactions account for the
major contribution in forming complexes of PACs and rAhR. Then, the developed QSAR
model of log IEQ for 62 PACs without halogen atoms suggests that polarizability is a crucial
factor in determining the rAhR activity of these chemicals. The expansion of the mean
interatomic distance caused by nuclear quantum effects can enhance non-covalent van der
Waals interactions and increase molecular polarizability [49]. Thus, the chemicals with a
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large polarizability may lead to a strong van der Waals interaction and promote the binding
affinity of PACs, ultimately increasing rAhR activity.

In fact, molecular polarizability is an important parameter related to the biological
activities of organic chemicals. It has been proved to play significant roles in the binding
to estrogen receptors [31] and O-PAHs binding to DNA [50]. A previous QSAR model
for AhR-mediated luciferase activity of PAHs [30] suggested that molecular polarizability
and aromaticity are the main factors that enhance the partition of PAHs within the cell
membrane to bind with AhR and result in high AhR activities. Similarly, our QSAR models
also show the importance of molecular polarizability in relation to the rAhR activity of
PACs. Therefore, molecular polarizability is closely associated with the toxic mechanisms
of organic chemicals, deserving more attention in future research.

In this work, the adverse impact of specific receptors with the largest dataset of
experimental data of PACs was used to explore molecular mechanisms and modes of
action with rAhR. In virtue of the QSAR models, we expect to be able to classify or predict
the luciferase activity of 350 PACs that have been discovered [51], providing valuable
information for toxicity and risk assessment. Scaling these models to other enzymes
would be another step in generalizing these models for application in predictive models.
Then, information regarding abnormal behaviors or activity expression could be related to
toxicodynamic information of the chemical obtained from in vitro test systems to perform
a comprehensive risk assessment of a new PAC.

3. Material and Methods
3.1. Dataset

The relative rAhR induction equivalents (IEQ, pg/g) of 62 PACs without halogen
elements (35 PAHs, 20 M-PAHs, 2 O-PAHs, 3 S-PAHs, and 2 N-PAHs) relative to 2, 3, 7,
8-tetrachlodizenzo-p-dioxin (TCDD) were summarized by Lenka Pálková et al. [52]. They
were measured by the chemical-activated luciferase expression (CALUX) assay using rat
hepatoma H4IIE cells stably transfected with an rAhR-inducible luciferase reporter gene.
The IEQs were related to the chemical concentrations causing 25% maximal luciferase in-
duction, which shows a negative relationship with rAhR activity. For 21 halogenated PACs,
including 15 Cl-PAHs and 6 Br-PAHs, the observed maximum response was determined
using a rat H4IIE-luc in vitro bioassay and expressed as a percentage of the mean maximum
response of the TCDD standard (%-TCDD-max) [53]. Large %-TCDD-max values for the
halogenated PACs suggested the high potency of these chemicals to induce rAhR-mediated
activities. In this work, the logarithmic values (log IEQ and log%-TCDD-max) were utilized,
as listed in the Supporting Information (SI) Table S1.

3.2. Homology Modeling, Molecular Docking, and MD Simulations

Since no available crystal structure of rAhR has been reported to date, we thus con-
structed the relevant LBD via homology modeling, with details provided in the SI.

AutoDock Tools 1.5.6 was used to identify the potential ligand binding site [54]
(SI Figure S7) in the constructed structure of rAhR based on the ligand-bound 3F1O [10].
The AutoDock Vina program [24] was used to perform docking simulations of a total of
83 PACs within rAhR to generate the ligand–receptor binding complexes. The complexes
with the most negative binding energy scores were employed as the initial binding configu-
rations for the subsequent MD simulations.

