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Abstract: The significant synthetic potential and reactivity of tetracyanoethylene (TCNE) have
captured the interest of numerous chemical communities. One of the most promising, readily
achievable, yet least explored pathways for the reactivity of TCNE involves its interaction with
arylamines. Typically, the reaction proceeds via tricyanovinylation (TCV); however, deviations from
the standard chemical process have been observed in some instances. These include the formation
of heterocyclic structures through tricyanovinyl intermediates, aliphatic dicarbonitriles through the
cleavage of the C–C bond of a tetracyanoethyl substituent, complexation, and various pericyclic
reactions. Therefore, the objective of this study is to review the diverse modes of interaction of TCNE
with aromatic nitrogen-containing compounds and to focus the attention of the chemical community
on the synthetic capabilities of this reagent, as well as the various biological and optical activities of
the structures synthesized based on TCNE.

Keywords: tetracyanoethylene; tricyanovinylations; aromatic amines; Schiff bases; benzamidines;
tricyanovinyl dyes; dicarbonitriles; butadiene-1,1,2,2-tetracarbonitriles; aryl-quinazolines

1. Introduction

TCNE is a promising synthon in organic chemistry, comprising colorless crystals
that sublimate at 120 ◦C and melt at 198–200 ◦C in a closed capillary [1]. The best yield
(85–89%) [2] is achieved by heating brommalonitrile with copper (2:1). It has been 70 years
since its discovery, and 65 years since the beginning of its study by Dupont chemists in
1958 [1]. Since then, tens of thousands of articles and reviews have been published on the
remarkable synthetic activity of this unique compound. One of the simplest, yet most-
promising and least-studied areas of its chemistry is the “tricyanovinylation” of aromatic
amines and its potential capabilities. We have compiled all the literature up to 2022 on
this subject to draw the attention of the chemical community to its preparative potential
and the various types of biological and light-absorbing activities of the carbonitrile organic
compounds obtained from it.

Preparatively, highly cost-effective, high-yield syntheses based on tetracyanoethy-
lene (TCNE) and aromatic amines involve tricyanovinylation reactions (TCV). TCV with
primary and secondary arylamines presupposes the formation of a tricyanovinyl sub-
stituent on the amino group, while with tertiary arylamines, it occurs in pairs with re-
spect to the substituent. These reactions typically proceed smoothly, with high-speed and
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yield-of-target compounds. TCV yields washing-resistant dyes suitable for hydrophobic
fibers [3], components for photo- and electroluminescent devices [4], conductive organic
materials [5,6] applicable for TV transmission and recording [6,7], as well as solar bat-
teries [8]. Tricyanovinyl derivatives of aniline also exhibit various types of biological
activity, including efficacy against Parkinson’s disease [9], antiviral [9], fungicidal [9,10],
antimycotic [9], herbicidal [9], antibacterial [9,10], anthelmintic [10], and antifungal [10,11]
activities. Furthermore, nanostructured colored optical films with enhanced electrical
conductivity under UV radiation [12] have been developed based on a tricyanovinylated
diethylaniline derivative.

Tricyanilamines are also of interest in medicine. They inhibit oxidative phosphory-
lation even at a concentration of 10−7 mol−1 and simultaneously reduce the amount of
glutathione, a peptide responsible for detoxifying xenobiotics, regulating redox processes
in the cell, immune function, and the oxidative state of important sulfhydryl protein groups
by up to 30% [13], as confirmed by reaction with thiols [14]. Derivatives of TCNE and ary-
lamines also serve as ideal synthons for the synthesis of biologically active heterocycles. For
example, through interaction with arylbenzamidines [15] and 2-aminobenzylamine [16],
they can be used in the synthesis of quinazolines [17], which act as kinase inhibitors,
promoting the division of cancer cells [18]. However, in some cases, the reaction pro-
ceeds differently.

