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Abstract: Amino acids (AAs), serving as the primary monomer of peptides and proteins, are widely
present in nature. Benefiting from their inherent advantages, such as chemical diversity, low cost,
ease of modification, chirality, biosafety, and bio-absorbability, AAs have been extensively exploited
to create self-assembled nanostructures and supramolecular soft materials. In this review article, we
systematically describe the recent progress regarding amino acid-derived assembly and functional
soft materials. A brief background and several classified assemblies of AAs and their derivatives
(chemically modified AAs) are summarized. The key non-covalent interactions to drive the assembly
of AAs are emphasized based on the reported systems of self-assembled and co-assembled AAs. We
discuss the molecular design of AAs and the general rules behind the hierarchical nanostructures.
The resulting soft materials with interesting properties and potential applications are demonstrated.
The conclusion and remarks on AA-based supramolecular assemblies are also presented from the
viewpoint of chemistry, materials, and bio-applications.
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1. Introduction

Biomolecular assembly has aroused considerable research interests, due to its recog-
nized importance in the fabrication of hierarchical nanostructures and biomaterials toward
various applications [1–3]. Typical examples include DNA- [4], protein- [5], and peptide-
based supramolecular assemblies [6]. Among them, peptides are one of the unique building
blocks, owing to their rich chemical diversity and diverse biofunctions [7,8]. Specifically,
the short oligopeptides (below 10 amino acid residues), consisting of relatively simple
structures, hold promising potential in the development of cost-efficient biomaterials from
the viewpoint of application [9]. For this purpose, ultra-short oligopeptides (less than
3 amino acid residues) have been intensively designed, and their predictable secondary
structures have been leveraged to construct controllable nanostructures and bioactive soft
materials [10,11]. As the primary monomer of peptides, amino acids (AAs) are minimalistic
segments and also ideal candidates for the construction of biomaterials due to their inher-
ent biocompatibility, bio-absorbability, low cost, and ease of production [12,13]. However,
most of the natural AAs (except aromatic AAs) cannot form ordered molecular packing in
solution because the intermolecular affinity among the natural AAs is normally insufficient
to rival the solvation effect, leading to association failure in solution [12]. To improve
the assembling ability of AAs, two parallel strategies have been developed. One is the
co-assembly between AAs and other chemical species [14,15], which greatly unlocks the
potential of AAs in the development of AA-based supramolecular nanostructures and soft
materials because a broad catalogue of organic and inorganic species can be combined with
AAs via very flexible non-covalent interactions. Another is the chemical modification of
natural AAs by conjugating aromatic or aliphatic segments with AAs at either the N- or
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the C-terminus [16–18]. The resulting AA derivatives show strong intermolecular affin-
ity and stacking propensity in solutions, ensuring the formation of thermodynamically
stable assemblies.

Over the past two decades, a great deal of research has been pursued to fabricate
AA-based supramolecular assemblies with different architectures, including spherical
vesicles and droplets, one-dimensional (1D) rods, fibers, ribbons, tubes, two-dimensional
(2D) flakes and plates, and three-dimensional (3D) networks. On the structural basis of
the assemblies, emphasis has been placed on the driving forces and their synergistic effect,
the chiral characters, the dynamic features, the value-added properties, and potential
applications. This article offers a comprehensive overview of the recent advances in the
development of single AA-derived supramolecular assembly and soft materials. Systems
containing two or more AAs are out of the scope of this review, but we encourage interested
readers to consult the related literature [19–24]. The basic issues we address are shown in
Figure 1. We will classify the systems into three parts. The first part covers the natural AA
assemblies, in which the natural AAs with aromatic or alkaline residues have the ability
to form stable assemblies via self-assembly or co-assembly. The second part involves the
self-assembly of the most widely studied AA derivatives. We describe the influence of
hydrophobicity, volume fraction, and the topology of the substituents on the self-assembly
behavior of AA derivatives. The third part is related to the co-assembly of AA derivatives.
Diverse combinations of AA derivatives and chemical species will be demonstrated. This
review focuses on the driving forces, assembled structures, dynamic responsiveness, and
advances in functional soft materials.
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Figure 1. Schematic illustration of amino acid (AA)-derived supramolecular assembly, nanostructures,
and soft materials for diverse applications.

2. Supramolecular Assembly of Natural Amino Acids
2.1. Self-Assembly of Natural Amino Acids

In fact, different microcrystalline structures have been reported based on the self-
assembly of alkaline, acidic, and aliphatic AAs at dried state, but most of them tend to
disassemble in an aqueous solution suffering from weak intermolecular interactions [25].
AAs with aromatic residues showed low solubility in an aqueous solution, suggesting their
strong assembly propensity [26–28]. Ménard-Moyon and coworkers reported the aqueous
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self-assembly of tyrosine (Tyr) [26], which can form nanoribbons, nanofibers, and hydrogels
in a wide range of concentrations driven by hydrophobic interactions and π-stacking of
the side chain together with the hydrogen bonds and ionic bonds of the zwitterionic main
chain of Try (Figure 2). In another work, fluorescent nanotubes were obtained from the
self-assembly of Try and tryptophan (Trp) in an ethanol solution [27], demonstrating that
the self-assembly nanostructures are strongly related to the solvent environments.
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Aromatic L-phenylalanine (L-Phe) can also self-assemble into hydrogel with fibrous
networks [28]. More interestingly, the gel-to-crystal transformation process was observed in
this system. Although the authors proposed that the electrostatic interaction and hydrogen
bonding between NH3

+ and COO− drove the formation of hydrogel, the π-π stacking and
hydrophobic effect of the aromatic group cannot be ignored. Ramalhete et al. found that Phe
can form thermo-reversible hydrogels (Figure 3) over a wide range of concentrations [29].
Furthermore, the addition of Ser to Phe led to the formation of weaker materials, while
the addition of Trp tended to stabilize the three-dimensional network structure of Phe,
indicating the importance of π-π stacking and the hydrophobic effect. Chirality-dependent
self-assembly of Phe has been reported by Singh and colleagues. They observed that the
mixture of D-Phe and L-Phe can greatly inhibit the 1D growth, giving rise to the formation of
sheet-like structure [30]. With this finding in mind, the authors proposed that D-Phe could
be used as a therapeutic molecule for phenylketonuria, which is known to be associated
with the toxicity of fibers formed by L-Phe.

Similar chirality dependence was observed in the case of Trp and Phe [31]. Taking
Phe as an example, the pure enantiomers slowly self-assembled into 1D nanofibers in
water (Figure 4a). However, the DL-mixed systems rapidly formed crystalline flake-like
structures. The same phenomenon was also observed in the case of Trp. X-ray single-crystal
structure analysis revealed that the L-Trp formed ordered molecular arrangement via
head-to-tail H-bonding and edge-to-face π−π stacking. However, the racemic counterparts
adopted head-to-tail H-bonding and face-to-face π−π stacking with the centrosymmetric
dimer unit (Figure 4b). The authors proposed that this perfect “knobs-in-holes” fitting of
aromatic surfaces through face-to-face arrangement is the dominant factor in stabilizing the
flake-like structure of the racemic AAs. The same group further explored the synergistic
assembly between Phe and other AAs [32]. Based on the interlayer separation distances
(Figure 4b) observed in the X-ray single-crystal structure, the authors classified the natural
AAs into three different subgroups. They found that Phe can synergistically assemble
with isoleucine (Ile) or methionine (Met) possessing similar interlayer space to that of Phe.
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Consequently, spherical (Phe/Ile) or flake-like (Phe/Met) nanostructures were observed,
which were different from that of single-component assemblies. However, a self-sorting
assembly was observed in the mixed systems of Phe with glycine (Gly) and alanine (Ala),
respectively, owing to the space-mismatched effect between Phe and Gly or Ala. Anand et al.
investigated the synergistic assembly of Phe, Tyr, and Trp under simulated physiological
conditions [33]. Transmission electron microscopy (TEM) images revealed the formation of
hybrid nanofibrils with an amyloid structure. Molecular dynamic simulations indicated
that the nanofibrils with a hydrophobic exterior and hydrophilic interior were mainly
driven by hydrogen bonding, π−π stacking, and CH-π interactions. Furthermore, the
hybrid nanofibers can induce protein cross-seeding.
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Figure 3. Thermo-reversible hydrogel of Phe (a) below and (b) above the critical gelation temperature.
(c) AFM and (d) SEM images of dried hydrogel of Phe, highlighting the entanglement of a fibrous
network with widths ranging from 200 to 900 nm. Reproduced with permission from Ref. [29].
Copyright 2020 Wiley-VCH.
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2.2. Co-Assembly of Natural Amino Acids and Organic Species