In order to accurately evaluate binding interactions, MD simulations were further
performed using the Amber12 program [55,56] for a total of 15 typical docked complexes, in-
cluding PAHs (fluorene, triphenylene, benzo[b]chrysene, and benzo[g]chrysene), M-PAHs
(2-methylphenanthrene, 2-methylchrysene, and 11-methylbenzo[a]pyrene), O-PAHs (7H-
benz[de]anthracen-7-one and 7,12-benzo[a]anthraquinone), S-PAH (Benzo[b]naphtho [2,1-
d]thiophene), N-PAH (4-nitropyrene), Cl-PAHs (9,10-dichlorophenanthrene, 7-chlorobenz[a]
anthracene, and 7,12-dichlorobenz[a]anthracene), and Br-PAH (7,11-dibromobenz[a]
anthracene) with rAhR as the initial binding conformations. The ff14SB force field [57]
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was used to describe the system’s topology for the binding complexes. During the MD
simulations, the protonation states of the polar receptor residues were first determined
based on the PDB2PQR service [58]. Concretely, His289, His330, and His335 residues
were singly Nδ-protonated, the His355 residue was set to be Nε-protonated, while His324
was fully protonated at both the Nδ and Nε atoms. Then, each solvation model was se-
quentially subjected to the steepest descent minimization for 4000 steps, gradual heating
from 0 to 300 K over 500 ps, and constant pressure equilibration for 1000 ps at 300 K.
Subsequent production MD simulations with varying time scales (70–200 ns) were carried
out for the binding complexes to obtain the equilibrium conformations. Based on the
MD trajectories, the root-mean-square deviations (RMSD, Å) [59] and root-mean-square
fluctuations (RMSF, Å) [22] of the ligand and receptor were used to evaluate the binding
conformational stability and protein flexibility, respectively. Through cluster analyses of
the equilibrium configurations [60], the class with the largest populated configurations was
selected. The 200 snapshots from the largest cluster were extracted to calculate the binding
free energy (∆Gbind) of the ligand in rAhR and to identify the key residues that significantly
contribute to ligand binding. ∆Gbind was estimated according to the Molecular Mechan-
ics/Generalized Born Surface Area (MM/GBSA) [61] method, and the corresponding
formulas were shown in SI.

3.3. QSAR Model

According to previous experience [62–64], Dragon descriptors and electronic descrip-
tors [65] were calculated to characterize molecular structure properties. Then, a multiple
linear regression (MLR) strategy was used to select descriptors and develop QSAR models
using IBM SPSS Statistics 21 software [66]. Simulated external validation and leave-one-
out cross-validation were employed to test the predictive ability and robustness of the
developed models. The details of descriptor calculation, statistical analysis, and model
validation are shown in the SI.

4. Conclusions

Molecular docking and MD simulations show that van der Waals forces are the
major driving force in PACs-rAhR complexes, and Pro295 and Arg316 are the impor-
tant amino acid residues in ligand binding. For 62 PACs without halogen atoms, the
rAhR activity is mainly influenced by the molecular mass, ionization potential, polar-
izability, electronegativity, and van der Waals volumes. For 21 halo-PACs, the rAhR
activity is related to molecular size, nucleophilicity, and Sanderson electronegativity. The
developed models have good predictive ability, robustness, and extrapolation ability;
thus, they can be used to predict the rAhR activity of other reactive PACs within the
application domain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29194619/s1. Figure S1: Ramachandran plot image of
rAhR homology structure based on 3F1O which has the native ligand. Figure S2: The ProSA analyses
of the generated rAhR LBD structure model. Figure S3: Structural aligning the structures of the
homology rAhR model (pink loop) and five template models (chain A of 3F1P, 3F1O, 3F1N, 3H7W
and chain B of 3H82) on their Cα atoms. Figure S4: The root-mean-square deviation (RMSD, Å) of
15 types of PACs and rAhR. Figure S5: The root-mean-square fluctuations (RMSF, Å) of 15 types
rAhR bound with PACs. Figure S6: The hydrogen bond and π-π interaction diagram of complexes
which 7H-benz[de]anthracen-7-one, 4-nitropyrene and 9,10-dichlorophenanthrene were bound with
rAhR. Figure S7: The model of rat aryl hydrocarbon receptor (rAhR), the dark frame is binding site;
Table S1: Autodock vina scores of 83 PACs with rAhR. Table S2: The amino acid residues with energy
contributions of 15 types of PACs. Table S3: The experimental and predictive log IEQ values and
selected molecular descriptors values in model (1). Table S4: The experimental and predictive log
%-TCDD-max values and selected molecular descriptors values in model (2). Refs [67–81] are cited in
Supplementary Materials.

https://www.mdpi.com/article/10.3390/molecules29194619/s1
https://www.mdpi.com/article/10.3390/molecules29194619/s1
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