
Citation: Ishiwata, A.; Zhong, X.;

Tanaka, K.; Ito, Y.; Ding, F.

ZnI2-Mediated cis-Glycosylations of

Various Constrained Glycosyl Donors:

Recent Advances in cis-Selective

Glycosylations. Molecules 2024, 29,

4710. https://doi.org/10.3390/

molecules29194710

Academic Editor: Juan M. Benito

Received: 23 July 2024

Revised: 11 September 2024

Accepted: 1 October 2024

Published: 4 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

ZnI2-Mediated cis-Glycosylations of Various
Constrained Glycosyl Donors: Recent Advances in
cis-Selective Glycosylations
Akihiro Ishiwata 1,* , Xuemei Zhong 2,3, Katsunori Tanaka 1,4, Yukishige Ito 1,5 and Feiqing Ding 2,*

1 RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; kotzenori@riken.jp (K.T.);
yukito@chem.sci.osaka-u.ac.jp (Y.I.)

2 School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University,
Shenzhen 518107, China; zhongxm36@mail2.sysu.edu.cn

3 Medical College, Shaoguan University, Shaoguan 512026, China
4 Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
5 Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
* Correspondence: aishiwa@riken.jp (A.I.); dingfq3@mail.sysu.edu.cn (F.D.)

Abstract: An efficient and versatile glycosylation methodology is crucial for the systematic synthesis
of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular
methodology have been developed, and the former can be applied to the synthesis of medium-
to-long-chain glycans like that of nucleotides and peptides. The development of a generally ap-
plicable approach for the stereoselective construction of glycosidic bonds remains a major chal-
lenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and
β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones.
This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations
of various constrained glycosyl donors, as well as the recent advances in the development of
stereoselective cis-glycosylations.

Keywords: 1,2-cis-glycoside; stereoselective cis-glycosylation; oligosaccharides; ZnI2; constrained
glycosyl donors

1. Introduction

Stereoselective 1,2-cis O-glycosylation is one of the most essential issues in synthetic
carbohydrate chemistry for the construction of various glycans with biological functions [1–9].
The preparation of 1,2-trans O-glycoside became possible using a stereoselective glycosy-
lation method based on the effect of neighboring group participation from acyl carbonyl
functionality at the 2-position of the glycosyl donor [10–18]. By the activation of the glyco-
syl donor, the kinetically favored cis-participation of the acyl group at the 2-position of the
donor to the anomeric carbon at the 1-position occurs, followed by the nucleophilic attack
of the acceptor from the opposite side to afford the 1,2-trans O-glycoside stereoselectively.
Compared to the 1,2-trans O-glycosylations, the highly stereoselective synthesis of 1,2-cis
glycosides is far less straightforward. The stereochemical outcome of a chemical glycosyla-
tion reaction is influenced by multiple chemical and environmental factors, including the
structure of the glycosyl donor, the type and position of protecting groups installed on the
donor, the nucleophilicity of the acceptor, the solvent in which the reaction is performed, the
concentration of substrates, and the reaction temperature, and is determined by the specific
combination of these factors [19–29]. The 1,2-cis-configured O-glycosidic linkages, such as
α-glucopyranoside, β-mannopyranoside, β-L-rhamnopyranoside, β-D-arabinofuranosides,
and 2-azido-2-deoxy-α-D-glucopyranoside, are found in natural glycans, especially in
glycoconjugates (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides)
and glycoside natural products [30–35]. Chemical glycosylation is a useful method to
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obtain these glycosidic linkages as the alternative way of isolation from natural sources.
However, the strictly controlled formation of these 1,2-cis glycosides is generally difficult,
and the key factors controlling the stereoselectivity of glycosylation are not fully under-
stood. This review introduces a direct formation of cis glycosides using recently developed
ZnI2-mediated cis glycosylations of various constrained glycosyl donors [36–41] (Figure 1).

Figure 1. ZnI2-mediated 1,2-cis-α-D-glucopyranosylation. TS was obtained by DFT calculations
(Section 2.8.1).