In early studies, several groups investigated the co-assembly of arginine and satu-
rated or unsaturated fatty soaps via hydrophobic interactions, ionic bonds, and the unique
bidentate hydrogen bonds between the carboxylate and guanidinium [34–39]. It was ob-
served that arginine cannot only stabilize the micelle or vesicle structures of the fatty soaps
but also regulate the structural transformation from the vesicle to the sponge or lamellar
phase [34–36]. In addition, the assembled structures showed a stimulus responsibility to
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pH, temperature, and glycerol [38,39]. Recently, Meng et al. reported a co-assembled system
based on tannic acid (TA) and alkaline AAs (Figure 5a), such as lysine (Lys), arginine (Arg),
and histidine (His) [12]. Detailed studies demonstrated that TA carrying multiple phenol
groups can interact with the mainchain and side chains of the alkaline AAs through ionic
and hydrogen bonds, which were helpful for the formation of macroscopic materials with
crosslinked networks (Figure 5b). The obtained soft materials (Figure 5c) showed underwa-
ter adhesion, self-repair, and shear thinning characters. A thermosensitive hydrogel has
been developed based on Lys or glutamic acid (Glu), chitosan, and αβ-glycerophosphate.
The co-assembled system gelled rapidly at 37 ◦C, and thus, could be used for sustained
release of a model drug [40]. Hu et al. observed that the introduction of β-Ala into the
chitosan/poly-(γ-glutamic acid) hydrogel can enhance the structural stability and other
physical properties [41]. β-Ala allows the hydrogel to be pH responsive and can release
more benzalkonium chlorides in an alkaline environment, serving as a potential alkaline
wound dressing material.
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2.3. Assembly of Natural Amino Acids/Metal Ion Complexes

AAs can interact with diverse metal ions, forming ordered nanostructures and soft
materials. Pakhomov and coworkers developed a supramolecular hydrogel based on the
co-assembly of cysteine (Cys) and silver nitrate [14]. It was observed that Cys and silver ion
first formed a silver mercaptide complex in an aqueous solution, which further maturated
into chain-like supramolecular oligomers via the charge transfer interaction between sulfur
(donor) and silver (acceptor). Thereafter, the chain-like oligomers interacted with each
other in the existence of Na2SO4 to form a hydrogel via the possible salt bridge–hydrogen
bonds between the zwitterionic main chains of adjacent Cys molecules (Figure 6). TEM
images showed that the hydrogel possessed a “curly hair” structure. The co-assembled
metallo-hydrogel exhibited potent antimicrobial activities against both Gram-positive
and Gram-negative bacteria [42]. The same metallo-hydrogel was also constructed by
Vishnevetskii and colleagues. TEM revealed the existence of a network matrix that resulted
from interconnected nanofibers with silver nanoparticles attaching to the network nodes.
The hydrogel effectively inhibited the proliferation of MCF-7 breast cancer cells but showed
negligible toxicity to embryonic fibroblast WI-38 cells [43].
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2014 Pleiades Publishing.

A pH and thermal responsible metallo-hydrogel was generated based on the co-
assembly of His and zinc ion [44]. It was observed that the His and zinc ions can form
the [Zn(His) (H2O)3(OH)] complex followed by stacking into supramolecular polymer
chains, nanofibers, and network structures. Chirality-dependent gelation was observed
and the gelation ability was proportional to the enantiomer excess percentage (ee%). Along
this line, Phe-Cu(II) supramolecular metallogel was developed. Field emission scanning
electron microscopy (FE-SEM) images revealed that the metallogel consisted of sheet-like
structures [45]. Density function theory calculation indicated that the 2:1 coordination
stoichiometry of Cu(II) to Phe enabled the complex [Cu(Phe)2] to adopt an optimized
planar geometry with hydrophobic phenyl rings forming an open pattern, which facilitated
the ordered molecular stacking. Again, the co-assembled complex [Cu(Phe)2] showed
chirality-dependent gelation behavior. Decreasing the enantiomeric excess percentage
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(ee%) suppressed the gelation ability of the Phe-Cu(II) system. Similarly, a co-assembled
L-Phe/Zn2+ hydrogel was successfully constructed in an alkaline solution [46]. Energy
dispersive spectrum, fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible
(UV-vis) spectroscopy, and small-angle x-ray scattering analyses confirmed that L-Phe
molecules can pack together via π-π stacking, while the carboxylate group of L-Phe can
coordinate with Zn2+. As a result, a three-dimensional network consisting of rod-like
structures with a length of ten micrometers was observed.

The influence of metal ions with different charges and sizes on the assembled structure
of Phe and Trp was investigated by Bachi and coworkers [47]. The Na+ (pKa ~ 14), Mg2+,
and Ca2+ (pKa ~ 11–12) ions have no significant effect on the fibrous assemblies of aromatic
AAs. In contrast, the ions with lower pKa values such as Zn2+ (pKa ~ 9), Al3+ (pKa ~ 5),
and Ga3+ (pKa ~ 3) can inhibit the formation of fibrous structures, accompanied with
enhanced fluorescent emission. The authors suggested that the coordination between the
main chain of Phe or Trp with the high-nuclear metal ions can reduce the aggregation-
induced quenching effect via weakening of the molecular stacking, giving rise to the
enhanced emission. The self-assembly behavior of Phe in the presence of different metal
ions was further investigated [48]. As shown in Figure 7, Phe molecules can co-assemble
with divalent metal ions (Zn2+, Cd2+, and Hg2+) to form spherical structures at the initial
stage, which fuse into toroid intermediate and, finally, form fibrils. Trivalent Al3+ and
Phe can co-assemble into nanoflower intermediate and, finally, longer fibrils. In the case
of Ga3+ and In3+, vesicular intermediate and final clamps of vesicles were observed. The
authors showed that the hydrophobic interactions among the side chain of Phe and the
coordination bonds between Phe and metal ions dominated the co-assembled structures at
the initial stage, the Phe–solvent interactions, hydrogen bonding, and π-π stacking induced
the formation of different intermediates and the final structures.
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These kinds of co-assembled systems were further extended to various hydrophobic
AAs (such as Phe, Leucine (Leu), and Trp) and metal ions (such as Cu2+, Cd2+, Co2+,
Ni2+, Pb2+, Zn2+, Hg2+, La3+, Sm3+, and Lu3+) [49]. In some cases, the hydrophobic effect
of the side chains of the AAs and the coordination interactions between the AAs and
the metal ions can drive the formation of insoluble Pickering foams in alanine aqueous
solutions. AAs and Cd2+ or Zn2+ co-assembled into needle-like structures, while plate-like
structures with larger sizes were observed in the case of Co2+ and Pb2+. The needle-like
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structures possessed higher efficiency for stabilizing Pickering foams. Interestingly, the
foaming and defoaming can be achieved by adjusting the pH value. Wei and coworkers
investigated the co-assembly of AAs (such as Gly, Ala, Phe, Trp, Tyr, and Arg) and metal
ions (Ag+, Cu2+, and Co2+) [50]. TEM images revealed that Ag+ can induce the AAs to form
zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) superstructures.
While AA/Cu2+ tended to form sheet-like superstructures, hedgehog superstructures,
2D flakes, and 1D fibers were observed in the case of the AA/Co2+ system. All these
co-assembled materials exhibited excellent photocatalytic properties.