2. Unusual Chemical Reactions with TCNE

The publication [19] presents interesting reactions of TCNE with nitrogen-containing
compounds. The authors conducted TCNE reactions with Schiff bases in ethyl acetate at
72 ◦C and at room temperature (Schemes 1–3), leading to different results. For instance, the
interaction of TCNE with terephthalaldehyde derivatives 1a,b at high temperature (72 ◦C)
resulted in pyrroles 6a,b, whereas at room temperature, it led to imidazolidines 10a,b.
Similarly, the interaction with Schiff’s base 11 at high temperature resulted in imidazolidine
16, while at room temperature, 11 cyclized into pyrrole 20. In the case of glyoxal Schiff’s
bases 21a–c, at 72 ◦C, arylcarbonimidoyldicyanides 23a–c are formed, whereas at 20 ◦C,
dihydroimidazolecarboxamides 27a–c are obtained.

Given the availability of the publication in the public domain, we propose our own
schemes showing the formation of reaction products in Schemes 1–3. We proposed that in
several cases (Schemes 1–3), TCNE was hydrolyzed in ethyl acetate containing up to 8%
water prior to reaction with Schiff’s bases. This hydrolysis consequently led to acetal, keten,
dicyanoacetic acid decarboxylated to malonnitrile 2, which was finally added to TCNE to
give pentacyanopropene 3 [20]. Scheme 1 shows the addition of pentacyanopropene 3 to the
C=N bond of imines 1a,b by heating at 72 ◦C. The formed Michael adducts 4a,b underwent
intramolecular cyclysis to give dihydropyrroles 5a,b, which were converted to pyrroles
6a,b after prussic acid elimination in yields of 43% and 39%, respectively. Meanwhile,
we propose that the original compounds 1a,b were hydrolyzed at room temperature to
aldehydes 7a,b and amines 7′a,b. The reaction between them (1a,b and 7a,b) occurred as a
Michael-type addition leading to bis(arylamino)methylarylaldehydes 8a,b. The hydrolysis
products 8a,b, via intermediates 9a,b, finally formed diarylimidazolidine-tricarbonitriles
10a,b in yields of 34% and 71%, respectively (Scheme 1).

The reaction of TCNE with the methyl derivative of methanimine 11 (Scheme 2)
differs from the previous scheme (Scheme 1). Tetracyanoethylene was converted to pentha-
cyanopropene 3, following a similar pattern to the reaction described previously. For
products 16 and 20 (Scheme 2), we assumed that Schiff’s base 11 was hydrolyzed to amine
12 and aldehyde 13 at both temperatures (72 ◦C and ambient). This hydrolysis at 72 ◦C
facilitated the formation of bis(arylamino)methylarylaldehyde 14, and its reaction with
penthacyanopropene 3 led to imidazolidine 15 by analogy with Scheme 1 (similar transfor-
mations of the original compounds 1a,b and TCNE took place at ambient temperature).
The N-methyl of imidazolidine 15 was presumably replaced by residual amino-anisole 12,
which is the product of the hydrolysis of Schiff’s base 11, yielding 30% of the final product
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16. At room temperature, Schiff’s base 11 underwent partial hydrolysis to amine 12, which
probably reacted with pentacyanopropenide 3 to give pentacyanopropane 17. The latter
underwent intramolecular cyclization into pyrazolone imine 18. Subsequent elimination
of prussic acid 18′ and tautomerization produced pyrrole 19, which then interacted with
the original compound 11. The elimination of methylamine resulted in the final pyrrole 20
with a yield of 41% (Scheme 2).
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Scheme 1. Reaction of TCNE with bis-airlmetanimines. Aniline fragments are highlighted in pink 
color, terephtalic aldehyde—in blue color, TCNE—in red color, water—in turquoise color. Black 
bonds in the compounds indicate the addition of one molecule to the other, as well as addition of 
functional groups within the molecule. 

