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Abstract: The field of computational protein engineering has been transformed by recent advance-
ments in machine learning, artificial intelligence, and molecular modeling, enabling the design
of proteins with unprecedented precision and functionality. Computational methods now play a
crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in
biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer
learning have dramatically improved protein structure prediction, optimization of binding affinities,
and enzyme design. These innovations have streamlined the process of protein engineering by
allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the
rational design of proteins with tailored properties. Furthermore, the integration of computational
approaches with high-throughput experimental techniques has facilitated the development of multi-
functional proteins and novel therapeutics. However, challenges remain in bridging the gap between
computational predictions and experimental validation and in addressing ethical concerns related to
AI-driven protein design. This review provides a comprehensive overview of the current state and
future directions of computational methods in protein engineering, emphasizing their transformative
potential in creating next-generation biologics and advancing synthetic biology.

Keywords: computational biology; protein engineering; artificial intelligence; molecular design; de
novo protein design; therapeutic proteins; synthetic biology

1. Introduction

In recent years, the subject of computational biology has experienced rapid and signif-
icant expansion, leading to a fundamental shift in how we comprehend and manipulate
biological systems. The impact of computational approaches on protein engineering and
molecular design is especially noticeable, as they have completely transformed the capacity
to create and enhance proteins with new and unique capabilities. The incorporation of
computational methodologies alongside conventional biological methods has created new
opportunities for advancement in biotechnology, medicines, and related disciplines. This
collaboration has resulted in improved and focused approaches for manipulating proteins,
finding new drugs, and creating innovative biomolecules with improved capabilities.

Computational methods are becoming essential for customizing proteins for different
biotechnological uses. Each year, a variety of tools and methodologies are being created and
improved to keep up with the growing needs and difficulties of protein engineering [1]. The
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progress in machine learning and artificial intelligence has greatly improved the precision of
protein structure predictions and the detection of functional regions, enabling more accurate
manipulation of protein activities [2]. The use of computational approaches has greatly
influenced the field of enzyme design. These approaches have allowed for the development
of proteins that have enhanced catalytic efficiencies and new functionality [3]. For example,
the utilization of machine learning models to forecast protein stability and interactions has
simplified the design procedure, enabling the quick creation and manufacture of proteins
without the limitations of living cells.

The combination of computational and experimental methods has expedited the
design process by allowing the development of targeted libraries for laboratory evolution.
This has resulted in a reduction in the extensive sequence space that requires sampling [4].
Platforms such as Mutexa demonstrate attempts to develop intelligent ecosystems that
integrate fast computation with bioinformatics and quantum chemistry, making the process
of identifying potential protein variants more efficient [5]. However, there are still obstacles
to overcome in expanding the use of these technologies and making them available to
a wider group of academics. This is crucial in order to fully utilize their potential in
addressing global issues like sustainable development and healthcare [6].

Computational methods have gained significance in the field of drug development,
thanks to recent progress in deep learning and artificial intelligence. These advancements
have made it easier to quickly identify a wide range of powerful and specific ligands. These
advancements have the capacity to make the drug discovery process more accessible to
the general public, offering new possibilities for the efficient creation of safer and more
efficient small-molecule medicines. The advancement of computational tools and their
integration with experimental approaches is paving the way for remarkable innovation
and application in protein design within the field of synthetic biology.

The continuous progress in computational biology is paving the way for a forthcom-
ing period of protein engineering and molecular design, marked by enhanced accuracy,
efficiency, and creativity. In order to overcome current hurdles and fully utilize the promise
of biotechnology and pharmaceuticals, it is imperative to integrate computational and
experimental approaches as the area continues to develop. This study seeks to present a
thorough summary of the most recent developments in computational approaches used in
protein engineering and molecular design. It emphasizes the significant influence of these
technologies on the field.

2. Machine Learning and AI Applications in Protein Design
2.1. Deep Learning Approaches
2.1.1. Convolutional Neural Networks for Structure Prediction

Convolutional Neural Networks (CNNs) are designed to automatically and adaptively
learn spatial hierarchies of features from input data, making them particularly effective for
tasks such as image classification, object detection, and semantic segmentation [7]. Recent
advancements in CNN architectures, such as the development of attention mechanisms and
the introduction of 3D CNNs for video analysis, have further expanded their capabilities
and applications across diverse domains including medical image analysis, autonomous
driving, and natural language processing [8]. CNNs have greatly enhanced the field of
structure prediction in computational biology, specifically for proteins and RNA. CNNs are
utilized for their capacity to do hierarchical feature extraction, rendering them well-suited
for jobs that involve identifying intricate patterns in biological sequences and structures.
CNNs have been utilized in protein structure prediction to forecast inter-residue distances
and contact maps. This approach is exemplified in AlphaFold, which incorporates ResNets
to improve prediction accuracy by incorporating translational invariance in the data [9,10].
In addition, CNNs have been modified for the purpose of predicting RNA secondary
structure. Models such as CDPFold and E2Efold utilize convolutional layers to estimate
the probability of base-pairing and then employ dynamic programming to extract the
structure [11]. Recent progress has involved combining CNNs with other deep learning
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architectures, such as transformers, to enhance the accuracy of predicting protein secondary
structures. This approach capitalizes on the benefits of both convolutional and attention
mechanisms [12]. In addition, 3D CNNs have been used to forecast the local fitness
landscapes of protein structures. This helps in recognizing the wild-type and consensus
amino acids based on their structural contexts [13]. The applications mentioned highlight
the flexibility and effectiveness of CNNs in solving various and intricate problems in
structural bioinformatics. This makes them a fundamental component in the continuous
development of computational biology [9,10,14] (Figure 1A).
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Figure 1. Development and application of AI algorithms in biotechnology. (A,B) Various AI al-
gorithms significantly contribute to the development of biotechnology. Representatively, CNNs
(Convolutional Neural Networks) are utilized for protein structure prediction through the prediction
of distances and contact maps between residues. Additionally, RNNs (Recurrent Neural Networks)
play a crucial role in sequence optimization through temporal relationship and sequential pattern
modeling. (C) Recently, algorithms such as GAN (Generative Adversarial Network), RL (rein-
forcement learning), transfer learning, and few-shot learning have demonstrated their efficiency
in modeling protein structures and interactions. These advanced algorithms are being utilized to
overcome limitations in data collection required for model training, as well as limitations in designing
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new proteins. (D) Explainable AI (XAI) provides transparency and insight into modeling results
by elucidating the decision-making process behind the vague “black box” judgment criteria of
existing AI-based predictive models. Advances in AI algorithms have significant progressed protein
engineering. However, they still require experimental validation. The integration of domain expertise
and AI-based methodologies, also known as informed AI, can potentially enhance model efficiency
and reliability and provide more accurate insights consistent with validated domain knowledge.

2.1.2. Recurrent Neural Networks for Sequence Optimization

Recurrent Neural Networks (RNNs) are a category of artificial neural networks en-
gineered to handle sequential data by preserving an internal state or “memory” that
enables information retention over time steps [15]. RNNs are a potent tool for optimizing
sequences, demonstrating their effectiveness in modeling temporal relationships and se-
quential patterns. Recent developments in recurrent neural network topologies, including
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs), have markedly
enhanced their capacity to record long-term dependencies and alleviate the vanishing
gradient issue [16]. Current studies have concentrated on enhancing RNNs for many
purposes, such as predicting future values in time series data, understanding and gener-
ating human language, and analyzing biological information [17]. The convergence and
performance of RNNs across many tasks have been greatly enhanced by the development
of weight initialization schemes, such as Xavier/Glorot and He initialization [18]. More-
over, the utilization of optimization techniques such as adaptive learning rate approaches
and gradient descent-based algorithms has played a vital role in improving the training
efficiency and generalization performance of RNN models. Research has also investigated
the combination of RNNs with other neural network structures, like CNNs, to utilize
their complementary advantages for sequence modeling and feature extraction [19]. The
adaptability and robustness of RNNs in sequence optimization are emphasized by these
achievements, establishing them as essential components in the continuous progress of
machine learning and artificial intelligence [17] (Figure 1B).

2.1.3. Generative Adversarial Networks in De Novo Protein Design

In 2014, Ian Goodfellow and collaborators introduced a class of machine learning
frameworks known as Generative Adversarial Networks (GANs). These frameworks
are composed of two neural networks, a generator, and a discriminator that engage in
a zero-sum game [20]. The generator’s objective is to generate synthetic data that can
deceive the discriminator, while the discriminator endeavors to differentiate between
genuine and fabricated data. This adversarial process enables GANs to acquire intricate
data distributions and generate synthetic samples that are exceedingly realistic [21]. GANs
have significantly transformed the field of de novo protein design by allowing the creation
of new protein sequences that possess specific desirable characteristics. GANs including a
generator and a discriminator network have demonstrated remarkable efficacy in modeling
the intricate interactions between sequence, structure, and function that are inherent in
proteins. Recent research has shown that GANs can be used to create proteins with specific
structures and functions. This was achieved by using a Wasserstein-GAN with gradient
penalty to design proteins with unique folds [22]. Furthermore, ProteoGAN, a conditional
GAN, is intended to produce protein sequences by employing hierarchical functional
labels that are derived from the Gene Ontology. This model outperformed other deep
learning baselines in generating protein sequences [23]. The ability to produce proteins
with precise enzymatic activity and solubility profiles has been improved by advancements
in conditional generative modeling. This is exemplified by the hierarchical conditional GAN
framework outlined. In addition, a comprehensive analysis was conducted on several deep
generative models, emphasizing the crucial contribution of GANs in suggesting innovative
proteins that closely mimic natural equivalents in terms of stability and expression [24].
The advancements highlight the profound capacity of GANs in creating new proteins with
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specific characteristics for various biotechnological and medicinal uses, demonstrating
their ability to rapidly and effectively design proteins (Figure 1C).

2.2. Reinforcement Learning in Protein Engineering
2.2.1. Optimization of Protein Properties

Reinforcement learning (RL) is a subfield of machine learning in which an agent
acquires the ability to make decisions by interacting with an environment and receiving
feedback in the form of rewards or penalties. The objective of RL is for the agent to acquire
an optimal policy that maximizes cumulative rewards over time, without being explicitly
instructed on which actions to take [25]. RL has demonstrated significant potential in the
domain of protein engineering, namely in the enhancement of protein characteristics. RL
techniques, like those used in ProteinRL, utilize generative protein language models to
optimize protein sequences for specific structural and functional properties. This allows for
the creation of new proteins with high charge content or diverse sequences that have high
solubility and structural confidence [26]. Self-play RL is a new tool that helps optimize
protein sequences to achieve desired features. This has a substantial impact on drug
discovery and other biotechnological applications [27]. Moreover, the integration of RL
with fitness landscape modeling, exemplified by the microFormer framework, enables the
efficient exploration of the extensive mutant space. This integration facilitates the design of
protein variants that exhibit improved activity and stability [28]. One recent development
involves using protein language models as reward functions in RL frameworks to create
biologically realistic sequences. These sequences are then optimized using smaller proxy
models to efficiently handle computational expenses [27]. Model-based RL methods, like
the ones that use AlphaZero, have shown success in protein backbone design. They
outperform standard Monte Carlo tree search methods by adding secondary objectives
and introducing new reward structures [29]. These discoveries demonstrate the profound
impact of RL on protein engineering, enabling the development of proteins with customized
characteristics for a wide range of uses in medicine, biotechnology, and synthetic biology.