2.4. Co-Assembly of Natural Amino Acids and Inorganic Nanoclusters

Apart from metal ions, inorganic nanoclusters are another kind of candidate for co-
assembling with AAs. It was observed that the Phe- or citrate-capped Au clusters (Phe@Au
or Cit@Au) can function as a catalyst to induce the assembly of aromatic AAs [15]. As a
result, Phe formed unique fibrils in the presence of Phe@Au, while it relatively fused fibrils
in the presence of Cit@Au. His formed a thick dendritic morphology in the presence of
Phe@Au, while a fibril morphology in the presence of Cit@Au. Interestingly, Trp showed
similar dendritic structures when co-assembled with both Phe@Au and Cit@Au. These
results indicated that the gold nanoparticles may affect the intermolecular forces between
metabolites, thereby facilitating the formation of stable suprastructures. Polyoxometalates
(POMs), consisting of an early transition metal (W, Mo, or V) bridged by oxygen, are a class
of inorganic nano-sized clusters with precise chemical structures, various compositions,
reversible redox activities, catalysis, photo- or electrochromic properties, and negative
charges [51,52]. Much earlier, ionic co-assembly between cationic proteins or peptides and
anionic POMs had already been reported here and there [53–58]. Cindrić et al. report an
example of an AA/POM co-assembled system based on Gly-coordinated molybdovana-
date complex K2[HMo6

VIVVO22(Gly)3]·8H2O [59]. In a subsequent work, co-assembled
hybrid microspheres were constructed using carboxyl-protected (methyl ester) Phe and
Keggin-type [PW11O39{Sn(C6H4)CuC(C6H4)COOH}]4- [60]. Molecular dynamics simula-
tions showed that hydrophobic effects and π-π interactions drove the assembly. Chiral three-
dimensional open frameworks with helical channels (Figure 8) were reported by An et al.
using pure proline (Pro) enantiomers, Cu2+, and Keggin-type [BW12O40]5- [61]. The chiral
transfer from Pro ligands to the POM cluster was achieved via the copper cations as a central
bridge. Additionally, the authors developed another kind of three-dimensional framework
by replacing Pro with Gly [62]. Subsequently, this kind of ionic [HGly]3[PW12O40] and
[HGly]3[PMo12O40] complexes were explored as highly efficient catalysts for the oxida-
tion of cyclohexene by hydrogen peroxide [63]. Similar enhancement in catalysis has
also been observed in the case of ((Gly)3HAl(H2O)VW11O39, (Gly)3H2Cr(H2O)VW11O39,
(Gly)3HZn(H2O)VW11O39, and (Gly)3H3Cr(H2O)FeW11O39 [64]. It was concluded that the
glycine played an important role in improving the stability and specific surface area of the
POMs. Following these reports, a series of co-assembled complexes have been constructed
for photoreduction and enantioselective catalysis [65–69].

Chiral Mo Blue wheels (Figure 9) were synthesized based on POM, lanthanide ions,
and AAs [70]. In particular, His/{Mo124Ce4} can be used as a closed reaction vessel to, in
situ, generate chiral {Mo8} and selectively oxidize tryptophan. These chiral molybdenum
blue wheels showed potential in asymmetric catalysis. Mirzaei et al. prepared a series of
AA/POM co-assemblies, most of which existed in the form of binary AAs [71]. The authors
demonstrated that there were significant hydrogen bonds and van der Waals forces between
AAs and the O atoms located at the surface of the POM. Farhadipour et al. constructed
several co-assembled nanotubes with lengths of a few micrometers and diameters of
about 20 to 200 nm based on AAs and POMs, such as ((Ile)3PMo12O40, (Ile)3PW12O40,
(Cys)3PMo12O40, and (Cys)3PW12O40 [72]. In another work, vesicular structures have been
constructed based on weakly-type [EuW10O36]9− and natural AAs (Arg, Lys, His, Glu,
aspartic acid (Asp), Leu, Ala, and Phe) via electrostatic and hydrophobic interactions [73].
It was observed that basic AAs (Arg, Lys, and His) tended to enhance the luminescence of
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[EuW10O36]9− in an aqueous solution (2-fold improvement in the fluorescence intensity),
while acidic AAs (Glu, Asp) inhibited the luminescence of [EuW10O36]9−, and the nonpolar
AAs (Leu, Ala, and Phe) had no effect on the luminescence of [EuW10O36]9−. Following
the co-assembly strategy, coordination polymers with good thermal and watery stability,
and proton conduction (4.97 × 10−3 S cm−1) were prepared based on Gly, lanthanide ions
(La3+ or Ce3+), and (Cr(OH)6Mo6O18 [74]. In another example, Lys/POM nanoparticles
were incorporated into the ultrathin polyethylene films via the layer-by-layer technique for
improving the stability of the film and offering the intrinsic electrochemical properties of
POM [75]. Using the same technique, the co-assembled Gly/PMo12 nanoparticles were also
introduced into a polyelectrolyte capsule with the aim of developing nanoreactors or a drug
delivery system [76]. Daima et al. fabricated a kind of ternary system based on Tyr, silver
nanoparticles (AgNPs), and POMs. AgNPs were modified by Tyr to form Tyr/AgNPs,
followed by covering H3PW12O40 and H3PMo12O40 to form Tyr/AgNP ternary composites
with enhanced antimicrobial activity [77]. Recently, co-assembled complexes, consisting of
[PTi2W10O40]7− and different AAs (Gly, Pro, Cys, Glu, Phe, Ala, Val, Ser, Thr), have been
utilized to inhibit HIV-1 [78].
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Figure 8. (a) Schematic structure of Pro; (b) the 3D single-crystal structure of Pro/Cu2+/[BW12O40]5−

(B yellow, C gray, N dark blue, O red, Cu blue, W green); (c) the 2D stacking structure of
Pro/Cu2+/[BW12O40]5- (C gray, N dark blue, O red, Cu blue). Reproduced with permission from
Ref. [61]. Copyright 2006 Wiley-VCH.

Taking advantage of the protonated side chain of His, Xu and coworkers reported an
unexpected complex coacervate based on the co-assembly of His and H4SiW12O40 (SiW) in
an aqueous solution [79]. As illustrated in Figure 10, the His/SiW coacervates resulting
from the liquid–liquid phase separation (LLPS) were driven by the ionic and hydrogen
bonds between the protonated imidazole group of His and anionic SiW, together with the
salt bridge–hydrogen bonds among the zwitterionic main chain of His. Similar complex
coacervates could also be produced by mixing other alkaline AAs and POMs by carefully
controlling the cationic side chains and the zwitterionic main chains of the alkaline AAs.
Microcalorimetry measurements demonstrated that both enthalpy and entropy drove the
coacervation [80]. Thus, the co-assembled coacervates were susceptible to temperature,
resulting in the upper critical solution temperature (UCST) phenomenon. The UCST of the
coacervate was proportional to the molar concentration of the AAs. A low pH (pH < 5.5)
can increase the viscosity of the coacervate and lead to the formation of a gel-like phase.
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Inspired by this observation, functional supramolecular hydrogels with fibrous networks
were obtained when the anionic POMs simultaneously interacted with the protonated
α−NH2 and the protonated side chains of alkaline AAs in a strongly acidic solution [81].
More interestingly, the resulting hydrogels showed both UV-responsive photochromism
and NIR-responsive gel–sol transition.
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In a subsequent work, biomimetic underwater adhesives (Figure 11a) were created via
the co-assembly of aromatic AAs and heteropolyacids (HPAs) in an acidic solution [82]. In
this case, the ionic bonds and charge transfer interactions between aromatic AAs and HPAs,
and the hydrophobic and π-π interactions among the aromatic groups of the AAs were iden-
tified to play a significant role in stabilizing the network structures of the formed adhesives
even under the water line (Figure 11b). More interestingly, the reversible electrochromism
and redox property of the HPAs remained, which enabled the co-assembled adhesives
to be a processable electrode coating for the fabrication of self-powered electrochromic
batteries [82] and flexible supercapacitors [83,84].
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3. Self-Assembly of Amino Acid Derivatives
3.1. Self-Assembly of Aromatic Ring-Modified Amino Acid Derivatives