Recent Development of Stereoselective cis Glycosylations

In recent years, further progress has been made in the development of stereoselective
O-glycosylation as well as orthogonal techniques using various methods [42,43] as stereose-
lective C-glycosylations have been extensively developed in recent publications [44–62]. Gly-
cosyl iodide as an intermediate generated from glycosyl 2,2,2-trifluoro-N-phenylacetimidate
[CF3C(=NPh)–O–] (3) with trimethylsilyl iodide (TMSI) could be complexed with triph-
enylphosphine oxide (Ph3P=O) [63] to afford cis glycosides (6, α:β = >20:1) through the
direct interaction of Ph3P=O with the C1 position (4→5) [64,65] (Figure 2A). Glycosyl
bromide generated from thioglycoside with Br2 in the presence of silver trifluoromethane-
sulfonate (AgOTf) and 2,4,6-collidine afforded 1,2-cis glycoside which has been applied to a
synthesis of a repeating unit of Bacteroides fragilis zwitterionic polysaccharide A1 [66]. Stere-
oselective glycosylations from 3,5-dimethyl-4-(2′-phenylethynylphenyl)phenyl glycoside
(7) under N-iodosuccinimide (NIS)–trifluoromethanesulfonic acid (TfOH) conditions [67]
(Figure 2B), as well as the Pd- or Cu-catalyzed activation system of donors through the
cyclization of some aglycons [68,69], have been developed. For the synthesis of heparin
pentasaccharide, [3+2] fragment coupling using the methodology of [67] has been applied
to give the α-selective formation of the pentasaccharide (8). The glycosylation of 7 proceeds
via an unprecedented dearomative cyclization mechanism initiated by the activation of the
triple bond with I+, resulting in side product 9. Benzylthio/seleno glycosides (10) with
an activation system using benzyne (12), generated in situ from o-TMS-phenol (11) with
trifluomethanesulphonate, KF, and 18-Crown-6 [70] (Figure 2C), have also been devel-
oped. The benzyne promotes the activation of the donor as well as the acceptor (ROH)
through proposed intermediates (14→16) for an effective SN2 reaction. Gluco-, galacto-,
and mannosyl as well as 2-deoxyglucosyl donors can be applied to afford SN2 products
(13). Phenylseleno (PhSe-) 2-azidoglycosides (17) could be converted to 1,2-cis glyco-
sides (19) with N-iodosuccinimide in the presence of a catalytic amount of Cu(OTf)2 and
N,N-bis-[(2,4-trifluoromethyl)phenyl]thiourea (18) [71] (Figure 2D). The reagent combina-
tion forming the metal–organocatalyst complex (20) can activate selenoglycoside by the
liberation of iodonium ion. The resultant α-selenonium salt analog (α-21) is converted
to β-isomer (β-21), which seems to be the key intermediate for cis glycosylation without
neighboring group participation.

Recent developments were reported about the effective participation of solvents [72–77]
and additives [78,79] as well as intramolecularly participating groups [79–83] to induce cis gly-
cosides. The participation of special functionalities such as the 2-(diphenylphosphinoyl)acetyl
group (DPPA) with an acceptor has been shown to afford the cis glycoside (24) effectively
through a participating intermediate (23) of the phosphine oxide (–Ph2P=O) functionality of
donor (22) with the acceptor (ROH), as developed by Li [84,85] (Figure 2E).
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By the action of M4+ Lewis acids such as SnCl4 and TiCl4, the glycosylation of
a 2,3,4,6- tetra-O-benzyl-α-D-glucopyranosyl trichloroacetimidate (25) afforded α- and
β-D-glucopyranoside (27) depending on the amount of M4+ (Figure 2F) [86]. When a
catalytic amount of M4+ was used, β-D-glucopyranoside (β-27) was obtained predomi-
nantly through a proposed intermediate (26). The use of 3.0 equiv. of M4+ resulted in the
formation of α-D-glucopyranoside (α-27) in one-pot from the donor (25). Since the ini-
tially obtained β-D-glucopyranoside (β-27) was isomerized to α-D-glucopyranoside (α-27)
under M4+ conditions, the excess M4+ accelerated the anomerization through a proposed
endo-cleavage intermediate (28), followed by cyclization to thermodynamically more stable
α-glucoside (α-27). As reported by Santrsa et al., the ZnBF4-catalyzed glycosylation of
α-imidate donor without 4,6-O-tethered structure in CH2Cl2 at −78 ◦C also afforded the
β-glycoside of various donor moieties, including D-Glcp, and D-Galp, through SN2 reaction
without isomerization [87].