2.2.2. Design of Protein–Protein Interactions

RL has demonstrated considerable promise in the development of protein–protein
interactions by facilitating the enhancement of binding affinities and the refinement of
interaction specificities. Advancements in recent RL methods have resulted in the creation
of advanced models capable of predicting and improving protein–protein interactions.
An example of this is the RL pipeline that was created to find communities in weighted
protein–protein interaction networks. This pipeline showed enhanced accuracy and speed
in detecting new protein complexes, which emphasizes the scalability and efficiency of RL
in this specific field [30]. Another significant contribution is the research that introduced
the PPI-former model. This model utilized a large-scale dataset and SE(3)-equivariant
representations to predict the effects of mutations on protein–protein interactions. The
model achieved state-of-the-art performance in practical case studies, including SARS-
CoV-2 antibody design [31]. In addition, the UniBind framework was introduced. It uses
deep learning to examine protein–protein interactions at the residue and atom levels. This
framework has been successful in accurately predicting the impact of mutations on binding
affinities. Furthermore, it offers valuable insights into viral infectivity and variant evolution.
This information is based on a study cited as [32]. These works highlight the significant
influence of RL and deep learning in the field of protein engineering. This enables the
creation of proteins with customized interaction features, which can be used in various
fields such as medicine, biotechnology, and synthetic biology (Figure 1C).

2.3. Transfer Learning and Few-Shot Learning
2.3.1. Leveraging Pre-Trained Models for Protein Design

Transfer learning is a technique in which the knowledge acquired from training a
model on one task is applied to a related but distinct task. This method enhances the efficacy
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of tasks with restricted data by utilizing pre-trained models, which are frequently trained on
extensive datasets. The exploration of cross-domain transfer learning and the development
of more efficient fine-tuning techniques are among the most recent advancements in transfer
learning [33]. Few-shot learning is a method that allows models to learn from a limited
number of labeled examples, typically between one and five samples per class. This
method is designed to resemble the learning process of a human, in which new concepts
can be easily understood with minimal exposure. Meta-learning methodologies, metric
learning, and data augmentation methodologies have been the primary focus of recent
research in few-shot learning, with the objective of enhancing model generalization [34].
Transfer Learning and Few-Shot Learning are innovative methods in protein design that
utilize pre-trained models to enhance protein properties with limited experimental data.
These strategies facilitate the adjustment of models that have been trained on huge and
varied datasets to specific protein engineering activities, thereby greatly minimizing the
requirement for additional data gathering. For example, the effectiveness of pre-trained
protein language models (PLMs) such as ESM-2 and ProGen in predicting protein fitness
landscapes using few-shot learning was shown, thus improving the accuracy of protein
design with little wet-lab data [35]. Furthermore, it was demonstrated how transfer learning
may be utilized to optimize deep learning models for the purpose of predicting protein
expression based on 5′UTR sequences in various situations. This approach enhances the
ability of these models to generalize and be applied to varied genetic backgrounds [36]. A
different significant work examined the combination of deep learning and transfer learning
in protein design, emphasizing the potential of both techniques to create functional sites and
develop new protein interactions with great accuracy [37]. The progress made in transfer
learning and few-shot learning highlights the ability to transform protein engineering by
facilitating the efficient and economical creation of proteins with specific properties for use
in medicine, biotechnology, and synthetic biology (Figure 1C).

2.3.2. Addressing the Challenge of Limited Data in Protein Engineering

The integration of powerful computational approaches and machine learning tech-
niques has made it increasingly practical to tackle the obstacle of limited data in protein
engineering. Efficient algorithms are necessary to navigate and optimize protein attributes
due to the wide sequence space and combinatorial complexity of protein creation [38].
Machine learning models, namely those utilizing semi-supervised and transfer learning
methods, have played a crucial role in estimating protein fitness landscapes with a small
amount of experimental data. As a result, they have been able to guide protein engi-
neering campaigns more efficiently [39]. In addition, data-driven methods have utilized
high-throughput experimental data to enhance the catalytic activity and selectivity of
enzymes, demonstrating the promise of machine learning in dealing with limited data
availability [40]. By using a variety of training datasets, such as those obtained from X-ray
crystallography, NMR, and cryo-EM, the performance of the model has been improved.
This is achieved by reducing biases and enhancing the ability to apply the model to varied
protein structures [41]. In addition, the utilization of evolutionary probability and stacking
regression models has been employed to enhance protein characteristics, emphasizing
the significance of computational techniques in addressing the constraints imposed by
limited experimental data [42]. The progress made in computational and machine learning
techniques highlights their crucial role in tackling the difficulties posed by limited data
in protein engineering. This progress also paves the path for more effective and creative
strategies for designing proteins.

2.4. Interpretable AI for Protein Design
2.4.1. Explainable AI Models for Rational Protein Engineering

Interpretable AI, also known as Explainable Artificial Intelligence (XAI), is gaining
recognition as an essential element in protein design. It provides transparency and valuable
insights into the decision-making processes of machine learning models used for rational
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protein engineering. The incorporation of XAI techniques tackles the issue of the “black box”
phenomenon that arises in intricate AI models, hence improving the credibility and depend-
ability of forecasts [43]. For example, researchers have used feature attribution approaches
and instance-based analysis to clarify the underlying mechanisms of protein–protein inter-
actions. This has led to an improvement in the interpretability of prediction models [44].
The latest progress has shown the practical use of XAI in detecting DNA-binding proteins
and enhancing the brightness of Green Fluorescent Proteins. This highlights the effective-
ness of explainable models in real-world protein engineering activities. In addition, the
advancement of self-explaining models and uncertainty assessment methods has made
it easier to create proteins with specific features by offering clear justifications for model
predictions [45]. These methods not only improve the clarity of the model but also provide
guidance for experimental verification, guaranteeing that protein designs guided by AI
are both dependable and efficient [46]. The integration of XAI into protein engineering
pipelines is expected to transform the design and optimization of proteins, leading to more
efficient and interpretable AI-driven solutions in biotechnology and synthetic biology [26]
(Figure 1D).

2.4.2. Integration of Domain Knowledge with AI-Driven Approaches

The fusion of domain expertise with AI-driven methodologies is an emerging field
of study that seeks to improve the effectiveness, comprehensibility, and dependability of
machine learning models. This approach, also known as informed AI, utilizes human
experience to direct the development and improvement of AI systems, thus overcoming
some limits that exist in solely data-driven methodologies. Embedding domain knowledge
into AI models can greatly enhance their interpretability and resilience, as demonstrated by
recent research in diverse domains like health, engineering, and environmental science [47].
Integrating clinical guidelines and expert knowledge into machine learning pipelines in
the medical field has been proven to improve the accuracy, interpretability, and adherence
to clinical standards of models, especially in situations where data are scarce [48]. Similarly,
the utilization of many artificial intelligence agents that are specialized in different domains
has shown to have greater capacities in discovering knowledge across other domains. This,
in turn, enables the generation of more complete and precise insights. In addition, domain
expertise can be included at different points in the AI pipeline, including data preprocessing,
model training, and evaluation, to guarantee that the models are not only precise but also
consistent with recognized principles particular to the domain [49,50]. This strategy, which
combines data-driven and knowledge-driven techniques, tackles important difficulties
such as expensive data collection and the risk of overfitting. As a result, it leads to the
development of more generalizable and dependable AI systems [51]. Incorporating domain
expertise is vital for the development of explainable AI systems, which are necessary for
establishing confidence and enabling the ethical implementation of AI technologies in
sensitive sectors such as healthcare and finance. In general, combining domain knowledge
with AI-driven methods has great potential for enhancing the capabilities of AI systems,
making them more efficient, dependable, and in line with human expertise and ethical
standards [52].

3. Computational Methods in Enzyme Engineering
3.1. Structure-Based Design Strategies
3.1.1. Homology Modeling and Threading Techniques

Homology modeling and threading are essential tools in structure-based protein de-
sign, enabling the prediction of protein structures in the absence of experimental data [53,54].
Homology modeling, also known as comparative modeling, is based on the assumption
that proteins with comparable sequences would have similar structures. This makes it
the preferred method when a homologous structure is present in the Protein Data Bank
(PDB) [55]. This method has played a crucial role in the process of finding new therapeutics.
It enables researchers to create accurate three-dimensional models of certain proteins, which
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helps them gain insights into how these proteins interact with drug molecules and aids in
the development of novel medications Advancements in homology modeling, including su-
perior sequence alignment methods and loop modeling techniques, have greatly improved
the accuracy of these models, even for proteins that have a low sequence identity to their
templates. Alternatively, threading, which is sometimes referred to as fold recognition, is
used in cases where no homologous structures are present [56]. This method involves align-
ing the desired sequence with a database of established protein folds. A score system is then
used to assess the compatibility between the sequence and each template structure [55,57].
Threading methods have advanced to include advanced algorithms, such as probabilistic
graphical models and dynamic programming, in order to enhance alignment precision and
model quality. Both techniques are essential components of contemporary drug discovery
processes, facilitating the identification of potential targets for drug development and the
creation of new therapeutic treatments using virtual screening and molecular docking. The
combination of AI and machine learning has advanced these techniques, increasing their
ability to forecast and operate efficiently. This integration also enables the management
of extensive datasets produced by genomic and proteomic research [54]. In summary, the
combination of homology modeling and threading approaches, supported by computa-
tional progress, remains a key driver of breakthroughs in predicting protein structures and
designing drugs [53,55] (Figure 2A).

3.1.2. Quantum Mechanics/Molecular Mechanics Approaches

Quantum mechanics/molecular mechanics (QM/MM) techniques have become indis-
pensable in structure-based design methodologies, especially in drug development, because
of their precise modeling of intricate biomolecular systems. Hybrid approaches integrate
the accuracy of QM in modeling the active site with the efficiency of MM in representing
the surrounding environment. This enables detailed simulations of enzyme reactions and
interactions with ligands. Recent progress has been made in enhancing the scalability
and efficiency of QM/MM simulations by utilizing exascale computing. This allows for
the handling of huge biological systems and extended simulation timelines, which were
previously difficult due to computational constraints [58,59]. The emergence of interfaces
such as the MiMiC framework has showcased substantial parallel efficiency, facilitating
the precise examination of thermodynamics and kinetics in drug targets with a high level
of precision [58]. In addition, the use of machine learning techniques has increased the
accuracy of QM/MM methodologies, making it easier to study energy transfer processes
in biomolecular machines. The advancements discussed here demonstrate the potential
of QM/MM techniques to significantly transform drug design. These approaches offer
chemically precise insights into molecular interactions, leading to an enhanced success rate
in drug development initiatives [60]. With the continuous expansion of computer resources,
QM/MM approaches are in a position to make even more significant advancements in
the field. These methods can tackle more intricate biological inquiries and facilitate more
accurate therapeutic interventions [61,62] (Figure 2B).