Chemically coupling aromatic units with natural AAs is an alternative method for the
creation of AA-based nanostructures and functional soft materials. Yang and coworkers
observed that 9-fluorenylmethyloxycarbonyl-modified Tyr (Fmoc−Tyr) can self-assemble
into stable hydrogel, while the phospholated Fmoc-Tyr (Fmoc−p−Tyr) remained in sol
state under the same condition [85]. As a consequence, the authors designed a kind of
enzyme-responsive hydrogel (Figure 12) with the aid of a dephosphorylation enzyme. A
similar phenomenon was observed by Sahoo et al. [86]. Sasselli et al. simulated the self-
assembly behavior of Fmoc-Tyr by optimizing the CHARMM force field parameters [87].
The simulation results also supported the fibrous structures of Fmoc-Tyr. Apart from Fmoc-
Tyr, Fmoc-Phe can also self-assemble into a stable hydrogel with long fibrillar aggregates
driven by non-covalent interactions, such as hydrophobic interactions and π-stacking of
aromatic rings, hydrogen bonds, and/or ionic bonds of the main chains [17,88]. This kind of
Fmoc-Phe nanofiber was explored as a host to fabricate fluorescent silver nanoclusters [16].
It was illustrated that the carboxyl groups of Fmoc-Phe was favorable for the reduction in
the AgI ions in the existence of light. As a result, ultra-small Ag4 nanoclusters (<2 nm) were
formed in situ and trapped in the matrix of the gel phase. Meanwhile, the morphology of
the Fmoc-Phe gel changed from nanofiber to nanovesicle. These Ag nanoclusters are stable
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and can even be stored at 4 ºC for more than 4 months without the loss of any fluorescence
properties. To extract the importance of hydrogen bonding in promoting the 1D assembly
of Fmoc-Phe, Rajbhandary et al. designed and synthesized the corresponding peptoid
(Fmoc-Nphe), where the α-NH2 of Fmoc-glycine (Fmoc-Gly) was substituted by the phenyl
group [89]. It was shown that Fmoc-Nphe tended to form 2D plate-like structures driven
by intramolecular π−π interactions owing to the lack of directional hydrogen bonding
interactions in the carbamate portion. A similar phenomenon was observed in several
Fmoc-Phe objects with different substituents on the phenyl ring.
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Apart from the hydrogen bond, the steric effect of the residue can also affect the
self-assembly behavior of Fmoc-Phe. For example, the introduction of a single halogen
atom (X) into the residue of Fmoc-Phe can significantly promote self-assembly due to the
complex balance between electronic and steric effects [90]. With this finding in mind, Ryan
and colleagues conjugated the Fmoc unit at the N-terminus of fluorine-substituted Phe
(F5-Phe) [91]. The resulting Fmoc-F5-Phe showed rapid assembly and gelation even at low
concentrations. The aforementioned results suggest that the self-assembly process and
the properties of AA derivates could be mediated by controlling the steric hindrance, π–π
interactions, and hydrophobic effect. In another report, Duraisamy et al. found that the
Fmoc-β-Phe molecules can undergo a rearrangement from J- to H-like aggregates, causing
a transition from a scaffold-like morphology to an entangled fibrillar network [92]. The
resulting hydrogel showed a shape memory property. Xie et al. observed that the Fmoc-
Trp hydrogel consisted of rigid and orderly arranged nanofibers, while Fmoc-modified
methionine (Fmoc-Met) and Fmoc-Tyr hydrogels were comprised of flexible nanofibers [93].
The structural difference was closely related to the antibacterial activity. As such, the
resulting hydrogels showed antibacterial activity against Gram-positive bacteria as follows:
Fmoc-Trp > Fmoc-Met > Fmoc-Tyr. These results suggest that the rigidity and orderliness of
the nanofibers can be utilized to control the antibacterial activity of the hydrogel. Notably,
all the hydrogels showed almost no antibacterial activity against Gram-negative bacteria,
possibly due to the different cell wall structure between Gram-negative and -positive
bacteria. Draper et al. found that the strategy of the Fmoc-assisted assembly of AAs can be
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extended to Fmoc-Met, Fmoc-Gly, and Fmoc-Ile [94]. All of the Fmoc-AAs can form self-
supporting hydrogels with fibrous structures under pH modulation by glucono-δ-lactone.
However, Fmoc-Phe and Fmoc-Tyr showed a strong propensity to form single crystals. The
authors found that Fmoc-Phe showed the same molecular arrangements both in the crystal
state and in the gel state. In contrast, different molecular arrangements were observed in the
case of Fmoc-Tyr. Molecular stacking of planar Fmoc moieties dominated the formation of
the crystalline structure, whereas the fibrous structures in the gel phase were mainly driven
by hydrogen bonding. Reddy et al. proposed that the gelation of the Fmoc-AAs resulted
from an appropriate balance among aromatic π-π stacking, hydrogen bonding, ionic bonds,
and the hydrophobic effect [95]. When the N- and C-terminus of Asp were modified
by Fmoc, the resulting Asp derivative can also form a stable hydrogel with entangled
fibrils [96]. In particular, the hydrogel showed the ability to complex with calcium ions and
to induce mineralization, which conversely improved the osteogenic ability of the hydrogel.
Yuan and coworkers investigated the self-assembly mechanism of Fmoc-AAs [97]. In
contrast to the traditional nucleation–elongation mechanism, the authors demonstrated
that the LLPS of Fmoc-AAs into solute-rich and solute-poor liquid phases was a critical step
prior to the nucleation of supramolecular nanofibrils. In detail, the resulting solute-rich
liquid droplets can act as nucleation precursors and the hydrated nanoclusters within them
serve as the nucleation loci (Figure 13). Finally, the thermodynamic favorable nanofibrils
elongated from the metastable intermediates proceeding by Ostwald’s step rule. In fact, the
hydrophobic interactions governed the occurrence of LLPS, while hydrogen bonding and
π-π stacking interactions predominated the dynamic evolution from droplets to nanofibrils.
These findings shed light on the fundamental mechanism and provided an alternative way
to control the self-assembly of AA derivatives.
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hydrophobicity from Cbz-Met to Cbz-Phe, a stable hydrogel could be observed, and ef-
fective encapsulation and controllable release of drugs were achieved via dynamic aro-
matic interactions and hydrogen bonds [99]. Following these findings, a Cbz-Phe-based 
hydrogel with pH-responsiveness was explored [100]. In an acidic solution, the molecules 
can form a gel-like phase with fibril structures. The resulting hydrogel transformed into 
fluid sol via an autocatalytic reaction between urease and urea, which produced NH3 to 
induce the pH increase and dissociation of carboxylic dimer, leading to defibrillation and 
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Figure 13. (a) The conventional nucleation and elongation route. (b) Schematic illustration of the
formation of self-assembling Fmoc-His nanofibrils via the liquid–liquid phase separation (LLPS)
dominates the nucleation and elongation route. In contrast with the traditional nucleation–elongation
mechanism, the LLPS into solute-rich and solute-poor liquid phases is a critical step prior to the
nucleation of supramolecular nanofibrils based on amphiphilic amino acid self-assembly. The
solute-rich liquid droplets act as nucleation precursors and the hydrated nanoclusters within them
serve as the nucleation loci. Finally, the thermodynamically favorable nanofibrils elongate from the
metastable intermediates proceeding by Ostwald’s step rule. Reproduced with permission from
Ref. [97]. Copyright 2019 Wiley-VCH.

Beyond Fmoc moieties, different aromatic segments, such as naphthalene (Nap), ben-
zoyloxy carbonyl (Cbz), pyrene (Pyr), and ferrocene (Fc), have been utilized to modify the
natural AAs. Using the 4-NO2-Phe-based screening approach, Abraham et al. identified
that the coupling Nap with 4-NO2-Phe could promote its gelation as efficiently as the Fmoc
moiety [98]. Reddy et al. found that Fmoc-Met can form a thermally reversible hydrogel
(Figure 14), while benzoyloxy carbonyl methionine (Cbz-Met) cannot form a stable gel [95].
With this knowledge in mind, the authors proposed that the gelation resulted from an