Figure 2. Cont.
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Figure 2. Recent progress on cis glycosylations. (A) Activation of glycosyl 2,2,2-trifluoro-N-
phenylacetimidate by TMSI in the presence of Ph3P=O; (B) 3,5-Dimethyl-4-(2′-phenylethynylphenyl)-
phenyl glycoside by NIS–TfOH; (C) activation of thio- and seleno-glycosides by using benzyne;
(D) activation of seleno glycosides by using NIS–Cu(OTf)2–thiourea; (E) the remote participation
of 2-(diphenylphosphinoyl)acetyl group; (F) SnCl4 or TiCl4–mediated stereocontrolled one-pot gly-
cosylations. TSs (26, 28) were obtained by DFT calculations (Section 2.8.3). (G) 2-Naphthylmethyl
ether-mediated intramolecular aglycon delivery to α-D-altroside derivative with 1-OH of D-psicose
acceptor. Red arrows and bonds indicate transfer of electron pairs and cis-linkages, respectively.
Abbreviations: DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; MeOTf: methyl trifluoromethane-
sulfonate; DTBMP: 2,6-di-t-butyl-4-methylpyridine.

The combination of the donor, the leaving groups, and the reagent as a promo-
tor [24,88] should be optimized. Recent progress on the orthogonal [89] one-pot pro-
cedure [90–97] using stereoselective glycosylation methods in combination with orthogonal
activation systems [64,98–104] has afforded oligosaccharides containing 1,2-cis glycosidic
linkages. Alternatively, 1,2-cis glycosylation using the naphthyl methyl ether-mediated
intermolecular aglycon delivery (IAD) method [1,105–117] was applied to the selective
1,2-cis α-D-allopyranosylation using the D-allopyranosyl donor (29) with the 1,3,4,6-tetra-
O-benzoyl-D-psicofuranose acceptor (30) through a mixed acetal intermediate (31) [118],
which is the first example of the synthesis of non-reducing disaccharides (32) comprising
only rare D-sugars by IAD using protected ketose (Figure 2G).

2. ZnI2-Mediated Glycosylations

Zinc iodide (ZnI2) has been used as a catalyst in various organic reactions [119] such
as the Simmons–Smith cyclopropanation [120]. In the field of carbohydrate chemistry,
both methyl glycoside and 1-O-benzoate have been converted to thioglycoside by the
action of ZnI2, tetra-n-butyl ammonium iodide (TBAI), and alkylthiotrimethylsililane
(TMSSR) [121–124], which are useful transformations for obtaining the key stable in-
termediate for glycosidic bond formation (Figure 3A,B). Methyl D-rhamnopyranoside
(33) was treated with TMSSPh in the presence of ZnI2 and TBAI to give α-thioglycoside
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(34) in 73% [122] (Figure 3A). Benzoyl (Bz)- or tri-t-butyldimethylsilyl (TBS)-protected
1,6-anhydroglucose derivative (35, 36) could be used as the substrate to obtain thioglyco-
side (37, 38) by treatment under TMSSPh in the presence of ZnI2 without TBAI, respectively
(Figure 3B).

Figure 3. Activation of glycosyl benzoate and phosphate by ZnI2. (A) Glycosyl benzoate with
TMSSR in the presence of TBAI for thioglycoside synthesis; (B) 1,6-Anhydroglucose derivative with
TMSSR for thioglycoside synthesis; (C) Glycosyl benzoate with TMSI and acceptor for the synthesis
of glycoside; (D) Glycosyl phosphate with ZnI2 and acceptor for the synthesis of glycoside.