3.2. Sequence-Based Design Methods
3.2.1. Multiple Sequence Alignments and Phylogenetic Analysis

Multiple sequence alignment (MSA) and phylogenetic analysis are essential techniques
for designing sequences based on their alignment and evolutionary relationships. These
technologies have made substantial progress in recent years. The utilization of MSA is
essential for a range of biological investigations, such as the estimation of phylogeny and
the prediction of RNA structure. The scalability and accuracy of MSA algorithms, such
as the EMMA (extending multiple alignments using MAFFT-add) technique, have been
enhanced by recent advancements. These improvements are particularly beneficial for large
datasets. The EMMA approach does this by efficiently managing computational resources
through a divide-and-conquer strategy [63]. Researchers have also investigated bioinspired
algorithms, which provide innovative methods to improve the precision and speed of align-
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ment [64]. Phylogenetic analysis, which utilizes MSAs to deduce evolutionary connections,
has been enhanced by advanced computer techniques such as maximum likelihood and
Bayesian inference. These methods provide reliable frameworks for generating phyloge-
netic trees [65]. Recent research has shown that DNA sequences can be just as successful as
protein sequences in determining deep phylogenies. This challenges long-held notions and
broadens the range of phylogenetic approaches that can be used [66]. The integration of
advanced computational tools and methods has supported these improvements, leading to
better resolution and reliability of phylogenetic trees. As a result, our understanding of
evolutionary processes has been enhanced [67]. As sequencing technology progress, it is
crucial to continue developing and improving MSA and phylogenetic approaches. These
advancements are essential for tackling intricate biological inquiries and pushing forward
the discipline of bioinformatics [68] (Figure 2C).
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prediction, ligand–protein interaction modeling, and enzyme engineering. (A) Homology modeling
(left image) infers the structure of a protein with an unknown structure by using the structure of a related
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sequence, based on the observation that proteins with similar sequences tend to have similar struc-
tures, while threading techniques (right image) predict a new structure by scoring the alignment of
the target sequence against a template library with protein fold information when no structurally sim-
ilar sequences are available; both methods are utilized for protein structure prediction in the absence
of experimental data. (B) Quantum mechanics is used to predict the interactions between a ligand
and a protein, while molecular mechanics is applied to model the interactions between a protein and
its surrounding environment. The combined use of these two approaches, known as a hybrid method,
has been enhanced by recent advancements in parallel computing technologies, overcoming previous
limitations and contributing to the development of high-success-rate drugs. (C) The diagram on
the left illustrates the process of aligning various protein sequences, enabling researchers to extract
information more efficiently from refined sequences. Phylogenetic analysis allows for the determina-
tion of relative distances between elements, and by integrating MSA (Multiple Sequence Alignment)
with phylogenetic approaches, information can be analyzed more effectively. (D) Structure-based
design methods (left) are used for protein–ligand binding and provide examples of various un-
derlying analytical techniques. Sequence-based design methods (right) are primarily applied to
protein–protein interactions and can be broadly categorized into gene and protein se-quence analysis.
(E) Applying machine learning to enzyme engineering allows for predicting en-zyme activity based
on library data, improving enzyme stability, and facilitating enzyme devel-opment. It also helps
explore methods to enhance the efficiency of catalysts or assists in selecting the appropriate catalyst.
(F) The development of deep learning software such as AlphaFold3 has ena-bled rapid results in
high-throughput virtual screening without the need for experimental proce-dures. Additionally, such
software can significantly contribute to understanding enzyme–protein interactions within enzyme
libraries, particularly in terms of stability, activity, and selectivity.

3.2.2. Coevolution-Based Approaches for Enzyme Design

Coevolution-based methodologies have become a potent instrument in the field of
enzyme design. These methodologies utilize the evolutionary information included in
protein sequences to pinpoint crucial interactions and mutations that can improve the
activity of enzymes. These techniques employ numerous sequence alignments to identify
coevolving residues, which are pairings of amino acids that have evolved together to
preserve structural integrity and function. Notable progress in this area involves the
creation of methods such as SCANEER (sequence co-evolutionary analysis to control
the efficiency of enzyme reactions), which use sequence coevolution analysis to forecast
enzyme performance. This enables the identification of specific mutations that can enhance
enzyme efficiency and substrate selectivity [69]. These methods have effectively been used
on several enzymes, such as beta-lactamase and aminoglycoside phosphotransferase, to
show their ability to enhance enzyme activity for industrial and pharmacological purposes.
In addition, the investigation of coevolution has played a key role in the identification
of allosteric sites. These sites are essential for controlling enzyme activity and can be
specifically targeted for the design of drugs [70]. The combination of computational tools
and machine learning has increased the effectiveness of coevolution-based techniques,
allowing for the creation of enzymes with new catalytic characteristics and enhanced
stability [71,72]. As research progresses, coevolution-based methods are expected to have a
crucial impact on the deliberate development of enzymes, providing valuable insights that
connect natural evolution with synthetic biology.

3.3. Hybrid Methods
3.3.1. Integration of Structure and Sequence Information

Hybrid approaches in drug and protein design combine both structure-based and
sequence-based tactics to enhance the optimization of novel therapies. Structure-based
design utilizes the three-dimensional structures of target proteins to uncover and enhance
therapeutic candidates. This approach involves techniques such as fragment-based method-
ologies, evolutionary algorithms, and deep generative models, as demonstrated in recent
works [73,74]. This method takes advantage of improvements in computational capac-
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ity and machine learning, which improve the ability to anticipate interactions between
proteins and ligands and explore the field of chemistry [75]. Conversely, sequence-based
design prioritizes the analysis of genetic and amino acid sequences in order to forecast
protein activities and interactions. Direct coupling analysis and statistical modeling are em-
ployed to deduce co-evolutionary characteristics, which are essential for the advancement
of hybrid proteins and genetic sensors [76,77]. By integrating the characteristics of both
approaches, the integration of these methodologies in hybrid modeling provides a more
thorough understanding of protein dynamics and function. This facilitates the design of
more effective medications and proteins, as observed in the field of protein research [75].
Recent studies highlight the possibility of merging these tactics to overcome the inherent
constraints of each method when employed separately, hence facilitating the development
of inventive solutions in drug discovery and protein engineering [78] (Figure 2D).

3.3.2. Machine Learning-Assisted Enzyme Engineering

Machine learning (ML)-assisted enzyme engineering is an advancing discipline that
integrates computational and experimental methods to improve enzyme characteristics for
many uses. Recent progress has shown that ML models can be used to forecast enzyme
performance and stability, enhance catalytic efficiency, and assist in the logical development
of enzymes. ML models can effectively explore the extensive protein sequence space to
discover potential enzyme variations. This study focuses on the use of ML in predicting
protein architectures and substrate specificity [79]. Moreover, the combination of ML with
directed evolution has been demonstrated to expedite the process of enzyme optimization
by lessening the workload of experiments. This highlights the significance of ML in provid-
ing guidance for directed evolution in the field of protein engineering [80]. In addition, the
advancement of innovative machine learning algorithms, such as MODIFY (ML-optimized
library design with improved fitness and diversity), has made it possible to simultaneously
optimize both the effectiveness and variety of enzymes. This has greatly facilitated the
identification of enzyme activities that are unique to the natural world [81]. The progress
made in ML in enzyme engineering highlights the significant and profound influence it has,
providing new opportunities for developing biocatalysts that have improved performance
and unique capabilities (Figure 2E).

3.4. High-Throughput Virtual Screening
3.4.1. In Silico Directed Evolution

High-throughput virtual screening (HTVS) and in silico directed evolution are inno-
vative methods used in drug discovery and protein engineering. These methods utilize
computing capacity to efficiently explore large chemical and protein spaces. HTVS employs
computational models to efficiently assess extensive collections of compounds, discovering
potential bioactive molecules without the necessity of physical synthesis. This approach
overcomes the constraints of traditional high-throughput screening (HTS), which relies on
pre-existing compounds [82,83]. Recent progress in machine learning, specifically Convo-
lutional Neural Networks such as AtomNet, has shown great success in identifying new
drug-like structures in different medical fields. This suggests that computational methods
can effectively replace HTS in the early stages of drug discovery [83]. In silico directed
evolution utilizes computational algorithms to model the process of evolution, enhancing
protein functionalities through repeated cycles of mutation and selection. The utilization
of deep learning models, such as AlphaFold2, has improved this method. These models
are capable of accurately predicting protein structures, thereby enabling the creation of
proteins with specific binding capabilities [84]. EvoPro is a new pipeline that combines
deep learning to predict protein structure and optimize protein sequences. It demonstrates
the effectiveness of in silico approaches in evolving protein binders. These computational
methodologies not only speed up the process of discovery but also increase the range of
chemicals and proteins that researchers may access, thereby enabling the development of
unique therapeutic solutions [85,86] (Figure 2F).
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3.4.2. Computational Library Design for Enzyme Engineering

Computational library design for enzyme engineering is an innovative method that
uses sophisticated computational techniques to enhance enzyme characteristics, including
stability, activity, and substrate selectivity. This approach entails the generation of extensive
and varied collections of enzyme variations, which can be computationally analyzed
to pinpoint potential candidates possessing specific characteristics. The effectiveness of
this technique has been greatly improved by recent breakthroughs in machine learning
and structural bioinformatics. For example, advanced tools such as AlphaFold have
brought about a significant transformation in the field of protein structure prediction.
These tools enable researchers to precisely model enzyme structures and forecast the
impact of mutations on enzyme activity [87,88]. Machine learning methods are being more
and more utilized to analyze large datasets produced from high-throughput sequencing
and screening. This allows for the detection of advantageous mutations and the forecasting
of enzyme performance in different circumstances [89,90]. Computational approaches not
only decrease the time and expense of traditional experimental methods but also broaden
the range of enzyme engineering by exploring a wider sequence space. Computational
library design is positioned to have a vital impact on the development of new biocatalysts
for industrial and pharmacological purposes [3,87] (Figure 2F).

4. Molecular Dynamics Simulation Studies of Biomolecular Systems
4.1. Advanced Sampling Techniques
4.1.1. Replica Exchange Molecular Dynamics

Replica Exchange Molecular Dynamics (REMD) is a powerful enhanced sampling
technique widely utilized in molecular dynamics simulations to overcome the limitations of
traditional MD methods, particularly in exploring rugged energy landscapes of biomolecu-
lar systems. REMD involves simulating multiple copies, or replicas, of a system at different
temperatures, allowing for the efficient sampling of conformational space by periodically
exchanging configurations between replicas based on a Metropolis criterion. This method is
particularly effective in studying systems with high energy barriers, such as protein folding,
aggregation, and receptor–ligand interactions. Recent studies have demonstrated the utility
of REMD in elucidating the mechanisms of protein aggregation associated with diseases
like Alzheimer’s and Parkinson’s, as well as in the structural prediction of transmembrane
proteins using implicit solvent models to reduce computational costs [91–93]. The method’s
adaptability to parallel computing environments further enhances its efficiency, making
it suitable for large-scale simulations on supercomputers [92]. Moreover, advancements
such as the multicanonical replica-exchange method (MUCAREM) and the integration of
implicit solvent models have been developed to improve sampling efficiency and reduce
computational demands [92]. Overall, REMD continues to be a vital tool in biomolecular
research, providing detailed insights into the dynamic behavior of complex systems at an
atomic level (Figure 3A).