Molecules 2024, 29, 4705 14 of 32

appropriate balance among aromatic π-π stacking, hydrogen bonding, ionic bonds, and
the hydrophobic effect by comparing the self-assembly behavior of Fmoc-Met, oxidized
Fmoc-Met (Fmoc-MetO), and Fmoc-modified norleucine (Fmoc-NIe). Increasing the hy-
drophobicity from Cbz-Met to Cbz-Phe, a stable hydrogel could be observed, and effective
encapsulation and controllable release of drugs were achieved via dynamic aromatic in-
teractions and hydrogen bonds [99]. Following these findings, a Cbz-Phe-based hydrogel
with pH-responsiveness was explored [100]. In an acidic solution, the molecules can form
a gel-like phase with fibril structures. The resulting hydrogel transformed into fluid sol
via an autocatalytic reaction between urease and urea, which produced NH3 to induce the
pH increase and dissociation of carboxylic dimer, leading to defibrillation and gel collapse.
The addition of the acidic solution of urea resulted in the reformation of a self-supporting
hydrogel, which showed a similar fuel-dissipative nature. With a further increase in the
hydrophobicity in the case of N-[(phenyl methoxy) carbonyl]-L-tryptophan (Cbz-Trp), a
hydrogel can be quickly observed at a weak acidity pH with the assistance of gluconolac-
tone [101]. The resulting hydrogel exhibited good antimicrobial activity against Escherichia
coli (E. coli) and Staphylococcus aureus (S. aureus). Similarly, N-(4-nitrobenzoyl)-Phe can
self-assemble into an antimicrobial hydrogel in phosphate buffer saline driven by hydrogen
bond interactions, hydrophobic interactions, and π–π stacking [102]. The gelation capaci-
ties of several Phe derivatives were compared in detail by Shi and coworkers by coupling
fluorenyl, naphthyl, naphthalenoxyl, and cinnamoyl groups at the N-terminus of Phe via
a simple amide bond, respectively [103]. All the Phe derivatives can form thermally and
pH-reversible gels. Interestingly, cinnamoyl-Phe can form cis isomers under UV (254 nm)
irradiation accompanied with the formation of both a solid phase and fluid phase. TEM
experiments demonstrated that the naphthyl-Phe, naphthalenoxyl-Phe, and cinnamoyl-Phe
gels consisted of a fibrous network, while nanoparticles (20–80 nm) were strung together to
constitute the matrices of Fmoc-Phe. This morphology of Fmoc-Phe is different from the
result reported by Roy and coworkers, who observed fibrous structures [16], owing to the
different sample preparation process or condition.
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shaking or a vortex, instead the hydrogels obtained at a pH > 10.5 did not show any thix-
otropic property. The pH-dependent morphological difference may arise from the salting-
out effect, which promoted the π–π stacking and strengthened the intermolecular inter-
actions as demonstrated by UV-vis and X-ray diffraction data. Taking advantage of the 
reversible redox property of ferrocene (Fc), a redox-sensitive hydrogel was designed 
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Figure 14. Schematic structures of Fmoc-Met (0.8 mM), Cbz-Met, Cbz-Phe (6.7 mM), Fmoc-MetO
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and Fmoc-MetO come from Ref. [95]. Cbz-Phe comes from Ref. [100]. Reproduced with permission
from Refs. [95,100]. Copyright 2016 Wiley-VCH and 2020 Royal Society of Chemistry, respectively.
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Nanda and colleagues reported a pyrene-modified Phe (Pyr-Phe), which can form a
hydrogel over a wide pH range (7.46–14) [104]. However, the gelation failure was observed
in the case of Pyr-Val, indicating that the gelation behavior was mainly driven by π–π
interactions. The storage modulus of the hydrogel with tape-like nanofibers at a pH > 10.5
is much higher than that of a hydrogel with helical nanofibers at a pH < 10.5. As a result,
the resulting hydrogel samples at a pH < 10.5 can transform into a sol phase by shaking
or a vortex, instead the hydrogels obtained at a pH > 10.5 did not show any thixotropic
property. The pH-dependent morphological difference may arise from the salting-out
effect, which promoted the π–π stacking and strengthened the intermolecular interactions
as demonstrated by UV-vis and X-ray diffraction data. Taking advantage of the reversible
redox property of ferrocene (Fc), a redox-sensitive hydrogel was designed based on self-
assembled Fc-Phe nanofibers [105]. The addition of H2O2 can lead to the degradation of the
nanofibers and the collapse of the hydrogel networks owing to the electrostatic repulsion
of the cationic Fc. This behavior facilitated the development of a novel electrochemical
immunosensing platform for the detection of human IgG with good reproducibility, high
specificity, and stability.

3.2. Self-Assembly of Alkylated Amino Acid Derivatives

Alkylation is another strategy to promote the assembly of AAs. Mohanty et al. syn-
thesized sodium N-(4-dodecyloxybenzoyl)-L-valinate (C12BZ-Val) [106]. The interplay of
hydrogen bonds, hydrophobic, and π-π interactions enabled the amphiphilic C12BZ-Val to
form abundant morphologies at different concentrations. For example, spherical vesicles
with a bilayer structure were observed at a low concentration, whereas tubules, straps,
double helix ropes, and rod-like nanostructures were predominant at relatively higher con-
centrations. The authors suggested that the tubules and rod-like structures resulted from
the up-scrolling of flat lamella. Along a similar line, N-lauroyl-L-glutamic acid (C12-Glu)
was designed to generate a supramolecular hydrogel, which was utilized as a template for
the preparation of CuS nanoribbons [107]. Recently, the realm of alkylated AAs has been
extended to diacetylene-modified Gly (DA-Gly) or Ala (DA-Ala), which can self-assemble
into a hydrogel with helical fiber networks [108]. As shown in Figure 15, the resulting
DA-Gly showed well-defined helical structures with tightly molecular stacking, while loose
helical fibers were observed in the case of DA-Ala. The steric hindrance of the methyl
residue of Ala may reduce the strength of intermolecular hydrogen bonds, giving rise to
the formation of loose molecular stacking. Interestingly, the photo-initiated polymerization
of diacetylene can largely improve the heating stability of the hydrogels without changing
their inherent morphologies. As a result, a thermochromic hydrogel could be produced
in the case of DA-Gly by regulating the molecular stacking between a loose and tight
state. However, this thermochromism cannot be observed in DA-Ala, where the existence
of steric hindrance prevented tight stacking. The thermochromic hydrogel hold great
promise in applications such as surface coating, artificial retinas, neuronal networks, and
nanoelectronics.

Patra and coworkers reported a family of pH-sensitive hydrogels based on alkylated
His (Cn-His, n = 6, 8, 10, 12) with different chain lengths, which self-assembled into
helical fibers and were further bundled or entangled into 3D network structures through
hydrophobic interactions, π-π stacking, and intermolecular H-bonds [109]. The existence of
imidazole and α-COOH groups endowed the hydrogel with pH sensitiveness. The authors
concluded that the gelation kinetics of Cn-His was proportional to the amount and chain
length of the alkyl chains. In another work, N-lithocholyl-(cysteine ethyl ester) (C24-Cys)
and N-lithocholyl-(valine ethyl ester) (C24-Val) were synthesized by conjugating bile acids
with amino acid esters [110]. By harnessing the self-assembly capacity of the long alkyl
chain of the bile acid moiety, C24-Cys and C24-Val can form either spherical or burl-like 3D
aggregates depending on the sample preparation process. Subsequently, the bile acid moiety
was further conjugated with aromatic and aliphatic AAs [111], giving rise to the formation
of transparent or translucent hydrogels. Besides the long aliphatic chains, short alkyl chains
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were also conjugated with natural AAs to produce a self-assembling system. As illustrated
by Li and colleagues, thixotropic hydrogels with thermally reversible sol–gel transition were
prepared via the aqueous self-assembly of menthol methyl ester group-modified Lys [112].
A SEM image revealed that the hydrogel was composed of fibrous three-dimensional
networks. The acid-based interaction and the strength of the hydrogen bond between
molecules are the key factors for the formation of the hydrogel. In addition, the menthol
methyl ester group-modified lysine can co-assemble with some antibacterial agents (such
as Zn2+, lincomycin, amoxicillin, etc.) in a unique way to function as an antibacterial matrix.
The antibacterial sensitivity of the hydrogel loaded with Zn2+ or lincomycin was much more
effective than that of the antibacterial agents alone. Similarly, a poly(Asp)-based hydrogel
with fibrous structures with a diameter of ~1 µm was synthesized [113]. The hydrogels with
free carboxyl groups exhibit rapid volume transitions and a high swelling ratio induced by
pH, which can be applied to drug delivery and biological tissue engineering.
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Cao and colleagues designed Ala derivatives by modifying the N- and C- terminus
with Fmoc and a long alkyl chain (Fmoc-Ala-C17), respectively [114]. The enantiomeric
Fmoc-Ala-C17 alone self-assembled into a fibrous nanostructure that transformed into
nanoribbons when increasing the aging time in hexane. However, the equimolar-mixed
racemate Fmoc-L-AlaC17 and Fmoc-D-AlaC17 formed uniform twisted ribbons with a width
of about 1 mm and a pitch of more than 5 mm. FT-IR, UV-vis, and circular dichroism spectra
identified that the self-assembly behavior was controlled by hydrogen bonding and π–π
stacking. In particular, the authors extracted a new form of majority rule in this system in
that a slight excess of an enantiomer showed more efficacy in controlling the handedness
of the twisted ribbons. This rule enabled the system to be a supramolecular chiral sensor
for either discriminating some chiral AA derivatives (Fmoc-Ala-OH) or determining the
ee values of the racemic system. Branched Lys derivatives with different topological
structures have been synthesized by grafting Lys onto polyhedral oligomeric silsesquioxane
(POSS) [115]. The resulting POSS-Lys with a cubic topological core has stronger gelation
ability in various solvents. However, the C12-Lys with a linear topological core structure
shows weak gelation propensity, while pentaerythritol-modified Lys (PER-Lys) cannot