1-O-Benzoate and phosphate-protected glycosyl donors (39, 41) could be used for
O-glycosylation activated by ZnI2 with I2–(TMS)2 [125,126] or TMSI [125,127] (Figure 3C),
and ZnI2 [128] (Figure 3D), respectively, with glycosyl iodide as the intermediate [129]. The
neighboring group participation effect of the 2-O-Bz group resulted in the predominant
formation of 1,2-trans glycoside (40) (Figure 3C) [125]. During the screening of 1,2-trans
glycosylation using dibutyl 2-O-pivaloyl-3,4,6-tri-O-benzyl-D-glucopyranosyl phosphate
(41) reported by Seeberger and coworkers [128], ZnI2 in CH2Cl2–THF was indicated to
afford β-glucoside (43) in 30% yield via the neighboring group participation of the 2-O-
pivaloyl group, followed by the nucleophilic attack of an acceptor (42) (Figure 3D).

2.1. cis-Selective Glycosylations by the Action of ZnI2

The 1-O-trichloroacetimidate moiety [7,130–133] can be used as a leaving group of a
glycosyl donor by the action of a cheap and mild Lewis acid, such as ZnI2 for cis glycosyla-
tion [1,89,134,135], and Zn(BF4)2 [136], B(C6F5)3 [137] and pyrylium salt [138] for 1,2-trans
glycosylation. However, optimizations for the stereoselective construction of cis glycosides
should be carried out. The conformational strain on the donor moiety caused by cyclic
protective groups [139] is one of the important factors for cis-glycosylation [19–21]. There
have been many recent advances in the development of ZnI2-mediated O-glycosylation re-
actions especially for cis-selective glycosylations, including α-D-glucoside, β-D-mannoside,
β-D-rhamnoside, β-D-galactoside, and 2-azido-2-deoxy-α-D-glucoside formation.
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2.2. 1,2-cis Mannosylation Using C-2-o-TsNHbenzyl Ether (TAB)

When trichloroacetimidates are used as a convenient and common leaving group of the
bimodal donor equipped with C-2-o-TsNHbenzyl ether (TAB) groups for gluco- [140,141],
galacto- [140], and manno-sides [36], the examination of activators on the mannosylation
suggested the proposed unique donor activation pathway with coordination to the donor
(44⇄ 45) by ZnI2 for the stereo-direction toward 1,2-cis glycosidic bond formation [36]
(Figure 4). Zn2+ not only activates the donor leaving group but also coordinates to oxygens
at the 2- and 3-positions to induce the effective interaction of TAB with an incoming
nucleophile during 1,2-cis-β-mannosylation (44→47).

Figure 4. C-2-o-TsNHbenzyl ether (TAB)-protected mannosyl donor (44) under ZnI2 activation
conditions for 1,2-cis-β-mannosylation.

2.3. ZnI2-Mediated 1,2-cis α-Glucosylation

Easily accessible and common 4,6-O-tethered glucosyl donors (1Glc) were found to be
useful for highly stereoselective 1,2-cis α-glucosylation mediated by ZnI2 [37] (Figure 1).
The 4,6-O-tethering constrains a pyranose ring of the glycosyl donors for stereoselective
1,2-cis glycosylation [19]. The versatility and effectiveness of the α-glucosylation strategy
was demonstrated successfully with various acceptors. This approach demonstrates the
feasibility of the modular synthesis of α-glucans with both linear and branched backbone
structures. DFT calculations (vide infra) indicated that both the activation of trichloroace-
timidate and the coordination between 2–O in the donor moiety and the hydroxy group in
the acceptor could be carried out by Zn2+, and that 1,2-cis selective glycosylation proceeded
through the proposed transition state (TS) structure (Glc TS) after activation to afford
α-glucoside (α-2Glc).