4.1.2. Metadynamics and Adaptive Sampling Methods

Metadynamics and adaptive sampling approaches are essential tools in molecular
dynamics (MD) simulations, specifically for investigating the intricate energy landscapes of
biomolecular systems. Metadynamics improves the efficiency of sampling by introducing a
bias potential that varies with time. This potential discourages the system from returning
to states that have already been examined, enabling it to overcome energy barriers and
explore novel conformations. The effectiveness of metadynamics relies heavily on the
choice of collective variables, which must precisely reflect the sluggish phases of the sys-
tem’s dynamics [94]. Recent advancements, such as the combination of stochastic resetting
and metadynamics, have demonstrated potential in speeding up simulations even when
less than ideal variables are utilized. This approach offers a substantial increase in speed
without incurring any extra computing expenses [94]. However, adaptive sampling meth-
ods, such as adaptive path sampling and machine learning-enhanced sampling, maintain
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the thermodynamic ensemble while improving sampling by selectively restarting MD
trajectories at specific locations. By employing deep learning, these techniques have proven
to be highly successful in capturing protein conformational changes. They achieve this
by accurately predicting the most favorable areas of the conformational space to investi-
gate [95]. Ongoing research is dedicated to enhancing the efficiency and applicability of
both metadynamics and adaptive sampling approaches. This study aims to broaden their
scope to encompass a wider spectrum of biomolecular systems. By doing so, it will provide
a more comprehensive understanding of protein dynamics and facilitate drug development
efforts [95,96] (Figure 3A).
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Figure 3. This figure illustrates various computational techniques used to enhance sampling effi-
ciency and reduce computational resources in biomolecular simulations, highlighting their distinct
approaches and applications. (A) Diagram of replica exchange molecular dynamics (left). This
method forms multiple replicas and allows efficient simulation sampling through periodic exchanges
of components between these replicas. It is particularly suitable for scenarios involving high-energy
barriers in biomolecular interactions and can be conducted at different temperatures. Diagram illus-
trating the difference between metadynamics and adaptive sampling methods in terms of stochastic
reset (right). Stochastic reset refers to the model probabilistically reverting to a previous state; meta-
dynamics prevents this by introducing a bias potential, while adaptive sampling intentionally restarts
the model at specific locations to enhance the sampling method. (B) Diagram of the MARTINI model
and its advantages (left). The MARTINI model simplifies molecular systems by grouping multiple
elements (primarily atoms) into larger entities called beads, rather than treating each element individually.
This simplification reduces the degrees of freedom, significantly lowering computational resources required
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and enabling longer simulations with limited resources. Schematic of Elastic Network Models (ENMs)
(right). ENMs represent the forces between biomolecules in large simulation environments using a
spring model, where each node typically represents an alpha carbon. The longer the distance, the
stronger the pulling force, allowing the possible conformations of biomolecules upon deformation to
be inferred through this model. (C) Neural network potentials, such as Torch MD, enable 3D modeling
and high-energy barrier calculations through machine learning. When combined with enhanced
sampling techniques or experimental data, neural network potentials can achieve greater accuracy
and efficiency. (D) An integrated model utilizing machine learning tools such as dimensionality
reduction, regression, and clustering enables the modeling of complex biomolecular systems, such as
detecting protein-ligand interactions.

4.2. Coarse-Grained Models
4.2.1. MARTINI Force Field and Its Applications

The MARTINI force field is a well-established coarse-grained model employed in
molecular dynamics simulations for the investigation of biomolecular systems. It provides
a favorable trade-off between computational efficiency and accuracy. The MARTINI model,
created by Marrink et al., simplifies molecular structures by combining several atoms
into larger “beads”. This simplification reduces the complexity of the system and enables
simulations of massive biomolecular complexes over extended periods of time. This
method has proven to be especially successful in replicating lipid membranes, protein
folding, and interactions within intricate biological settings. The model MARTINI 3 has
increased its application through recent advances. These advancements have improved the
depiction of small molecules and increased the accuracy of lipid and protein simulations.
This has been demonstrated in studies that have explored drug delivery systems and
protein–protein interactions [97,98]. The integration of both top-down and bottom-up
parameterization methodologies has enabled these improvements, resulting in a force field
that accurately reproduces experimental partitioning free energies [99]. The MARTINI
force field’s adaptability is emphasized by its successful integration into several simulation
platforms, such as OpenMM, allowing for its extensive application in both academic
and industrial research environments [100]. Continuing work in the field are focused
on improving the model’s parameters and broadening its application range, namely in
drug development and the examination of membrane proteins and cryptic pockets [98]
(Figure 3B).

4.2.2. Elastic Network Models for Large-Scale Simulations

Elastic Network Models (ENMs) are a widely used method in molecular dynamics
simulations that are particularly useful for studying the overall movements of biomolecular
systems. ENMs describe biomolecules as networks of nodes connected by springs, with
the nodes commonly representing the Cα atoms of proteins. This representation enables
the rapid calculation of normal modes and the study of slow, large-scale conformational
changes. This approach is beneficial for investigating computationally challenging pro-
cesses, such as protein folding, allosteric transitions, and massive biomolecular assemblies,
which cannot be effectively studied using all-atom models. Recent progress has been made
in improving the precision and usefulness of ENMs by combining them with other com-
putational methods, such as molecular dynamics simulations and perturbation response
scanning. This integration allows for the study of intricate systems, such as ubiquitin-
specific protease 7 (USP7) and its mechanisms of allosteric regulation [101,102]. In addition,
ENMs have been modified to different resolutions and parameterizations in order to accu-
rately represent the dynamics of diverse biomolecular systems. This adaptation has shown
resilience across numerous formalisms and applications [103]. These models are contin-
uously improved to enhance their ability to make accurate predictions and to integrate
them into multiscale modeling frameworks. This expansion increases their usefulness in
the fields of structural biology and drug development [101,103] (Figure 3B).
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4.3. Long-Timescale Simulations
4.3.1. Specialized Hardware for MD Simulations

Advanced hardware has transformed long-term molecular dynamics (MD) simula-
tions, allowing researchers to investigate biomolecular systems with exceptional precision
and effectiveness. Notable progress has been made through the utilization of Graphics
Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs), and Application-
Specific Integrated Circuits (ASICs), each providing unique benefits in terms of velocity
and computational capability. Originally intended for parallel processing in graphics,
GPUs have been adapted to expedite MD simulations by effectively managing non-bonded
interactions, resulting in a substantial decrease in computation time and cost [104,105].
FPGAs have the advantage of flexibility and efficiency, enabling the customization and
optimization of MD algorithms. This customization can result in significant improvements
in the speed of specific computational workloads [106,107]. ASICs, like the ones seen
in Anton supercomputers, are designed exclusively for MD simulations. They provide
impressive performance improvements by optimizing every component of the simula-
tion process [105,108]. The hardware developments have increased the possible duration
of simulations to the millisecond range and made MD simulations more accessible to a
wider group of researchers. This has led to significant progress in drug discovery and
structural biology [105]. The continuous advancement of technology is anticipated to boost
the capabilities of MD simulations by integrating machine learning with specialized hard-
ware. This integration will enable more detailed and precise examinations of complicated
biomolecular processes.

4.3.2. Enhanced Sampling Techniques for Accessing Biologically Relevant Timescales

Enhanced sampling approaches play a crucial role in expanding the time span of
molecular dynamics (MD) simulations, allowing us to explore biologically significant time
scales that would otherwise be impossible due to computational limitations. These methods,
including metadynamics, replica-exchange molecular dynamics (REMD), and stochastic
resetting, aim to tackle the difficulty of surpassing high-energy obstacles and investigating
the complex energy patterns commonly found in biomolecular systems. Metadynamics
is a method that improves sampling by introducing a bias potential that changes over
time along specific collective variables. This helps to explore unusual events and calculate
differences in free energy [94]. REMD, in contrast, utilizes the simulation of numerous
duplicates of the system at various temperatures to enable effective sampling of diverse
conformations by promoting transitions over energy barriers. Recent advancements, such
as the integration of metadynamics with stochastic resetting, have shown substantial
improvement in sampling efficiency. This improvement is observed even when suboptimal
collective variables are employed, hence expanding the range of applications for these
methods [94]. These advanced sampling techniques not only enhance the precision of
MD simulations but also broaden their applicability in investigating intricate biological
processes such as protein folding, ligand binding, and allosteric regulation. As a result,
they contribute to the advancement of our comprehension of molecular mechanisms and
assist in the discovery of new drugs [109] (Figure 3A).

4.4. Machine Learning-Enhanced MD Simulations
4.4.1. Neural Network Potentials for Accurate and Efficient Simulations

Neural network potentials (NNPs) are a revolutionary method in molecular dynamics
(MD) simulations that offer both precision and efficiency in modeling intricate biomolecular
systems. NNPs utilize machine learning techniques to estimate potential energy surfaces,
providing a computationally efficient alternative to conventional quantum mechanical
calculations. This is especially advantageous for simulating extensive systems over ex-
tended durations. Recent technological developments, exemplified by TorchMD and its
successor TorchMD-Net 2.0, have shown that NNPs may reliably simulate molecules that
were not part of their training data. This demonstrates the ability of NNPs to generalize
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and perform well in diverse scenarios, indicating their robustness and versatility [110,111].
The models are trained utilizing data from accurate simulations or experimental observa-
tions, as demonstrated in the Differentiable Trajectory Reweighting approach. This method
incorporates experimental data to improve NNPs without the need to differentiate through
extensive MD simulations [112]. Moreover, incorporating active learning procedures, as
explored in recent research, improves the capacity of NNPs to forecast infrequent occur-
rences, like bond breaking, by continuously updating the model with fresh data obtained
through increased sampling approaches [113]. The inclusion of equivariance in neural
networks, which acknowledges the spatial symmetries of molecular systems, has enhanced
the precision and dependability of NNPs, rendering them a potent tool in both academic
research and industrial applications [114]. These advancements highlight the capacity
of NNPs to greatly enhance our comprehension of molecular dynamics, enabling major
progress in fields like drug discovery and materials science (Figure 3C).

4.4.2. AI-Driven Analysis of MD Trajectories

The utilization of artificial intelligence (AI) to analyze molecular dynamics (MD) tra-
jectories has emerged as a revolutionary method for comprehending intricate biomolecular
systems. This strategy harnesses machine learning (ML) to derive valuable insights from
extensive datasets. By incorporating machine learning techniques, including as dimension-
ality reduction, clustering, regression, and classification, it becomes possible to analyze and
interpret MD simulation data more efficiently. This overcomes the limitations of traditional
methods that mainly rely on manual inspection and intuition [115]. Unsupervised deep
learning techniques, such as graph neural networks, have shown promise in detecting
complex patterns in MD data with many dimensions. They can capture the dynamics
of protein–ligand interactions that are often difficult to analyze using traditional meth-
ods [116]. In addition, trajectory-based machine learning methods such as TrajML enable
the development of precise force fields by training on ab initio molecular dynamics data.
This improves the accuracy of MD simulations without the computational complexity asso-
ciated with conventional techniques [117]. AI-enhanced techniques enhance the accuracy
and efficiency of MD simulations and offer new opportunities to study protein dynamics,
ligand-binding affinities, and other important biological processes. This ultimately con-
tributes to the progress of drug discovery and materials science in fields such as [112,118].
The integration of AI with MD simulations is anticipated to better the modeling of intricate
biomolecular systems, leading to greater understanding and allowing the development of
innovative therapeutic approaches (Figure 3D).