Molecules 2024, 29, 4705 17 of 32

form a gel in any solvent owing to the steric hindrance effect of the tetrahedral topological
core structure of the PER molecule. These outcomes emphasized the importance of the
topological structure of the AA derivatives in the self-assembly and gelation process. Brar
et al. investigated the self-assembly of the γ-AA derivative, t-butyloxycarbonyl-γ-amino
butyric acid (Boc-γ-ABA)-N,N’-dicyclohexylurea [116]. The amphiphilic compound formed
dense rod-like clusters in dimethyl sulfoxide (DMSO), overlapping motifs in methanol,
clear nanorods in acetonitrile, and sheet-like structures in toluene. It is clear that the
polarity of the solvent has a significant influence on the interplay of hydrogen bonds, van
der Waals forces, and ionic bonds. Different from the ordered assembly, Xing and coworkers
reported a kind of amorphous bioglass via kinetic freezing of the melted liquids of acetyl-
amino acids (Ac-AAs) (Figure 16) [13]. The authors demonstrated that the cooperation
of multiple weak intermolecular interactions (such as multiple types of hydrogen bonds)
facilitated the stabilization of the molecular glass with disordered molecular packing.
These glasses exhibited excellent optical characteristics and flexible processability, as well
as biodegradability and biorecyclability.
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4. Co-Assembly of Amino Acid Derivatives and Various Objects
4.1. Co-Assembly of Amino Acid Derivatives and Their Counterparts

Apart from their self-assembly, AA derivatives can also co-assemble with various ob-
jects to generate hierarchical nanostructures and value-added soft materials. Adhikari et al.
reported that Fmoc-Glu and oppositely charged alkaline AAs (such as Lys, Arg, and His)
can co-assemble into nanofibers, where the chirality of the nanofibers depended on the chi-
rality of individual building blocks [117]. For example, Fmoc-L-Glu and L-Lys co-assembled
into a hydrogel with left-handed helical nanofibers, while right-handed helical nanofibers
were observed in the case of a Fmoc-D-Glu/D-Lys hydrogel (Figure 17). When mixing
(Fmoc-L-Glu/L-Lys) and (Fmoc-D-Glu/D-Lys) in an aqueous solution, self-sorting behav-
iors with equal amounts of left- and right-handed helical nanofibers were observed. Similar
phenomena were observed by replacing Lys with ornithine (Orn) or Arg. Interestingly,
the introduction of divalent metal ions Ca2+ or Mg2+ can lead to the transformation from
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helical nanofibers to straight fibers via the non-covalent interactions between metal ions
and the carboxylic acid of Fmoc-Glu.
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Fmoc-Leu and Fmoc-Lys can also co-assemble into twisted nanoribbons via π-π stack-
ing and hydrophobic interactions [118]. The nanoribbons can be entangled into hydrogels
with broad-spectrum antimicrobial activity against Gram-negative and Gram-positive
bacteria. In particular, the mechanical properties and antimicrobial activities of the co-
assembled hydrogels could be conveniently adjusted by controlling the molar ratio of the
components. This enhanced stability of the co-assembled hydrogel has been observed
in different systems. For instance, Fmoc-Phe- and Fmoc-modified Lys at ε-NH2 (Fmoc-
(Nε)-Lys) have been utilized to fabricate a stable hydrogel, which can encapsulate luminol
and hemeprotein with enhanced chemiluminescence [119]. This co-assembled system
can be used for detecting trace blood. A stable hydrogel consisting of densely entangled
fibrils with an average diameter of 16 ± 2 nm was obtained by combining the rigidity of
the Fmoc-F5-Phe fibers with the solvolytic stability of the polyethylene glycol-modified
Fmoc-F5-Phe (Fmoc-F5-Phe-PEG) fibers [120]. In another report, Misra et al. illustrated that
Fmoc-γ-Phe self-assembled into a self-healing hydrogel, while Fmoc-(3-hydroxy)-γ-Phe
formed a transient hydrogel but subsequently changed into microcrystalline aggregates
due to the presence of additional hydroxyl groups. However, the co-assembled Fmoc-γ-
Phe/Fmoc-(3-hydroxy)-γ-Phe hydrogel retained the self-healing behavior of Fmoc-γ-Phe
but inhibited the phase transition of Fmoc-(3-hydroxy)-γ-Phe, giving rise to the formation
of a homogenous and stable hydrogel [121]. Similarly, the co-assembly of naphthalene
diimide (NDI)-Ser and NDI-Lys can greatly improve the stability of the hydrogel com-
pared to that of individual building blocks [122]. Dong et al. investigated the confined
co-assembly of Fmoc-protected AAs and Leu-NH2 carrying a C-amide group [123]. As
illustrated in Figure 18, the co-assembled structures gradually transformed from disordered
fibers to network structures when increasing the capillary diameter from 5 to 100 µm and
beyond. The diameter of the fibers formed in a small diameter capillary tube was larger
than that formed in large diameter capillary tubes. In addition, the co-assembled structures
of Fmoc-Tyr/Leu-NH2 and Fmoc-Leu/Leu-NH2 were more ordered than those of Fmoc-
Thr/Leu-NH2 or Fmoc-Ser/Leu-NH2. The authors proposed that the more hydrophilic
Fmoc-Thr and Fmoc-Ser may tend to form hydrogen bonds with the capillary channel
walls, thereby disrupting the growth of parallel capillary direction fibers. The formed
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ordered fiber networks, serving as an extracellular matrix, can support the adhesion and
proliferation of human umbilical vein endothelial cells (HUVECs) and mouse embryo
fibroblast (MEF) cells, ultimately forming a tubular structure similar to blood vessel tissue.
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4.2. Co-Assembly of Amino Acid Derivatives and Organic Objects

Apart from the AA-based objects, a large amount of organic ligands have been com-
plexed with AA derivatives. Bhattacharjee et al. reported an anisotropic gel via the co-
assembly of N-Decanoyl-L-alanine (C10-Ala) and pyridine-end oligo(p-phenylenevinylene)s
(OPVs) [124]. As shown in Figure 19, the alkalinity of the N atom on the pyridine ring
in OPVs dominates the gelation behavior via the ionic and hydrogen bonds. Only the
OPVs with the N atom located at the para position of the pyridine ring can co-assemble
with C10-Ala into a stable gel with rectangular plate-like morphologies. A similar phe-
nomenon can be observed in the case of 4,4′-bipyridine (BP). In another work, a discrete
propeller-like supramolecule was constructed via the co-assembly of chiral N-octanoyl-
amino acids (C8-AAs) and achiral hexa-2-pyridyl-hexaazatriphenylene [125]. The sergeants-
and-soldiers principle and majority-rules effect have been applied to achieve the chiral
amplification [126]. A similar phenomenon was observed in the co-assembly system of
Fmoc-AAs and 1,3,5-tri(1H-benzo[d]imidazol-2-yl)benzene [127].