The reaction of TCNE with the methyl derivative of methanimine 11 (Scheme 2) dif-
fers from the previous scheme (Scheme 1). Tetracyanoethylene was converted to penthacy-
anopropene 3, following a similar pattern to the reaction described previously. For prod-
ucts 16 and 20 (Scheme 2), we assumed that Schiff�s base 11 was hydrolyzed to amine 12 
and aldehyde 13 at both temperatures (72 °C and ambient). This hydrolysis at 72 °C facil-
itated the formation of bis(arylamino)methylarylaldehyde 14, and its reaction with pen-
thacyanopropene 3 led to imidazolidine 15 by analogy with Scheme 1 (similar transfor-
mations of the original compounds 1a,b and TCNE took place at ambient temperature). 
The N-methyl of imidazolidine 15 was presumably replaced by residual amino-anisole 12, 
which is the product of the hydrolysis of Schiff�s base 11, yielding 30% of the final product 
16. At room temperature, Schiff�s base 11 underwent partial hydrolysis to amine 12, which 
probably reacted with pentacyanopropenide 3 to give pentacyanopropane 17. The latter 
underwent intramolecular cyclization into pyrazolone imine 18. Subsequent elimination 
of prussic acid 18′ and tautomerization produced pyrrole 19, which then interacted with 
the original compound 11. The elimination of methylamine resulted in the final pyrrole 
20 with a yield of 41% (Scheme 2). 

Scheme 1. Reaction of TCNE with bis-airlmetanimines. Aniline fragments are highlighted in pink
color, terephtalic aldehyde—in blue color, TCNE—in red color, water—in turquoise color. Black
bonds in the compounds indicate the addition of one molecule to the other, as well as addition of
functional groups within the molecule.

Referring to Scheme 3, it was assumed that at 72 ◦C, TCNE interacts with diarylethanedi-
imines 21a–c via a [4+2] cycloaddition, followed by cleavage of the C=C bond of the adducts
22a–c and acetylene elimination to give imindicarbonitriles 23a–c in yields of 11%, 16%, and
14%, respectively. At room temperature, TCNE is expected to hydrolyze to dicyanoacetyl
cyanide, which differs from previous Schemes 1 and 2. The hydrolysis product is likely
to enter the reaction with the original compounds 21a–c as a CH-acid, adding conjugated
double bonds 21a–c. Intermediates of 1,4-addition 24a–c consequently underwent in-
tramolecular cyclization to dihydroimidazole 25a–c. Cyano groups of carbonyl cyanide
moieties 25a–c were presumably hydrolyzed to α-oxoamides 26a–c. In the final step, we
assumed the typical α-oxoacid libation of carbon monoxide to form amides 27a–c in yields
of 68%, 79%, and 74%, respectively (Scheme 3).
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Scheme 2. Reaction of TCNE with methyl-methoxy phenyl methanimine. Aniline derivative is
market in orange color, terephtalic aldehyde—in blue color, methylamine—in crimson color, TCNE
in red color. Black bonds in the compounds indicate the addition of one molecule to the other, as well
as addition of functional groups within the molecule.

The tricyanovinylation of dimethylaniline (DMA) is of significant interest. The result-
ing dye is employed in photovoltaics [5] and as a material for thin films in television and
video recording technologies [6] owing to its high electrical conductivity [5]. However,
the reaction mechanism between DMA and tetracyanoethylene (TCNE), which yields a
compound of practical importance, remains incompletely understood [21].

One of the initial challenges was detecting the light absorption of the π-complex
formed between DMA and TCNE using UV–visible spectroscopy, particularly when the
reaction was conducted in polar solvents. To decelerate the reaction, isotopic kinetic
studies were performed. In this approach, deuterium, being heavier than hydrogen, slows
its incorporation into the TCNE multiple bond, thereby extending the lifetime of the π-
complex. Through this method, the presence of the TCNE complex was confirmed by
observing its decay in dichloromethane [21].
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Further efforts were directed toward isolating the intermediates of the DMA-TCNE
reaction. Synthesis in a nonpolar solvent—such as dioxane—at room temperature, resulted
in the precipitation of the tetracyanoethyl derivative 31 (illustrated in Scheme 4). Com-
pound 31 was recrystallized from benzene [21] and characterized using spectral methods.
Based on the structure of compound 31, the structure of its precursor, a σ-complex in the
form of a zwitterion, was proposed (Scheme 4).