5. Advances in Computational Docking and Drug Design
5.1. Protein–Ligand Docking
5.1.1. Flexible Docking Algorithms

Flexible docking methods have greatly improved the field of protein–ligand dock-
ing by enabling the dynamic modeling of ligands and protein targets. This has resulted
in more accurate predictions of binding modes and has made drug development easier.
Flexible docking is a docking method that allows for conformational changes in both the
protein and ligand. This is important for accurately mimicking biological interactions,
unlike typical rigid docking methods. Methods like as global optimization, step-by-step
building, and multi-conformer docking have been created to investigate a broad spectrum
of conformations, as observed in software applications like AutoDock Vina v1.2.5, DOCK
v6.12, and Mdock v2.0. Although these methods require significant computer resources,
they have demonstrated higher success rates in predicting the position of flexible ligands.
However, they do not consistently beat rigid docking in virtual screening due to difficulties
in accurately scoring the results [119]. Recent research highlights the importance of im-
proved scoring methods that can precisely consider the energetic effects of ligand flexibility,
including internal strain and changes in entropy [120,121]. Machine learning methods
are getting more and more incorporated to improve the accuracy of scoring and decrease
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the computational expenses, which shows potential for breakthroughs in flexible docking
approaches [120,122] (Figure 4A).
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Figure 4. This figure highlights various approaches that enhance the accuracy and reliability of drug
discovery processes by integrating computational models, experimental data, and deep learning
methods. It showcases how combining these elements can improve prediction performance, struc-
tural accuracy, and lead compound optimization. (A) A model integrating output data from various
software improves prediction performance, generates new evaluation metrics, and provides more
reliable information during the virtual screening stage. Input parameters include docking scores,
molecular (or component) poses, and representations of complexes. (B) Experimental data-based
libraries enable the use of various software tools. These libraries compile 3D structures obtained
through methods such as X-ray crystallography, electron microscopy, and NMR spectroscopy. By
leveraging actual data, software like AlphaFold and HADDOCK can achieve highly accurate struc-
tural predictions, ultimately contributing to the drug development process. (C) A deep learning
model for simulating the binding of lead compound candidates to target proteins can achieve superior
performance by integrating structure-activity relationship data with experimental data. Experimental
data can be sourced from databases like PDB, which mainly include data obtained from X-ray crys-
tallography, electron microscopy, and NMR spectroscopy. Ultimately, the integrated deep learning
model enhances selectivity and affinity during the lead compound optimization stage, improving
efficiency and accuracy at every step.
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5.1.2. Consensus Docking Approaches

The significance of consensus docking approaches in protein–ligand interactions
has been emphasized by recent advancements in computer docking and drug design.
These approaches have greatly enhanced the accuracy and dependability of predictions.
Consensus docking approaches, which merge the outcomes of several docking programs,
have been demonstrated to improve the results of virtual screening by averaging the
scores or ranks of individual molecules. This approach overcomes the restrictions of
using a single docking algorithm [123,124]. An example of this is the MetaDOCK method,
which combines the data from Auto-Dock4.2, LeDock, and rDOCK. It has been shown to
outperform individual programs in terms of scoring, posing, and screening protein–ligand
complexes [125]. Furthermore, new consensus measures such as the Exponential Consensus
Rank (ECR) have been created to overcome the drawbacks of conventional approaches.
These metrics provide enhancements by employing rank-based techniques instead of score-
based strategies, which are not influenced by score units and scales [123]. The integration
of machine learning approaches enhances the prediction capacities of consensus docking,
complementing these improvements. Consensus docking is anticipated to have a vital role
in the rational development of therapies as the science advances. It will offer a thorough
comprehension of molecular interactions and aid in the identification of new drugs [124]
(Figure 4A).

5.2. Protein–Protein Docking
5.2.1. Template-Based Docking Methods

Advancements in computational docking have greatly enhanced protein–protein
docking techniques, with template-based docking emerging as a highly efficient method.
Template-based docking utilizes the structural information obtained from known protein
complexes to forecast the interaction surfaces of novel protein pairings. This method
provides a more precise alternative to classic *ab initio* methods, but it requires the avail-
ability of suitable templates [126]. This method has been improved through the creation
of extensive template libraries, such as those produced from the Protein Data Bank (PDB),
which consist of several protein complexes that are used as benchmarks for docking pre-
dictions [127]. Recent research has shown that template-based approaches are useful in
capturing the conformational dynamics of protein–protein interactions, which is crucial
for accurately modeling these complexes. For instance, the combination of AlphaFold2
and template-based docking has demonstrated potential in accurately predicting protein
complexes. This is achieved by employing deep learning algorithms to generate structural
templates [128]. Furthermore, the utilization of paired interfacial residue restraints has
been demonstrated to enhance docking predictions, particularly in situations requiring
moderate to substantial conformational alterations [126]. With the continuous expansion
of computer resources and structural databases, template-based docking is anticipated to
have a growing significance in predicting protein–protein interactions. This will aid in
advancing medication design and enhancing our comprehension of intricate biological
processes (Figure 4B).

5.2.2. Integration of Experimental Data in Docking Protocols

Computational docking has made substantial progress in improving protein–protein
docking methods. This progress has been achieved by integrating experimental data, result-
ing in greater accuracy and dependability of docking predictions. Integrative methodolo-
gies that merge computational docking with experimental techniques, such as small-angle
X-ray scattering (SAXS), electron microscopy (EM), and nuclear magnetic resonance (NMR),
have demonstrated the ability to enhance docking success rates by offering supplementary
structural constraints and filtering capabilities [129,130]. The integrative docking method,
as reported by Trinh et al., employs simulated experimental data to enhance the accuracy
of docking. This approach showcases the possibility of integrating different experimental
methodologies to enhance the quality of docking models. In addition, techniques such as
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pyDockSAXS and HADDOCK have integrated SAXS data to improve and optimize docked
models. This integration allows for better prediction of protein–protein interactions by
utilizing low-resolution shape information [130]. By including evolutionary data, such as
sequence conservation and coevolution, the accuracy of docking predictions is improved.
This is achieved by gaining valuable information about the interface residues that are highly
important for the interaction [130]. The incorporation of various experimental datasets into
docking protocols is anticipated to have a significant impact on the advancement of the
field. This integration, made possible by the continuous development of computational
and experimental techniques, will enhance the accuracy of protein–protein interaction
modeling and facilitate drug discovery endeavors (Figure 4B).

5.3. Fragment-Based Drug Design
5.3.1. In Silico Fragment Growing and Linking Strategies

Advancements in fragment-based drug design (FBDD) have greatly improved the
methods of in silico fragment growing and linking. These strategies are crucial in converting
first fragment hits into powerful lead compounds. In silico methods, as reported by Moira
et al., utilize computational tools to aid in the process of optimizing fragments into lead
compounds. These methods integrate techniques such as hot spot analysis and structure–
activity relationship (SAR) predictions to guide the expansion of fragments [131]. ACFIS
2.0 incorporates dynamic fragment growth techniques, which facilitate the comprehensive
sampling of protein conformations. This enhances the precision of fragment binding
predictions and enables the creation of a wide range of compound libraries [132]. Moreover,
recent studies have emphasized the effectiveness of employing deep learning models in
fragment optimization to expedite the discovery of synthesizable molecules. These models
can predict bioactivity and pharmacokinetic features, thereby making the drug discovery
process more efficient [131]. By combining computational tactics with experimental data
from techniques like X-ray crystallography and NMR, the fragment growth and linking
processes can be improved. This ensures that the final compounds have the best possible
binding affinities and drug-like features [73]. With the increasing growth of computer
power and algorithm sophistication, in silico tactics are anticipated to have a progressively
vital part in the efficient development of new therapeutic medicines (Figure 4C).

5.3.2. Machine Learning in Fragment-Based Approaches

We utilized machine learning techniques to augment the in silico fragment growing
and linking tactics, resulting in a substantial improvement in the efficiency and accuracy
of drug discovery operations. Recent studies in de novo drug design have demonstrated
the successful application of machine learning models, namely those applying deep rein-
forcement learning (DRL), to optimize molecular structures. These algorithms learn how to
change existing molecules in order to enhance their attributes [133]. By incorporating geo-
metric deep learning frameworks such as fragment-based molecular expansion (FRAME),
fragment-based drug discovery (FBDD) has been enhanced by properly determining the
optimal locations for adding fragments to a ligand and assessing the geometric properties
of these additions. This has resulted in improved predictions of the affinity and selectivity
of the resultant molecules [134]. Moreover, the utilization of graph-based deep generative
models in conjunction with evolutionary learning procedures has been utilized to optimize
several objectives, including binding affinity and pharmacokinetic features, in the creation
of innovative compounds [135]. These machine learning-based methods not only simplify
the process of designing drugs based on fragments but also have the ability to efficiently
explore large chemical regions, thereby enabling the rapid synthesis of new therapeutic
agents. With the increasing computer power and advancement in algorithms, the incorpo-
ration of machine learning in FBDD is expected to have a significant impact on the future
of drug discovery. This integration will allow for more accurate and efficient development
of drug candidates.
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5.4. Structure-Based Virtual Screening
5.4.1. Pharmacophore Modeling and Shape-Based Screening

The merging of pharmacophore modeling with shape-based screening has greatly im-
proved structure-based virtual screening, leading to substantial breakthroughs in the drug
discovery process. Pharmacophore modeling is a technique that determines the specific
arrangement of features required for molecules to interact with each other. It has been very
useful in narrowing down large compound libraries to find potential matches. This has
been demonstrated in several studies that have used databases like ZINCPharmer for effi-
cient screening [136,137]. Shape-based screening enhances the analysis by emphasizing the
compatibility of the ligand and the target protein in terms of their three-dimensional shapes.
This approach has been improved with advanced algorithms like O-LAP, which enhances
docking enrichment by comparing shape similarities with inverted binding cavities [138].
By utilizing these methods, it becomes possible to identify a wide range of compounds
that have different structures but yet fulfill the requirements of pharmacophoric and form
criteria. This enables the exploration of various molecular scaffolds and the finding of
new potential drugs. Recent studies have emphasized the significance of machine learn-
ing in speeding up pharmacophore-based virtual screening. This allows for the effective
management of large chemical spaces and enhances the identification of potential ligand
candidates [139]. The advancement of computational tools and databases is likely to have
a significant impact on drug design and development. The synergy between pharma-
cophore modeling and shape-based screening is anticipated to play a crucial part in this
advancement [136,139] (Figure 4C).