Xing et al. investigated the co-assembly behavior of different Fmoc-AAs and melamine
(Mm), and found that the residues’ molecular conformation of the Fmoc-AAs can control
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the assembly pathway [128]. As shown in Figure 20, Fmoc-Gly, Fmoc-Ala, and Fmoc-
Ser have a strong propensity to form a lamellar filling pattern and three-dimensional
aggregates with Mm, while the other Fmoc-AAs with large residues favored the formation
of one-dimensional aggregates (including the hexagonal and quadrangular pattern) with
Mm. Based on this finding, the authors fabricated a kind of co-assembled hydrogel based
on Fmoc-Phe and 1,2-di(4-pyridyl)ethylene (BPE) [129]. The resulting hydrogel showed
enhanced green fluorescence under UV irradiation owing to the trans-to-cis isomerization
of BPE. Similarly, luminescent gels can be conveniently constructed via co-assembly of a
perylene-functionalized Phe and 4,4’-bipyridine [130] or the co-assembly of Val derivatives
(N,N’-divaline-3,4,9,10-perylenetetracarboxylic acid), riboflavin, and Mm with the aid of
multiple hydrogen bonds and π-π stacking [131].
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chanical properties of the hydrogel can be flexibly regulated by controlling the molar ratio 
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Following the same procedure, a multicomponent hydrogel was prepared based on
Fmoc-Tyr, guanosine monophosphate (GMP), and Ag+ [132]. It was shown that the me-
chanical properties of the hydrogel can be flexibly regulated by controlling the molar
ratio of Ag+ to GMP. When combining AA derivatives with bioactive components, an
antimicrobial hydrogel was fabricated via the co-assembly of Fmoc-Phe and the antibiotic
aztreonam (AZT). The authors proposed that Fmoc-Phe and AZT had a synergistic an-
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timicrobial effect on, where AZT affected the integrity and permeability of the bacterial
cell membrane and increased the uptake of Fmoc-Phe by the bacterial cells, giving rise
to broad-spectrum antimicrobial activity [133]. In addition, an AA-based nano-enzyme
with peroxidase-mimicking activities has been designed via the co-assembly of Fmoc-His
and hemin derivative (Figure 21a) [134]. The optimized co-assemblies showed comparable
catalysis activities to those of natural horseradish peroxidase (Figure 21b). Thus, it can be
used for the detection of glucose by coupling with glucose oxidase.
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Graphene oxide (GO) has also been incorporated with Fmoc-Phe to develop a hybrid
hydrogel [135]. It was found that GO has the capacity to modulate the gelation process and
the viscoelastic properties of the co-assembled hydrogel. Additionally, a co-assembled Fc-
Phe/GO hydrogel has been explored as an electrode coating for detecting dopamine [136].
Furthermore, a conductive hydrogel was prepared via the ionic co-assembly of Fmoc-Phe
and polyaniline (PANI) [137]. The Fmoc-Phe/PANI gel exhibited good strain recovery, me-
chanical strength, and electrical conductivity, and has shown its potential in soft electronics,
optoelectronics, and biosensors. The ionic co-assembly between anionic AA surfactants and
cationic cellulose enabled the formation of condensed coacervates with a fibrous structure
of a few micrometers in diameter [138]. Similar condensation behavior was observed in the
case of a mixed micelle system composed of sodium lauroylsarcosinate and amphoteric
surfactant cocamidopropyl betaine with cationic guar gum [139]. The electrostatic attraction
between guar gum and the mixed micelles drives the formation of a complex coacervate
with porous interior. The authors demonstrated that the properties of the coacervate can be
easily controlled by adjusting the mixed micelle ratio, salt concentration, and dilution ratio.

4.3. Co-Assembly of Amino Acid Derivatives and Inorganic Objects

In fact, many inorganic objects are luminescent, magnetic, redox active, catalytic,
photosensitive, or bioactive [72,73]. Co-assembly of AA derivatives and inorganic objects
represents a promising method for the development of value-added materials. Pyridine-
modified Phe (Py-Phe) can selectively coordinate with copper ion (Figure 22), forming
a blue metallo-hydrogel [140]. However, when Py-L-Phe and Py-D-Phe were mixed in
an equimolar ratio, a pink Cu3+ superoxide gel [(L + D)-Py-Phe-Cu3+-O2

-] with single-
electron O2 reduction activity was obtained due to the robbing of one electron of Cu2+ by
the coordinated O2. In another work, imidazole-modified Trp (Im-Trp) was designed to
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selectively co-assemble with Ni2+ for the construction of metallo-hydrogel [141]. Equimolar
Im-L-Trp and Im-D-Trp can coordinate specifically with Ni2+ to form purple hydrogels
with the aid of π-π stacking and hydrogen bonds.

Sodium deoxycholate (NaDC)-conjugated β-L-Phe (β-L-PheDC) can co-assemble with
Ca2+ at pH 12 to form a hydrogel with helical strips [142]. However, morphological transi-
tion from helical structures to a flat one was observed when pH decreased to 10 because of
the partial protonation of the -NH2 group competing with Ca2+ for the interaction with
the carboxylic group. Ma and coworkers reported a kind of stimuli-responsive metallo-
hydrogel based on the co-assembly of Fmoc-Val and Zn2+ or Cu2+ via hydrogen bonds,
coordination bonds, and π-π stacking [143]. The resulting hydrogels, consisting of rod-like
microstructures, exhibited multi-stimuli responsiveness against temperature, metal ions,
and acids, etc. Incorporating Fmoc-AAs (Fmoc-His, Fmoc-Pro, Fmoc-Ala, Fmoc-Leu, and
Fmoc-Phe) and Ag+ resulted in antimicrobial hydrogels [144,145]. It was suggested that
the increased antimicrobial efficiency could be attributed to the continuous release of Ag+

or the synergistic effect of the in situ-formed Ag nanoparticles and amphiphilic Fmoc-AAs.
A ternary co-assembly system has been designed by Li and coworkers based on Fmoc-Phe,
nano-hydroxyapatite (nHAP), and chlorogenic acid (CGA) [146], leading to the formation of
a value-added hydrogel. Fmoc-Phe could self-assemble into a fibrous structure and provide
a network matrix, the nHAP bound in the chamber of the fibrous network of Fmoc-Phe
significantly improved the mechanical strength of the hydrogel, and the CGA showed
a good antibacterial activity against S. aureus, giving rise to a strong and antimicrobial
hydrogel. In the out of water condition, Fmoc-Leu and metal ions (Co2+, Cu2+, Zn2+) can
form bioglass (Figure 23) under the joint drive of hydrogen bonds, metal coordination,
and aromatic interactions [147]. The bioglass showed good hardness and wear resistance
superior to those of traditional polymers, while also exhibiting elasticity comparable to
ceramics. Replacing the metal ions with rare earth ions (Eu3+, Tb3+) endowed the bioglass
with tunable fluorescence emission.
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Romanski et al. designed a kind of copolymer by free radical polymerization of
acryloyl and methacryloyl Orn or Lys derivatives with N-isopropylacrylamide [148]. Af-
ter co-assembling with Cu2+ or Co2+, the resulting hydrogel showed significant volume
shrinkage owing to the significantly increased crosslinking density. Recently, N-δ-acryloyl
ornithine (Ac-Orn) and N-N’-bisacryloylcystine have been utilized to copolymerize into
hydrogel in the existence of Fe3+ (Figure 24) [149]. The prepared hydrogel showed good
mechanical properties, self-healing ability, and electrical conduction. In addition, the
dynamic disulfide bonds enabled the reversible gel-to-sol transformation with the assis-
tance of oxidizing or reducing agents. Block-co-polymer P(AM-HisMA), consisting of
His methacrylamide (HisMA) and acrylamide (AM), can form physically crosslinked hy-
drogels via multiple hydrogen bonds [150]. After coordinating with Fe3+, the resulting
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metallo-hydrogel P(AM-HisMA)/Fe3+ exhibited good mechanical properties, tissue adhe-
sion, antimicrobial properties, and low cytotoxicity, showing potential in wound healing.
Apart from the metal ions, AA derivatives can also co-assemble with POM to construct an
efficient catalyst for the oxidation of aromatic alkenes to the corresponding oxirane [151].
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5. Conclusions and Prospects

This article provides an overview of AA-derived supramolecular assembly and soft
materials. The assembly ability of most natural AAs (except Trp, Tyr, and Phe) is poor,
but the conjugation of hydrophobic groups with natural AAs or the co-assembly of AAs
and derivatives with other objects provided powerful tools to create various structures
and soft materials through the nano- and micro-scales up to the macroscopic level, includ-
ing vesicles, particles, rods, nanofibers, helix, ribbons, tubules, sheets, flakes and plates,
nanoflowers, hedgehog superstructures, networks, hydrogels, complex coacervates, and
amorphous bioglass (Table 1). The various assembling structures are beginning to show
great potential in sustained drug release with reduced toxicity, antimicrobial, antiviral,
and antitumor activity, cell adhesion, wound dressing, tissue engineering, diagnostics,
biomimetic underwater adhesion, biosensors and detectors, coatings, bioglass, chiroptical
materials, catalysis, electrochemistry, and food chemistry. Systematic studies show that
the assembled process is driven by combined interactions, such as hydrogen bonds, ionic
bonds, coordinate bonds, hydrophobic effects, and CH-π, and π-π stacking [29,44,79,107],
while, ultimately, the assembled morphologies are dependent on the relative volume frac-
tion of hydrophobic and hydrophilic blocks, the molecular geometry and conformation,
and the kinetic pathway. Although the knowledge of how the non-covalent interactions
can be judiciously harnessed to exert the ordered assembly has been collected, ongoing
efforts are still necessary to fully understand the entire assembly pathway with the aim
of developing tailor-made nanostructures and materials. In many cases, the resulting
assemblies showed kinetically labile and dynamic features, which enables these systems
to be stimuli-responsive. It is worth highlighting that the modular co-assembly between
AAs/derivatives and other objects is an attractive and effective strategy for the creation of
value-added soft materials without any time-consuming and inaccessible chemical synthe-
sis. Therefore, the minimalistic and flexible co-assembly may provide infinite possibilities
in the creation of AA-based nanostructures and supramolecular materials with many
applications beyond the current body of scientific literature. Although, the AA-derived
supramolecular assembly remains exciting, and interest in the soft materials continues to
grow, more efforts are still needed to scrutinize the relationship between the hierarchical
structure of AAs and their material properties. It is expected that more consideration may
be given to the chiral nanostructures, environment, and properties of AA assemblies.