2.4. ZnI2-Mediated 1,2-cis β-D-Mannopyranosylation and β-L-Rhamnopyranosylation

The ZnI2-mediated method could be applied to the synthesis of 1,2-cis β-glycosides
such as β-D-mannopyranosides (β-2Man) [38] (Figure 5A) and β-L-rhamnopyranosides
(β-2L-Rha) [39] which are 6-deoxy-β-L-mannopyranosides [142] (Figure 5B). The 1,2-cis
β-manno- and β-L-rhamno-sylation mediated by ZnI2 employed easily accessible
4,6-O-tethered mannosyl and L-rhamnosyl trichloroacetimidate donors (1Man and 1L-Rha).
The versatility and effectiveness of this strategy were demonstrated with successful
β-mannosylation of a wide variety of alcohol acceptors, including complex natural prod-
ucts, amino acids, and glycosides.
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Figure 5. ZnI2–mediated cis-glycosylations. (A) 1,2-cis β-D-mannopyranosylation; (B) 1,2-cis β-L-
rhamnopyranosylation; (C) 1,4/6-cis β-D-galactopyranosylation; (D) 1,2-cis 2-azido-2-deoxy-α-D-
glucopyranosylation. TSs were obtained by DFT calculations (Sections 2.8.1 and 2.8.2).

Through iterative ZnI2-mediated mannosylation with a chitobiosyl azide acceptor,
followed by the site-selective deprotection of the mannosylation product, this novel method-
ology enables the modular synthesis of a key intermediate trisaccharide with a β-D-Man-
(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc linkage for N-glycan synthesis [38]. The core
repeating tetrasaccharide unit with an α-L-Rhap-(1→2)-β-D-Galp-(1→4)-β-L-Rhap-(1→4)-
α-D-Glcp linkage of the Streptococcus pneumoniae 23F capsule polysaccharide has been
successfully synthesized using ZnI2-mediated 1,2-cis β-L-rhamnosylation with a conver-
gent [2 + 2] strategy [39].

DFT calculations also suggested similar activation and coordination via the key
coordinated-intermediates (Man TS and L-Rha TS) in the aforementioned α-glucosylation.
Theoretical investigations using DFT calculations (vide infra) delved into the mechanis-
tic details of this β-selective glycosylation and elucidated the essential roles of two zinc
cations as the activating agent of the donor and the principal mediator of the cis-directing
intermolecular interaction [38,39].

2.5. ZnI2-Mediated 1,4/6-cis β-D-Galactopyranosylation

Although the ZnI2-mediated method has been applied to the synthesis of
α-D-galactopyranosides, the β-anomer (β-2Gal) was obtained from the 4,6-O-tethered
2,3-di-O-benzyl-D-galactopyranosyl trichloroacetimidate donor (1Gal) in the presence of
ZnI2 in a 1,2-trans glycosylation fashion [40] (Figure 5C). The unexpected formation of
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β-D-galactopyranosides (β-2Gal) [143] could be explained by the favored coordination of
Zn2+ to the conformationally fixed 4-O or 6-O of the galactopyranosyl donor instead of
2-O as in the expected cases. Suggested by DFT calculations (vide infra), the stability of the
key intermediate for the stereodirection was proposed to be enhanced by the coordination
of Zn2+ to 4-O or 6-O on the β-face that controlled the approach of the acceptor from the
β-side. This β-D-galactopyranosylation should occur through 1,4/6-cis glycosylation under
ZnI2 conditions via Gal TS. By using this ZnI2-mediated β-galactosylation strategy, the
tetrasaccharide fragment β-D-Galp-(1→6)-3-O-[α-L-Araf -(1→)]-β-D-Galp-(1→6)-β-D-Galp
linkage of arabinogalactan, derived from the plant polysaccharide of Stevia rebaudiana and
Silybum marianum, was synthesized efficiently with high stereoselectivity [40].