5.4.2. AI-Driven Virtual Screening Pipelines

The drug development process has been greatly improved by AI-driven virtual screen-
ing pipelines, which have transformed structure-based virtual screening. These advance-
ments have led to increased efficiency and accuracy. AI-driven techniques utilize advanced
algorithms to assess the intricate three-dimensional structures of target proteins and ac-
curately forecast their interactions with prospective therapeutic molecules. This process
greatly simplifies the discovery of highly promising candidates from extensive chemical
libraries [140]. These technologies employ machine learning methods, namely graph neural
networks (GNNs), to forecast chemical features and enhance drug design by properly sim-
ulating intricate molecular interactions [140]. AI has been successfully incorporated into
virtual screening, resulting in faster drug discovery processes. One example is ZairaChem,
a platform that utilizes AI/ML models to conduct quantitative structure-activity/property
relationship modeling. This approach has significantly reduced attrition rates in experimen-
tal pipelines, as evidenced by research [141]. In addition, the use of AI-driven methods has
allowed for the creation of prediction models that may estimate binding affinities without
requiring substantial molecular docking. This has been demonstrated in studies where
machine learning has expedited pharmacophore-based virtual screening [139]. These ad-
vancements not only expedite the quick detection of lead compounds but also make strong
computational tools more accessible, thus enhancing the efficiency and cost-effectiveness of
drug development efforts [6]. The incorporation of AI technologies into virtual screening
pipelines is anticipated to boost the precision and speed of drug discovery, ultimately
resulting in the development of safer and more effective treatments [142].

6. Design and Development of Novel Proteins with Enhanced Functionalities
6.1. De Novo Protein Design
6.1.1. Computational Design of Protein Backbones

The field of de novo protein design has been greatly advanced by recent develop-
ments in computational techniques, namely in the design of protein backbones. These
advancements have enabled the production of new proteins with improved capabilities.
The advancement of complex algorithms, as described by MacDonald and Freemont, has
enabled the integration of backbone plasticity into design processes. This overcomes the
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constraints of using rigid backbone templates and broadens the range of potential protein
structures [143]. The ability to be flexible is extremely important for exploring a larger
range of sequences and obtaining more intricate functionality. This has been emphasized by
recent attempts to create new folds and functional sites using the extensive structural data
found in the Protein Data Bank (PDB) [144]. RFdiffusion, an advanced technique, utilizes
deep learning to generate novel protein backbones. This is achieved by repeatedly refining
random residue frames. The results of this approach show substantial enhancements in
the design of proteins with specific structural and functional needs [145]. In addition, the
use of machine learning models, such as AlphaFold2 and ProteinMPNN, has significantly
enhanced the effectiveness and achievement rates of de novo protein design. These models
effectively forecast and optimize both the backbone structures and their related sequences,
leading to improved efficiency [146]. These advancements not only improve our capacity
to create proteins with specific functions but also open up possibilities for future use in
biomedicine and synthetic biology, where precise manipulation of protein structure and
function is crucial [144,147] (Figure 5A).
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Figure 5. Enhanced functionalities of proteins through computational protein design and devel-
opment. (A) Advancements in computational techniques, including deep learning models like
RFdiffusion, AlphaFold2, and ProteinMPNN, have significantly improved de novo protein design.
Zernike polynomials, Molecular Surface Interaction Fingerprinting (MaSIF), and molecular dynamics
techniques help optimize protein–protein interactions. (B) ThermoMPNN is a computational tool
that uses a deep neural network trained to predict stability changes in point mutations of a given
protein with an initial structure. DeepEvo is an AI-based protein engineering strategy using a protein
language model that can predict thermostability variants. (C) Allosteric transition simulations using
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multiscale modeling and Markov state models can predict protein functions, enabling the creation of
customized allosteric regulatory proteins and the development of new protein functions. (D) Deep
learning-based computational tools like Rosetta precisely modify protein structures to enhance
binding capabilities, enabling the de novo protein design with customized binding properties.
(E) Computational design for domain fusion and chimeric proteins uses structural databases and
computer technologies such as machine learning to generate multifunctional proteins.

6.1.2. Optimization of Protein–Protein Interfaces

Computational approaches have greatly improved the optimization of protein–protein
interfaces through de novo protein design. These methods allow for exact engineering
of molecular interactions, leading to greater functioning. Methods such as the use of
Zernike polynomials have been created to represent the shape and electrical characteristics
of binding sites. These methods enable the improvement of the compatibility of protein
surfaces that interact with each other [148]. This method has effectively been used to
create protein mutants that have stronger binding affinities. This has been proved in
research that focused on the interaction between Ferritin and the Transferrin Receptor [148].
In addition, the incorporation of deep learning frameworks, such as Molecular Surface
Interaction Fingerprinting (MaSIF), has introduced a new approach for capturing the
essential geometric and chemical characteristics involved in protein–protein interactions.
This method has greatly aided in the development of novel protein binders with high
specificity and affinity [149]. The use of Monte Carlo simulations and molecular dynamics
helps validate and improve interface designs, ensuring that altered proteins attain the
expected functional outcomes [148]. As these approaches progress, they provide significant
potential for use in synthetic biology and biomedicine. This is because they allow for the
creation of proteins with customized interactions, which can lead to the development of
new therapies and biomaterials [146,149] (Figure 5A).

6.2. Protein Stability Engineering
6.2.1. Computational Prediction of Stabilizing Mutations

The latest developments in computational methods for predicting stabilizing mu-
tations have greatly improved the field of protein stability engineering. However, the
scarcity of these mutations still poses hurdles. ThermoMPNN, a type of computational tool,
has demonstrated potential by obtaining a precision rate of 68% in predicting stabilizing
mutations for proteins like the bacterial toxin CcdB. However, it has only shown small
increases in thermal stability, with an increase of approximately 1 ◦C in the melting temper-
ature [150]. Nevertheless, these methods frequently encounter difficulties when dealing
with more intricate targets, such as influenza neuraminidase, underscoring the necessity for
enhanced predictive precision [150]. Research has highlighted the drawbacks of existing
techniques, pointing out that whereas several computational tools successfully forecast
changes that cause destabilization, they struggle to reliably detect variants that promote
stabilization [151]. Current endeavors have concentrated on amalgamating empirical data
with computational forecasts to augment precision, as exemplified by logistic regression
models that were trained on yeast surface display libraries. These models achieved a
precision rate of 90% and a 3 ◦C elevation in thermal stability for CcdB [150]. In addi-
tion, RaSP, a type of deep learning model, has been created to quickly forecast changes
in stability. This provides a scalable approach for analyzing protein variants on a wide
scale. However, there are still difficulties in reliably predicting mutations that enhance
stability [152]. The progress made in merging computational and experimental methods
highlights the potential for improving the accuracy of predicting stabilizing mutations.
This is essential for protein engineering and the creation of new proteins with improved
functions [150–152] (Figure 5B).
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6.2.2. Design of Thermostable Proteins

Computational techniques have played a significant role in driving recent improve-
ments in the design of thermostable proteins. These approaches have made it possible
to engineer proteins with improved stability, which is beneficial for a range of industrial
and biological uses. FireProt and its updated version, FireProt 2.0, are tools that have
played a crucial role in automating the process of designing thermostable proteins. They
achieve this by combining energy- and evolution-based methods to predict mutations that
enhance stability. As a result, it becomes possible to create multiple-point mutants that
exhibit improved thermal stability [153,154]. These platforms utilize both sequence and
structural data, applying advanced algorithms to reduce antagonistic effects caused by
mutations and improve stability without compromising function [153,154]. In addition,
the utilization of deep learning models, such as DeepEvo, has made it possible to forecast
thermostable variations by simulating evolutionary processes. This offers a new method
for protein engineering that avoids the time-consuming old techniques. Molecular dy-
namics simulations have been important in comprehending the stability and dynamics
of engineered proteins, providing valuable knowledge about the structural foundation
of thermostability and driving the improvement of protein interfaces to promote func-
tionality [155]. In addition, ancestral sequence reconstruction has become a promising
approach that utilizes phylogenetic analysis to revive ancient proteins with naturally stable
structures. This expands the range of tools that may be used to build strong proteins
for commercial and medicinal purposes [156,157]. These computational advancements
enhance the effectiveness of designing proteins that can withstand high temperatures and
also create opportunities for their use in demanding conditions, thus progressing the area
of protein engineering (Figure 5B).

6.3. Protein Functionalization
6.3.1. Computational Design of Allosteric Regulation

The latest progress in the computational design of allosteric regulation has greatly
improved the capacity to manipulate proteins and create new functions. This research has
specifically concentrated on optimizing allosteric sites to achieve precise control over pro-
tein activity. The utilization of computational tools, as described by Duan et al., has played
a crucial role in understanding the routes of allosteric communication. These methods have
allowed for the identification and creation of allosteric sites that can be specifically targeted
for the purpose of discovering new drugs [158]. These approaches employ bioinformat-
ics and machine learning to simulate the dynamic and network-based characteristics of
allosteric control. They offer valuable insights into the structural alterations that enable
allosteric signaling [159,160]. Recent research has utilized multiscale modeling and Markov
state models to simulate allosteric transitions. This approach provides a quantitative frame-
work for predicting how mutations or ligand binding can affect protein function [159].
The combination of computational and experimental methods has improved these mod-
els, enabling the creation of proteins with improved allosteric properties. This has been
demonstrated through the manipulation of allosteric networks to enhance enzyme activity
and biosensor performance [161]. As these computational tools progress, they offer the
potential to enhance the range of methods for creating proteins with customized allosteric
regulation. This, in turn, will contribute to the advancement of synthetic biology and
therapeutic development (Figure 5C).

6.3.2. Engineering Proteins with Novel Binding Properties

The development of proteins with new binding properties has been greatly influenced
by the use of computational and experimental methods to improve the specificity and
strength of protein interactions. Computational tools like Rosetta have played a crucial role
in the development of proteins with novel binding sites. These tools enable precise modifi-
cations to protein structure, resulting in improved binding capacities. Recent research on
de novo protein design have emphasized the significance of these advancements [3,144].
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These technologies employ algorithms that forecast the most effective interactions between
proteins and their targets, enabling the development of proteins with customized binding
properties for particular applications, such as therapeutic targets or biosensors [162]. Fur-
thermore, machine learning techniques have been included in protein design in order to
forecast and enhance binding interactions. This is achieved by utilizing extensive datasets
from the Protein Data Bank to guide design choices and enhance precision [144]. Directed
evolution is an experimental technique that complements computational methods. It in-
volves iteratively refining protein sequences to acquire specific binding qualities. This
process enhances the functionalization of proteins for various biomedical purposes [162].
The integration of these computational and experimental methods not only speeds up the
progress of proteins with unique binding characteristics but also broadens their potential
for use in areas such as pharmaceutical development and synthetic biology [162]. As these
approaches progress, they provide the potential to improve the accuracy and effectiveness
of protein engineering, leading to new and creative solutions in the fields of health and
biotechnology [144,163] (Figure 5D).

6.4. Designing Multi-Functional Proteins
6.4.1. Computational Approaches for Domain Fusion

Advancements in computational methodologies for domain fusion have greatly im-
proved the design and creation of multi-functional proteins with new binding characteristics
and capabilities. The fusion of protein domains enables the formation of chimeric proteins
possessing distinctive combinations of functionalities. This process largely depends on
precise predictions of both structure and function, as demonstrated in recent research
utilizing AlphaFold II and other modeling techniques [164]. Computational approaches
encounter difficulties in accurately anticipating the spatial orientation and interactions
of fused domains, but they provide a structure for investigating new protein structures
that do not exist in nature. Relational algebra is suggested as a potent technique for de-
tecting functionally connected proteins in domain fusion analysis. This approach utilizes
extensive domain databases like Pfam and InterPro to anticipate domain fusions and their
potential functional associations [165]. Furthermore, the design of inter-domain linkers
plays a vital role in preserving the structural integrity and functionality of fused proteins.
Recent investigations have identified the ideal features of linkers that prevent undesirable
interactions and improve protein stability [166]. Deep learning techniques, like those used
in DeepAssembly, enhance the prediction of multi-domain protein structures by properly
simulating inter-domain interactions and boosting the accuracy of domain assembly [167].
These computational breakthroughs not only make it easier to design proteins with im-
proved functions, but also broaden the range of possible uses for modified proteins in areas
like drug discovery and synthetic biology (Figure 5E).