The authors of article [21], utilizing the available literature data, elucidated the interme-
diate interactions involved in the transformation of the σ-complex into tetracyanoethylated
dimethylaniline 3 (Scheme 4). To achieve this, they employed the density functional theory
(DFT) method. According to DFT, matter consists of interacting electrons within a lattice of
atomic nuclei. The reaction was conducted in dichloromethane at room temperature under
conditions identical to those used for the isotopic kinetic method [20].

By measuring electron density throughout the reaction and accounting for harmonic
oscillations to capture transition states (TS), seven canonical structures were identified,
and their free energies of formation (∆G, kJ/mol) were calculated (Scheme 4). TCNE
initially attaches to DMA, forming a zwitterionic σ-complex via a π-complex intermediate.
This zwitterion is then deprotonated by a second DMA molecule, yielding zwitterion 28
through the transition state (TS-σ-complex). The DMA cation, exhibiting acidic properties,
donates a proton to the aromatic anion. Protonation of the tetracyanoethyl group occurs
through the canonical structure 29, the TS29 transition state, and intermediate 30. The final
step involves the elimination of cyanohydrogen from tetracyanoethyl dimethylaniline 31,
resulting in the formation of tricyanovinyl 32.



Molecules 2024, 29, 4727 5 of 37

Molecules 2024, 29, x FOR PEER REVIEW 6 of 36 
 

 

By measuring electron density throughout the reaction and accounting for harmonic 
oscillations to capture transition states (TS), seven canonical structures were identified, 
and their free energies of formation (∆G, kJ/mol) were calculated (Scheme 4). TCNE ini-
tially attaches to DMA, forming a zwitterionic σ-complex via a π-complex intermediate. 
This zwitterion is then deprotonated by a second DMA molecule, yielding zwitterion 28 
through the transition state (TS-σ- complex). The DMA cation, exhibiting acidic proper-
ties, donates a proton to the aromatic anion. Protonation of the tetracyanoethyl group oc-
curs through the canonical structure 29, the TS29 transition state, and intermediate 30. 
The final step involves the elimination of cyanohydrogen from tetracyanoethyl dimethyl-
aniline 31, resulting in the formation of tricyanovinyl 32. 

 
Scheme 4. Mechanism of reaction of TCNE and DMA. Dimethylaniline is crimson, TCNE is red. 

The authors of article [22] successfully improved the yield of tricyanovinyl dimethyl-
aniline and identified the most environmentally friendly and economically viable method 
for its synthesis. The tricyanovinyl derivatives of aniline (34a–h) and 2-methylindole (36i–
l) were synthesized using enzyme catalysts and a deep eutectic solvent (DES). The selec-
tion of specific enzymatic catalysts, namely lipase [23] and protease [24], was likely due 
to their high selectivity, reaction rate enhancement, mild operating conditions, and the 
non-toxic nature of the protein structures. 

Deep eutectic solvent (DES) [25] offers several advantages over many low-boiling 
organic solvents. Besides being non-toxic and non-volatile (facilitating product isolation), 
DES is non-flammable, biodegradable, safe, inexpensive, and capable of increasing reac-
tion rates [22]. A key advantage, in addition to those mentioned, is the recoverability of 
both the enzyme catalysts and DES, preserving their activity for reuse [22]. 

The enzymes were isolated in pure form from commercially available cell lines. Li-
pase, responsible for fat hydrolysis [23], was derived from the bacterial strain Pseudomonas 
sp., while protease, which catalyzes the cleavage of peptide bonds in proteins [24], was 
obtained from a strain of Bacillus subtilis. DES [25] was prepared by mixing choline chlo-
ride (ChCl) and urea. 

Three different methods were employed for the synthesis of TCNE-based tricyanov-
inyl derivatives of aniline (34a–h) and 2-methylindole (36i–l), all performed at 35 ± 2 °C, 
presumably to enhance the solubility of the protein catalysts and the melting of DES. The 
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The authors of article [22] successfully improved the yield of tricyanovinyl dimethy-
laniline and identified the most environmentally friendly and economically viable method
for its synthesis. The tricyanovinyl derivatives of aniline (34a–h) and 2-methylindole (36i–l)
were synthesized using enzyme catalysts and a deep eutectic solvent (DES). The selection
of specific enzymatic catalysts, namely lipase [23] and protease [24], was likely due to their
high selectivity, reaction rate enhancement, mild operating conditions, and the non-toxic
nature of the protein structures.