2.6. ZnI2-Mediated 1,2-cis 2-azido-2-deoxy-α-D-Glucopyranosylation

The synthesis of the 1,2-cis 2-acetamido-2-deoxyglucoside (D-GlcNAc) core of the
capsular polysaccharide (CPS) remains challenging. The tetraisopropyldisiloxane (TIPDS)-
protected 2-azido-2-deoxy-D-glucosyl donor (1GlcN3) afforded the α-glycoside (2GlcN3)
(α:β = >20:1) predominantly in maximum yield [41] (Figure 5D). This approach applies
to a wide acceptor substrate scope, including various aliphatic alcohols, sugar alcohols,
and natural products. The reaction mechanism was explored by combined experimental
variable-temperature NMR (VT-NMR) studies, mass spectrometry (MS) analysis, and
DFT calculations (vide infra), and the results suggested the formation of a covalent
α-C1GlcN3-iodide intermediate in equilibrium with a separated oxocarbenium–counter
ion pair, followed by an SN1-like α-nucleophilic attack most likely from the separated ion
pairs by the ZnI2-activated acceptor complex under the influence of the 2-azido gauche
effect [144] via GlcN3 TS. The α-D-GlcNAc-linked core structure of the CPS repeating frag-
ments from Acinetobacter baumannii was synthesized by employing the developed reaction
as the key step for constructing the 1,2-cis 2-azido-2-deoxy glycosidic linkage.

2.7. ZnI2-Mediated 1,2-cis β-D-Arabinofuranosylation

In the case of D-arabinofuranosylation using a D-arabinofuranosyl trichloroacetimi-
date as the donor, tris(pentafluorophenyl)borane [B(C6F5)3] conditions resulted in better
1,2-cis stereoselectivity compared to the ZnI2-mediated reaction [145] (Figure 6). The
reaction of D-arabinofuranosyl trichloroacetimidate (1D-Araf ) under ZnI2 activation con-
ditions proceeded 1,2-cis stereoselectively via the proposed TS structure (D-Araf TS1)
when the donor was protected as an 8-membered 3,5-O-xylylene group [146–148] such
as the 9-membered 3,5-O-tetra-i-propyldisiloxanylidene (TIPDS) group [149–151]. Since
the 3,5-O-xylylene-protected donor gave higher yield, the optimization of the conditions
including the promotor suggested that B(C6F5)3 [142,152–155] could activate the α-imidate
and directly afford the glycosidic bond through an SN2-like mechanism via D-Araf TS2
from α-D-arabinofuranosyl trichloroacetimidate at −78 ◦C in CH2Cl2. This method was
applied to the synthesis of β-D-Araf linkages with various acceptors including the accep-
tor for producing a non-reducing terminal structure of mycobacterial arabinan fragment
(2D-Araf ) [145,156].
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Figure 6. B(C6F5)3–promoted 1,2-cis D-arabinofuranosylations of 3.5-O-xylylene protected donor.
TS was obtained by DFT calculations (Section 2.8.2).

2.8. Density Functional Theory (DFT) Calculations for ZnI2-Mediated Reactions
2.8.1. DFT Calculations for ZnI2-Mediated Glucosylation and Mannosylation

The TSs of each ZnI2-mediated reaction were obtained by density functional theory
(DFT) computations with Gaussian 16 software package [157] and the detailed conditions
are as follows. For GlcTS (Figure 1) and ManTS (Figure 2A), structures of plausible
reagents, products, and intermediates species were preoptimized at the PM6-d3 level
of theory [158,159] at the gas phase, and then subjected to geometry optimization at
the PBE0/def2-TZVP level of theory [160–162], with Grimme’s DFT-D3(BJ) empirical
dispersion correction [163] applied to account for the dispersion interactions, and the
implicit solvation model based on density (SMD) [164] applied to describe the solvent effect
exerted by diethyl ether. A short intrinsic reaction coordinate scan with the local quadratic
approximation [165] method and 0.1 Bohr step-size was performed on the optimized TS
structures at the same level of theory for 30 steps on each side to ensure that the TS structures
correspond to energy maxima along the reaction routes connecting the immediately reacting
intermediates and product structures. The accurate electronic energy of the chemical
species was calculated from the optimized structures with single-point calculation at the
M06-2X/ma-def2-TZVPP/SMD (solvent = diethyl ether) level of theory [166–168] with an
ultrafine integration grid, and the thermal energy terms associated with various thermal
motions of the molecule as well as the solvation of the molecules in diethyl solvent were
calculated from the frequency analysis output using Shermo [169], with scale factors [170]
applied to adjust for the errors arising from the harmonic oscillation assumption. The Gibbs
free energy of each chemical species was calculated as the sum of the accurate electronic
energy and thermal energy terms.