6.4.2. Rational Design of Chimeric Proteins

Computational techniques have greatly advanced the rational design of chimeric pro-
teins, which entails strategically fusing different protein domains to form multifunctional
proteins. These methods utilize knowledge about the structure and function of proteins
to direct the merging of protein domains, with the goal of improving or introducing new
functions. For instance, the utilization of computational tools such as Protlego simplifies
the process of designing and analyzing chimeric proteins by automating the selection and
combining of protein fragments. This is accomplished by considering evolutionary con-
servation and structural compatibility [168]. This strategy has been confirmed by effective
applications in producing proteins with enhanced stability and catalytic capabilities, as
shown in studies that focus on chimeric enzymes combining domains to boost biocatalytic
efficiency [169]. In addition, the combination of machine learning and structural databases,
including the Protein Data Bank, enables precise forecasting of domain interfaces and the
enhancement of linker regions. These regions are essential for preserving the structural
integrity and functionality of the chimeras [164]. These developments not only simplify the
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design process but also broaden the possible uses of chimeric proteins in the creation of
therapies, synthetic biology, and industrial biotechnology. With the ongoing advancement
of computational tools, there is a potential for significant improvement in the accuracy
and effectiveness of chimeric protein design. This progress opens up opportunities for
groundbreaking solutions in diverse scientific disciplines (Figure 5E).

7. Case Studies and Applications in Biotechnology and Pharmaceuticals
7.1. Engineered Antibodies and Immunotherapeutics
7.1.1. Computational Design of Antibody–Antigen Interfaces

The use of advanced algorithms in computational design has greatly improved the
production of modified antibodies and immuno-therapeutics by enhancing the prediction
and optimization of binding interactions in antibody–antigen interfaces. The utilization of
computational approaches, as exemplified by Norman et al., involves the use of structural
modeling to discover crucial residues in antibody-antigen interactions. This process aids
in the development of antibodies with enhanced specificity and affinity [170]. Machine
learning techniques, such as Parapred, which is a deep learning algorithm, have been used
to forecast paratope areas. This has resulted in enhanced precision in antibody design by
specifically targeting important binding sites [78]. By combining computational method-
ologies with high-throughput sequencing data, it has been possible to create more potent
therapeutic antibodies. This approach allows for the quick evaluation and enhancement of
potential antibody candidates [171]. Moreover, the application of geometric deep learning
has enhanced the ability to forecast protein interaction surfaces, offering valuable knowl-
edge about the structural factors that influence antibody–antigen binding and assisting in
the development of innovative antibody forms [78]. The computational breakthroughs not
only simplify the process of designing antibodies but also broaden their potential for use in
treating many diseases. This is evident from the growing number of computationally pro-
duced antibodies that are being tested in clinical studies [172]. As the field progresses, these
methods hold the potential to improve the accuracy and effectiveness of antibody-based
treatments, aiding in the advancement of advanced immunotherapies (Figure 6A).

7.1.2. In Silico Optimization of Antibody Stability and Specificity

The latest progress in the computational optimization of antibody stability and speci-
ficity has greatly improved the creation of engineered antibodies and immunotherapeutics.
This is achieved by using computational approaches to simplify and increase the process of
designing antibodies. The computational approach, as outlined by Norman et al., employs
structural modeling to forecast and improve the stability and specificity of antibodies. The
main focus is on optimizing specific residues at the interface between the antibody and
antigen to enhance binding strength and decrease the likelihood of immune response [170].
Deep learning algorithms, such as DeepAb, have been utilized to directly forecast the
structures of antibody Fv based on their sequences. This allows for the creation of im-
proved variants with higher thermostability and affinity, eliminating the requirement for
considerable experimental data [173]. These models combine high-throughput sequencing
data and machine learning to quickly evaluate and improve antibody candidates, result-
ing in a significant reduction in the time and cost required by traditional experimental
methods [171]. In addition, the incorporation of artificial intelligence in the process of
creating antibodies has made it possible to anticipate the specificity of antigens based on
antibody sequences. This has enabled the production of synthetic antibodies that have
enhanced binding properties [171]. As these computational techniques advance, they pro-
vide the potential to improve the accuracy and effectiveness of antibody optimization. This
progress will facilitate the creation of next-generation immunotherapeutics with enhanced
therapeutic characteristics (Figure 6A).
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Figure 6. Protein engineering applications using computational approaches in biotechnology and
pharmaceuticals. (A) High-throughput sequencing data and geometric deep learning can enhance
antibody binding prediction capabilities. Computational technologies such as deep learning en-
able sequence-based antibody design, providing advanced approaches to antibody engineering.
(B) Computational and structural methods, such as deep learning and quantum mechanical molecu-
lar dynamics simulations, have enabled the prediction of atomic-level movements of biomolecules,
leading to improvements in the applicability, accuracy, and specificity of protein-based biosen-
sors. (C) Advancements in computational technologies such as machine learning, combined with
high-throughput screening, have enabled improved enzyme engineering with enhanced catalytic
properties, leading to increased stability, activity, and selectivity of enzymes. (D) Computational
technologies play a crucial role in therapeutic protein design, particularly in predicting peptide-MHC
binding affinity. These methods not only advance personalized medicine but also accelerate the
clinical application of protein therapeutics.

7.2. Biosensors and Diagnostics
7.2.1. Rational Design of Protein-Based Biosensors

The latest progress in the logical development of protein-based biosensors has greatly
improved their use in biotechnology and diagnostics. This has been achieved by utiliz-
ing computational and structural methods to boost the binding specificity and sensitivity.
Computational techniques, as described by Kaczmarski et al., employ knowledge about
the structure and evolution of biosensors to design sensors that have enhanced ability to
bind to specific molecules and exhibit improved fluorescence properties. This allows for
accurate identification of small molecules in complicated biological settings [174]. The
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study published in Nature showcases the potential of de novo designed protein switches
in the development of modular and tunable biosensor platforms. These protein switches
can sense a wide range of targets by linking conformational changes to sensitive outputs,
thereby enhancing the versatility of biosensor applications [175]. Moreover, the incorpora-
tion of synthetic biology methods has enabled the development of genetically engineered
biosensors that can actively control metabolic pathways, providing the ability to monitor
and manipulate cellular processes in real-time. This has been demonstrated in research
involving biosensors based on transcription factors [176]. These improvements enhance
the functionality and adaptability of protein-based biosensors, making them suitable for
various applications like environmental monitoring, healthcare diagnostics, and industrial
biotechnology. The advancement of computational tools and synthetic biology is antic-
ipated to boost the precision and efficiency of protein-based biosensors, facilitating the
development of creative solutions for intricate analytical problems.

7.2.2. Computational Approaches for Enhancing Sensor Sensitivity and Specificity

Advancements in computational techniques have greatly enhanced the sensitivity
and specificity of biosensors, leading to their increased use in the biotechnology and phar-
maceutical industries. The enhancements are primarily propelled by the incorporation of
sophisticated algorithms and simulations that enhance the efficiency of sensor functionality.
The use of molecular dynamics simulations and quantum mechanics computations has
played a crucial role in accurately predicting the behavior of biomolecules at the atomic
level. This enables the precise adjustment of biosensor components to achieve certain
performance characteristics [177,178]. Computational fluid dynamics has been used to
improve the advancement of microfluidic devices, which are important for enhancing the
sensitivity and specificity of biosensors by regulating fluid dynamics and analyte transport.
In addition, researchers have used hybrid computational methods that combine molecular
docking and virtual screening to discover new sensing components that have both high
specificity and affinity. This has enabled the creation of biosensors that can detect low levels
of target substances in complex biological samples [179]. Machine learning and artificial
intelligence have improved biosensor design, providing new opportunities to enhance the
predictive capability and precision of computational models, hence facilitating the creation
of more advanced biosensing devices [178]. As these computational tools progress, they
hold the potential to enhance the field of biosensors, making them more efficient for use in
healthcare diagnostics, environmental monitoring, and food safety (Figure 6B).

7.3. Industrial Enzymes
7.3.1. Computational Engineering of Enzymes for Biocatalysis

Computational engineering of industrial enzymes for biocatalysis is an advanced
field in biotechnology and pharmaceuticals that aims to improve enzyme functioning
for industrial use. Improvements in machine learning have had a substantial impact on
enzyme engineering. These improvements provide tools to predict interactions between
enzymes and substrates, which is essential for designing enzymes with improved cat-
alytic characteristics [180]. By combining computational approaches with high-throughput
screening, researchers may effectively explore large enzyme design spaces. This enables
the synthesis of stable and selective biocatalysts that are essential for cost-effective bio-
based processes [87]. In addition, the combination of molecular dynamics simulations and
ML models allows for a detailed understanding of enzyme processes at the atomic level.
This enables precise adjustments that improve enzyme stability and activity in industrial
settings. The combination of computational and experimental methods has resulted in
the successful modification of enzymes to perform new tasks, increasing their usefulness
in drug production and environmental cleanup [181]. These advancements highlight the
significant impact of using computational enzyme engineering to develop environmentally-
friendly and effective biocatalytic processes. This, in turn, enhances the capacities of the
biotechnology and pharmaceutical industries (Figure 6C).
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7.3.2. Design of Enzymes for Biodegradation and Environmental Applications

Enzyme design for biodegradation and environmental applications is a rapidly grow-
ing area in biotechnology, propelled by breakthroughs in protein engineering and compu-
tational techniques. A recent study emphasizes the utilization of directed evolution and
rational design to augment the enzymatic capacity to break down persistent pollutants, in-
cluding plastics and other synthetic substances, aiding in environmental preservation [182].
Enzymes that have been specifically designed have been enhanced to break down polyethy-
lene terephthalate (PET), a commonly used plastic. This has been achieved by improving
their ability to speed up chemical reactions and their ability to remain stable over time.
This demonstrates the promise of using biological catalysts in recycling and managing
garbage [183]. In addition, the combination of computational modeling and experimental
methods has made it possible to create enzymes that can work under harsh environmental
circumstances, thereby expanding their usefulness in various industrial processes [184].
These advancements highlight the significant impact of enzyme engineering in tackling en-
vironmental issues, providing sustainable methods for managing pollutants and recovering
resources (Figure 6C).