Deep eutectic solvent (DES) [25] offers several advantages over many low-boiling
organic solvents. Besides being non-toxic and non-volatile (facilitating product isolation),
DES is non-flammable, biodegradable, safe, inexpensive, and capable of increasing reaction
rates [22]. A key advantage, in addition to those mentioned, is the recoverability of both
the enzyme catalysts and DES, preserving their activity for reuse [22].

The enzymes were isolated in pure form from commercially available cell lines. Lipase,
responsible for fat hydrolysis [23], was derived from the bacterial strain Pseudomonas sp.,
while protease, which catalyzes the cleavage of peptide bonds in proteins [24], was obtained
from a strain of Bacillus subtilis. DES [25] was prepared by mixing choline chloride (ChCl)
and urea.

Three different methods were employed for the synthesis of TCNE-based tricyanovinyl
derivatives of aniline (34a–h) and 2-methylindole (36i–l), all performed at 35 ± 2 ◦C,
presumably to enhance the solubility of the protein catalysts and the melting of DES. The
first method (A) utilized lipase in dichloromethane, while the second method (B) employed
protease in the same solvent. Dichloromethane was likely selected due to its low boiling
point and sufficiently high polarity, which helped accelerate the reaction and facilitate
product isolation. The third method (C) used DES. Scheme 5 outlines the reactions between
TCNE and anilines (33a–h) or 2-methylindoles (35i–l) under the corresponding reaction
conditions, along with yield ranges for each methodology (A–C).
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33e 
34e

75, (7) 84, (5) 74, (7) 

33f 
34f 

78, (5) 87, (5) 75, (5) 

33g
34g

83, (10) 80, (10) 79, (10) 

33h 34h

75, (12) 82, (12) 73, (15) 

35i
36i

75, (25) 75, (15) 72, (20) 

35j
36j

78, (20) 87, (15) 80, (15) 

35k
36k

76, (15) 81, (15) 75, (15) 

N

H3C

H3C

35l
36l

80, (15) 85, (10) 80, (15) 

Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
summarized in Table 2. 
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Table 1. Cont.

Original Compounds Products
Lipase DES Protease

Yield %, (min) Yield %, (min) Yield %, (min)
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
summarized in Table 2. 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
summarized in Table 2. 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
summarized in Table 2. 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
summarized in Table 2. 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
summarized in Table 2. 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
summarized in Table 2. 
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Additionally, the authors of article [22] investigated the reaction of methylaniline 
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the 
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of 5 
min were achieved using a DES composed of choline chloride and urea. The results are 
summarized in Table 2. 
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Additionally, the authors of article [22] investigated the reaction of methylaniline
(33a) with TCNE. To optimize the yield of tricyanovinylmethylaniline and reduce the
reaction time, various deep eutectic solvents (DES), conventional solvents, and solvent-
free conditions were tested. The highest yield of 89% and the shortest reaction time of
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5 min were achieved using a DES composed of choline chloride and urea. The results are
summarized in Table 2.

Table 2. Optimization of catalysts.

Catalyst Time (min) Yield (%)

ChCl–malonic acid 25 70

ChCl–oxalic acid 15 70

ChCl–urea 5 89

Glycerol 30 80

Urea 60 20

ChCl 50 50

ChCl–ethanol 60 40

ChCl–H2O 60 75

ChCl–DCM 60 80

ChCl–urea–ethanol 60 10

ChCl–urea–DCM 10 85

5% Protease 5 60

10% Protease 5 68

15% Protease 5 79

20% Protease 5 76

5% Lipase 5 66

10% Lipase 5 75

15% Lipase 5 80

20% Lipase 5 80

The authors of [22] also investigated the influence of cyano groups on the optical prop-
erties of the synthesized compounds (see Table 9, “Absorption maxima for tricyanoviny-
lated compounds”, in Section 6, “Molecular Research” and Figure 1, “Tricyanovinylated
dimethylaniline in daylight in various solvents”, below).
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The interaction of TCNE with p-nitrosodimethylaniline 37 is unusual (Scheme 6). The
authors of publication [26] suggest the formation of compound 41 through the intermediate
zwitterion 39, with the attachment of a second molecule of arylamine 40, followed by the
cleavage of the double bond (Scheme 6).
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group (violet) in nitrosodimethylamine moiety are marked in individual colors, as they participate in
the reaction.