2.8.2. DFT Calculations for ZnI2-Mediated L-Rhamnosylation, 2-azido-2-deoxy-α-D-
Glucopyranosylation and for B(C6F5)3-Mediated D-Arabinofuranosylation

For L-Rha TS, GlcN3 TS (Figure 5B,D) and D-Araf TS2 (Figure 6), the geometries
were optimized at the theory level of B3LYP [171,172]//BS1 (BS1 = 6-31G(d) [173,174] for
main group elements and Lanl2dz [175] for Zn, Si, I, and Sn) in the gas phase. Solvation free
energies were calculated using the SMD [164] solvation model (solvent = diethyl ether or
DCM) under ωB97XD [176] or M06 [177]//BS2 (BS2 = 6-311 + G** [173,174] for main group
elements and SDD [178] for Zn, Si, I, and Sn). The Gibbs free energy present in this paper
is the sum of single-point energy at ωB97XD [173] or M06 [174] //BS2, thermodynamic
correction at B3LYP//BS1, and solvation free energy.
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2.8.3. DFT Calculations for ZnI2-Mediated D-Galactopyranosylation

For Gal TS (Figure 5C), DFT computations at the TPSS/def-TZVP/SMD and diethyl
ether [173–175] level of theory, with Grimme’s empirical correction to account for dispersion
D3(BJ) [163], were carried out.

3. Conclusions

For a 1,2-trans selective glycosylation, methodologies have been further developed using
2-(2-propylsulfinyl)benzyl 1,2-orthoester glycosides [179] activated by trifluoromethanesul-
fonic anhydride (Tf2O) with DTBMP, N-(1,1-dimethylpropargyl)carbamate by chloro[tris(2,4-
di-t-butyphenyl)-phosphite]gold and AgOTf [180–182] and diphenyl phosphate by bis-thiourea
type molecule catalyst with high site-selection [183].

There have been extremely valuable reports on the synthesis of large glycans with over
20 monosaccharide units [184] composed of pyranosides [185–192], furanosides [193–197],
and both isomers [198]. Both the synthesis and the application of biosynthetic incorporation
and selective labeling [199–201] of mycobacterial cell walls [202,203] related to tuberculo-
sis [204,205] should be noted as recent advances in remodeling glycoconjugates containing
cis glycosides.

This review summarizes recent stereoselective glycosylation methods including the
very simple and efficient ZnI2-mediated cis-glycosylation methodology using constrained
glycosyl trichloroacetimidate donors such as D-Glcp, D-Manp, L-Rhap, and 2-azido-2-deoxy-
D-Glcp in a 1,2-cis selective manner, and D-Galp in a 1,4/6-cis selective manner. In addition,
other findings for β-D-Araf formation using a constrained donor in the presence of B(C6F5)3
instead of ZnI2 as well as the synthesis of branched terminal D-arabinan hexasaccharide
fragment using tricloroacetimidate donor-B(C6F5)3 combination were also effective enough.
These methodologies, mainly based on ZnI2-mediated cis-glycosylation with optimization,
could be used in investigations focused on elucidating the biosynthetic pathways and
function of these glycans, and conjugating them to a protein carrier for vaccine generation
in the case of antigenic glycans from pathogenic bacteria. Further exploration of applica-
tions of this methodology for the synthesis of other complex oligosaccharides containing
cis linkages is the focus of continuing investigation for synthetic carbohydrate chemists.
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