Table 1. Summarization of AAs and derivates and the assembled structures.

Compounds Assembled Structures

Phe/Phe@Au or Cit@Au [15]

nanofibers

nanoribbons

His/Cit@Au [15]
Phe/Zn2+ or Cd2+ or Hg2+ or Al3+ [48]

Fmoc-His [97]
Fmoc-Ala-C17 [114]

Fmoc-Tyr or Fmoc-Thr or Fmoc-Ser or
Fmoc-Leu/Leu-NH2[123]

Phe or Trp [31]
Phe/Tyr/Trp [33]

Tyr [26]

His/Phe@Au [15]
dendritic structures

Trp/Phe@Au or Cit@Au [15]

Try or Trp [27]

nanotubes
(Ile)3PMo12O40 [72]
(Ile)3PW12O40 [72]

(Cys)3PMo12O40 [72]
(Cys)3PW12O40 [72]
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Table 1. Cont.

Compounds Assembled Structures

L-Phe [28]

hydrogel with fibrillar structures

hydrogel with twisted nanoribbons
hydrogel with rod-like structures

Fmoc-Tyr [85,86,93]
Fmoc-Met [93–95]
Fmoc-Phe [17,88]

Fmoc-Trp [93]
Fmoc-β-Phe [92]

N- and C-terminus of Asp were modified by Fmoc [96]
Fmoc-Met or Fmoc-Gly or Fmoc-Ile [94]

Cbz-Phe [99,100]
Fc-Phe [105]

DA-Gly or DA-Ala [108]
Cn-His [109]

β-L-PheDC/Ca2+ [142]
menthol methyl ester group-modified Lys [112]

Fmoc-Glu/Lys [117]
Fmoc-F5-Phe/Fmoc-F5-Phe-PEG [120]

Fmoc-Leu/Fmoc-Lys [118]
L-Phe/Zn2+ [46]

Phe [29]

hydrogels

Lys or Glu/chitosan/αβ-glycerophosphate [40]
β-Ala/chitosan/poly-(γ-glutamic acid) [41]

Cys/silver nitrate [14,42,43]
Fmoc-F5-Phe [91]

Cbz-Trp [101]
N-(4-nitrobenzoyl)-Phe [102]

naphthyl-Phe [103]
naphthalenoxyl-Phe [103]

cinnamoyl-Phe [103]
Pyr-Phe [104]
C12-Glu [107]

POSS-Lys or C12-Lys [115]
Fmoc-Phe/Fmoc-(Nε)-Lys [119]

Fmoc-γ-Phe/Fmoc-(3-hydroxy)-γ-Phe [121]
(NDI)-Ser/NDI-Lys [122]

Fmoc-Phe/BPE [129]
Fmoc-Tyr/GMP/Ag+ [132]

Fmoc-Phe/AZT [133]
Fmoc-Phe/GO [135]

Fc-Phe/GO [136]
Fmoc-Phe/PNAI [137]

Fmoc-His or Fmoc-Pro or Fmoc-Ala or Fmoc-Leu/Ag+

[144]
Fmoc-Phe/Ag+ [145]

Fmoc-Phe/nHAP/CGA [146]
Ac-Orn/N-N’-bisacryloylcystine/Fe3+ [149]

DL-Phe [30]

2D plate-like structures
DL-mixed Phe or Trp [31]

Phe/Met [32]
Phe/Co2+ and Pb2+ [49]

Fmoc-Nphe [89]

Phe/Ile [32]
Carboxyl-protected (methyl ester)

Phe/[PW11O39{Sn(C6H4)CuC(C6H4)COOH}]4- [60]
C24-Cys or C24-Val [110]

spherical nanostructures
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Table 1. Cont.

Compounds Assembled Structures

TA/Lys or Arg or His [12] adhesive with crosslinked networks

His/Zn2+ [44] metallo-hydrogel with nanofiber structures
Phe/Cu2+ [45]

Py-Phe/Cu2+ [140] metallo-hydrogel with sheet-like structures
Im-Trp/Ni2+ [141]

Fmoc-Val/Zn2+ or Cu2+ [143] metallo-hydrogel

Phe/Ga3+ or In3+ [48]

vesicular structures
Arg or Lys or His or Glu or Asp or Leu or Ala or

Phe/[EuW10O36]9- [73]
Fmoc-Phe/Ag+ [16]

C12BZ-Val [106]

Phe/Cd2+ or Zn2+ [49] needle-like structures

Gly or Pro/Cu2+/[BW12O40]5- [61] three-dimensional open frameworks

His/H4SiW12O40 (SiW) [79] coacervate

C12BZ-Val [106] tubules, straps, double
helix ropes, and rod-like nanostructures

Fmoc-L-Ala-C17/Fmoc-D-Ala-C17 [114] twisted ribbons

perylene-functionalized Phe/4,4’-bipyridine [130]
luminescent gelsN,N’-divaline-3,4,9,10-perylenetetracarboxylic

acid/riboflavin/Mm [131]

Fmoc-Leu/Co2+ or Cu2+ or Zn2+ [147] bioglass with amorphous structures
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Abbreviations

AAs: amino acids; Tyr: tyrosine; Phe: phenylalanine; Trp: tryptophan; Ile: isoleucine; Met: me-
thionine; Gly: glycine; Ala: alanine; Lys: lysine; Arg: arginine; His: histidine; Glu: glutamic
acid; Cys: cysteine; Leu: leucine; Pro: proline; Asp: aspartic acid; Orn: ornithine; Fmoc-Tyr: 9-
fluorenylmethyloxycarbonyl-modified Tyr; Fmoc-p-Tyr: phospholated Fmoc-Tyr; Fmoc-Met: Fmoc-
modified methionine; Fmoc-NIe: Fmoc-modified norleucine; Cbz-Met: benzoyloxy carbonyl me-
thionine; Cbz-Trp: N-[(phenyl methoxy) carbonyl]-L-tryptophan; Pyr-Phe: pyrene-modified Phe;
Py-Phe: pyridine-modified Phe; Im-Trp: imidazole-modified Trp; Fc: ferrocene; Ac-AAs: acetyl-amino
acids; Ac-Orn: N-δ-acryloyl ornithine; HisMA: His methacrylamide; C10-AAs: N-octanoyl-amino
acids; C10-Ala: N-Decanoyl-L-alanine; C12BZ-Val: sodium N-(4-dodecyloxybenzoyl)-L-valinate;
C12-Glu: N-lauroyl-L-glutamic; Cn-His: alkylated His; C24-Cys: N-lithocholyl-(cysteine ethyl es-
ter); C24-Val: N-lithocholyl-(valine ethyl ester); PER-Lys: pentaerythritol-modified Lys; Boc-γ-ABA:
t-butyloxycarbonyl-γ-amino butyric acid; β-L-PheDC: sodium deoxycholate conjugated β-L-Phe;
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NAAPD: N,N′-diaspartic acid-3,4,9,10-tetracarboxylic diimide; NDI: diimide; NMD: niclosamide
derivative; OPVs: pyridine-end oligo(p-phenylenevinylene)s; Mm: melamine; Mal: malonic acid;
NaDC: sodium deoxycholate; BPE: 1,2-di(4-pyridyl)ethylene; GMP: guanosine monophosphate; PANI:
polyaniline; AZT: antibiotic aztreonam; GO: graphene oxide; Azo: azobenzene; TDAP: thiophene-
2,5-dicarboxamide; nHAP: nano-hydroxyapatite; CGA: chlorogenic acid; AM: acrylamide; AgNPs:
silver nanoparticles; POMs: polyoxometalates; HPAs: heteropolyacids; POSS: polyhedral oligomeric
silsesquioxane; LLPS: liquid–liquid phase separation; UCST: upper critical solution temperature; ee%:
enantiomeric excess percentage; 0D: zero-dimensional; 1D: one-dimensional; 2D: two-dimensional
3D: three-dimensional; E. coli: Escherichia coli; S. aureus: Staphylococcus aureus; TEM: transmission
electron microscopy; FE-SEM: field emission scanning electron microscopy; FT-IR: fourier transform
infrared; UV-vis: ultraviolet–visible.
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