7.4. Therapeutic Protein Design
7.4.1. Computational Approaches for Improving Protein Drug Properties

The field of therapeutic protein design has experienced notable progress, especially
with the incorporation of computational methods that improve the feasibility of devel-
oping protein-based therapeutics. Computational methods, such as molecular dynamics
and artificial intelligence, play a crucial role in tackling important aspects of therapeutic
proteins, such as affinity, selectivity, stability, and solubility. These factors are essential
for the successful application of these proteins in clinical settings [185]. These techniques
allow for the anticipation and enhancement of protein structures, making it easier to create
proteins with enhanced therapeutic characteristics. For example, deep learning algorithms
have been used to forecast protein interactions and improve sequences to decrease im-
munogenicity and increase stability. These computational solutions not only make the
medication development process more efficient but also save expenses by reducing the
necessity for large experimental trials [6]. The collaboration between computational scien-
tists and pharmaceutical developers is essential for closing the divide between theoretical
models and real applications, guaranteeing the appropriate utilization of computational
tools in drug discovery [185]. As these technologies continue to advance, they hold the
potential to greatly transform the process of designing therapeutic proteins. They offer
more accurate and effective methods for building new protein-based therapeutics [147]
(Figure 6D).

7.4.2. In Silico Prediction of Immunogenicity and Optimization of Protein Therapeutics

The topic of in silico prediction of immunogenicity and optimization of protein ther-
apeutics is fast advancing, utilizing computational technologies to improve the safety
and effectiveness of biologic medications. These methods are crucial for detecting pos-
sible immune-stimulating regions in protein-based treatments, enabling their alteration
or removal prior to use in clinical settings. Machine learning algorithms have been re-
cently combined with classical bioinformatics methods to identify T-cell epitopes. This
is accomplished by analyzing peptide–MHC binding affinities, which is important for
evaluating immunogenic potential [186,187]. The utilization of extensive databases such
as the Immune Epitope Database (IEDB) has enabled the refinement of these algorithms,
enhancing their precision and suitability across various HLA haplotypes [186]. In addition,
computational techniques are used to enhance protein sequences by minimizing their
immunogenicity while ensuring their therapeutic effectiveness. This approach tackles
obstacles such as MHC polymorphism and the intricate nature of peptide–MHC interac-
tions [186,187]. Recent advances in deep learning have improved T-cell receptor (TCR)
modeling and design. The TCRmodel2, created by Yin et al., advances deep learning-based
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high-resolution TCR recognition modeling [188]. AlphaFold is adapted to model TCR–
peptide–MHC complexes from sequence data, improving accuracy over earlier methods.
Sidhom et al.’s DeepTCR framework used deep learning to reveal TCR sequence-based
characteristics [189]. This combination of unsupervised and supervised learning algorithms
learns joint TCR representations from CDR3 sequences and V/D/J gene use to model
complex TCR sequencing data. Ribeiro-Filho et al. compared ProteinMPNN and ESM-IF to
standard physics-based TCR design methods to investigate structure-based deep learning
algorithms. These methods may help create fixed-backbone TCRs that bind MHC-presented
target antigenic peptides. Katayama et al. also reviewed machine learning approaches to
TCR repertoire analysis, noting the growing use of deep learning for antigen specificity
prediction and TCR sequence synthesis [190]. TCR modeling and design is evolving rapidly,
with new methods like TCR-VALID by Widrich et al. developing capacity-controlled dis-
entangling variational autoencoders for meaningful continuous representations of TCR
sequences [191]. In silico methodologies not only optimize the drug development process
by minimizing the requirement for extensive in vitro and in vivo testing but also facilitate
the tailoring of protein treatments to unique patient profiles, hence boosting personalized
medicine [187]. As these technologies progress, they have the potential to greatly decrease
the failure rates of protein therapies due to immunogenicity, therefore speeding up their
journey towards clinical application [187] (Figure 6D).

8. Challenges and Future Perspectives
8.1. Integration of Multi-Scale Modeling Approaches

The incorporation of multi-scale modeling methods in computational protein engineer-
ing poses obstacles and offers future prospects for enhancing molecular design. Multi-scale
modeling is crucial for understanding the intricate dynamics of protein systems at several
levels, ranging from electronic to macroscopic, by integrating atomistic, coarse-grained,
and continuum models. This methodology overcomes the constraints of conventional
methods that face difficulties in dealing with the extensive range of protein conformations
and the lengthy simulation times needed for in-depth protein investigations [192]. Machine
learning has recently made significant progress in enhancing multi-scale modeling. This
progress has resulted in improved prediction accuracy and the ability to efficiently explore
protein design spaces [193]. These computational tools aid in the discovery of protein
structures and interactions, which are essential for the development of proteins with new
activities and enhanced stability. Nevertheless, there are still obstacles to overcome when
it comes to merging data from various scales and guaranteeing that models precisely de-
pict biological phenomena. Future prospects involve the creation of hybrid models that
effortlessly combine different scales, aided by advancements in processing power and
algorithms [6]. As these models advance in complexity, they have the capacity to transform
protein engineering by offering comprehensive understanding of protein activity, thereby
expediting the creation of new medicines and biomaterials (Figure 7B).

8.2. Addressing the Limitations of Current Force Fields

Overcoming the constraints of existing force fields in computational protein engineer-
ing and molecular design is a crucial task that greatly affects the precision and depend-
ability of molecular simulations. Conventional force fields commonly utilize stationary
charges located at the atoms, which may not accurately capture the changing behavior
of electrostatic interactions. As a result, this can lead to mistakes when simulating pro-
tein folding and interactions [194,195]. Polarizable force fields, such as the Drude and
AMOEBA models, have been developed to incorporate electronic polarization effects.
These improvements aim to enhance the accuracy of representing molecular interactions
and energy landscapes [194,196]. Nevertheless, these models require significant computa-
tional resources and can be very responsive to initial conditions, which presents obstacles to
their extensive implementation [195,196]. Integrating both polarizable and non-polarizable
elements in hybrid models is a potential strategy to achieve a compromise between ac-



Molecules 2024, 29, 4626 30 of 40

curacy and computational efficiency [194,195]. Furthermore, the application of machine
learning and automated fitting techniques has demonstrated promise in improving force
field parameters by utilizing extensive datasets of experimental and simulation data [194].
The increasing computer capacity allows for the integration of advanced force fields with
multi-scale modeling techniques. This integration is expected to improve the accuracy
of simulations, making it easier to design proteins with new functionalities and better
stability [185] (Figure 7A).
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Figure 7. Challenges and future perspectives in computational approaches to protein engineering
applications. (A) Current force fields have limitations in accurately capturing changes in electrostatic
interactions, which impacts the accuracy and reliability of simulations. Integrating computational
tools with experimental validation is essential for enhancing the accuracy and efficiency of protein
design. Ethical issues related to bias, transparency, and accountability arise in the application of
AI in protein engineering. (B) The integration of multi-scale modeling approaches is essential
for understanding the complex dynamics of protein systems and developing proteins with new
functions, and the advancement of these models holds great potential in the field of computational
protein design. The combination of computational protein design and synthetic biology enables the
development of innovative proteins.

8.3. Bridging the Gap between Computation and Experiment

The integration of modern computational tools with empirical validation is crucial for
bridging the gap between computational and experimental approaches in protein engineer-
ing and molecular design. This integration aims to enhance the design and functionality of
proteins. Advancements in computational technologies, including machine learning and
artificial intelligence, have greatly enhanced the accuracy of predicting protein structures
and identifying functional areas. This has made it easier to tailor protein functionalities
with more precision [3,197]. Nevertheless, due to the intricate nature of biological systems
and the constraints of computer models, it is essential to conduct experimental verifica-
tion in order to guarantee the dependability of these forecasts [198]. The emergence of
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platforms such as Mutexa showcases the endeavor to establish intelligent protein engi-
neering ecosystems that integrate high-throughput computation with bioinformatics and
quantum chemistry. This integration aims to simplify the process of identifying potential
protein variants that show promise [4]. Furthermore, the combination of computational
and experimental methods might expedite the design process by enabling the development
of targeted libraries for laboratory evolution, thus minimizing the extensive sequence
space that requires sampling [199]. With increasing computer power and advancement
of algorithms, the combination of computation and experimentation has the potential to
greatly impact protein engineering. This could result in the creation of new proteins that
have improved stability, activity, and therapeutic properties [147] (Figure 7A).

8.4. Ethical Considerations in AI-Driven Protein Engineering

The incorporation of AI into protein engineering and molecular design gives rise to
noteworthy ethical concerns that want attention in order to guarantee responsible and
advantageous progress in the domain. The utilization of AI in protein engineering has
significant promise for the creation of innovative medicines and biomaterials. However, it
also presents concerns of bias, transparency, and accountability. The main ethical concerns
with AI systems are centered around their ability to perpetuate pre-existing biases present
in the training data, resulting in unfair outcomes in healthcare applications [200,201].
Furthermore, the capacity to provide clear explanations for AI models is essential in
order to uphold trust and guarantee that AI-driven decisions in protein design are visible
and comprehensible to stakeholders [202]. Researchers and developers are encouraged
to actively participate in ethical frameworks and principles that prioritize fairness, the
prevention of harm, and the respect for human autonomy in the implementation of AI
applications [201,203]. Additionally, it is imperative for scientists, ethicists, and legislators
to work together in order to establish strong governance systems that effectively tackle
ethical dilemmas and encourage the conscientious application of AI in protein engineering.
In order to maintain a balance between innovation and societal values and to prevent the
misuse of AI technology, it is crucial for the field to engage in ongoing debate and adjust
ethical standards as it evolves [204] (Figure 7A).

8.5. Emerging Opportunities in Synthetic Biology and Protein Design

The integration of modern computational tools is driving emerging opportunities in
synthetic biology and protein design, which have transformational potential in the fields of
biotechnology and molecular design. Synthetic biology, a field that focuses on creating new
biological components and systems, is using machine learning more and more to improve
protein engineering. This allows for the development of proteins with new functions and
better performance in industrial and medical applications [205]. Cell-free protein synthesis
(CFPS) is a promising technique that enables the quick prototyping and manufacturing of
proteins without the limitations of living cells. This method facilitates the investigation of
novel protein designs and functionalities [206]. Moreover, the merging of synthetic biology
and metagenomics is creating opportunities to construct intricate biological systems, hence
improving our capacity to control and exploit microbial populations for biotechnological
purposes [207]. However, there are still difficulties in expanding the use of these tech-
nologies and making sure that they are available to a wider group of academics. This is
crucial in order to fully utilize their potential in addressing global issues like sustainable
development and healthcare. [197,208]. The advancement of computational tools and
their integration with experimental methodologies is paving the way for groundbreaking
innovation and application of protein design in synthetic biology across several domains
(Figure 7B).

9. Conclusions

The domain of computational protein engineering and molecular design is swiftly pro-
gressing, propelled by improvements in machine learning, molecular modeling techniques,
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and high-performance computing. This study has emphasized the wide range of applica-
tions and creative methods in this rapidly evolving subject, including AI-powered protein
design, molecular dynamics research, and computational drug discovery. In the future, it
will be essential to combine these computational methods with experimental validation in
order to fully realize their promise. The ongoing advancement of increasingly precise and
effective algorithms, together with the growing accessibility of biological data, holds the
potential to expedite the identification and creation of new proteins and molecules with
improved capabilities. The research showcased in this Special Issue of Molecules highlights
the significant influence of computational methods on protein engineering and molecular
design. As these methodologies progress and develop further, they will surely have a
growing impact on our comprehension of biological systems and the creation of inventive
solutions to urgent difficulties in biotechnology, medicine, and other fields.
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