The assumption regarding the intermediate zwitterion 39 is supported by the fact that
the reaction with nitrobenzene 37 does not occur under similar conditions (i.e., mixing of
reagents in DMF at 20 ◦C for 30 min) [26].

The reaction of phenylhydrazones 42a–c with TCNE takes an unusual course [8]
(Scheme 7) in which the latter compound, rather than undergoing the typical proton substi-
tution reaction at the nitrogen atom of the amino group 42a–c, becomes incorporated at the
para-position of the phenyl ring. The authors of [8] synthesized the target compounds 44a–c
in two stages: first, phenylhydrazine (PhNHNH2) and the corresponding arylaldehyde
41a–c were refluxed in ethanol under 78–100 ◦C for 30 min to synthesize the hydrazones,
and then, a tricyanovinyl radical was introduced through mixing Schiff’s bases 42a–c with
TCNE in DMF at 60–90 ◦C (Scheme 7).
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Scheme 7. Reaction of TCNE with arylhydrazones.

Aromatic amine 45b reacts with the TCNE fragment of butadiene by Diels–Alder,
instead of the reaction with amino group ([4+2]-cycloaddition, Scheme 8). In Scheme 8, the
yield of aniline derivative 46b, 65%, is provided for comparison with the phenyl derivative
46a, 84% [27].
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Scheme 8. The [4+2] cycloaddition.

The authors of publication [28] investigated the capability of TCNE to form complexes
with nitrogen- and oxygen-containing compounds, utilizing this property to establish
spectroscopic characteristics that elucidate the behavior of drugs in the human body. The
identification of TCNE complexes through spectroscopic methods enables the determina-
tion of the drug’s mechanism of action, the binding site of the active substance molecule
to the biological target, and the physical and thermodynamic properties, allowing for the
quantification of drug purity. Additionally, TCNE-based complex compounds exhibit
activity against both Gram-positive and Gram-negative bacteria. The main advantage
of the method proposed in article [28] is the ability to conduct studies without isolating
the active substance from the medicinal compound, which traditionally involves lengthy
processes and significant losses of the target product. In the experiment described in arti-
cle [28], six drugs were utilized (for brief descriptions and molecular weights, see Section 6,
“Molecular Research”).

TCNE-based complexes were synthesized by combining a medicinal substance in
20 mL of acetonitrile (resulting in a colorless solution) with TCNE in 20 mL of the same
solvent. The reaction mixture was heated and stirred at 0.5 ◦C, followed by solvent evapo-
ration, yielding a stable yellow complex. Figure 1 illustrates an example of complexation
with sulfamethoxazole (Drug 6), where Solution 1 contains TCNE, Solution 2 contains Drug
6, and Solution 3 represents the complex formed with TCNE after brief heating.

Presumably, in this instance, the reaction of the TCV on the amino group did not
occur for the following reasons: the use of an aprotic solvent, an insufficiently elevated
temperature of the reaction mixture, solvent evaporation during the complexation stage,
and the high electron density of the isoxazole ring (Scheme 9).
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Scheme 9. Color change in the solution with sulfomethoxazole. Colored circles highlight the centres of
complexation between double TCNE bond (yellow), aromatic ring (blue) and nitrogen lone electrone
pair (green).

To analyze the obtained complex compounds, the authors of [28] conducted spec-
trophotometric measurements, stoichiometric titration, and determined the thermodynamic
parameters of the compounds under investigation (see Table 11, “(A) Non-splitting and
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(B) splitting absorption of bonds of synthesized complexes”, in Section 6, “Molecular Re-
search”). The authors of publication [28] also determined the thermodynamic parameters
(refer to Table 10, “Thermodynamic parameters of complex compounds”, in Section 6,
“Molecular Research”) and unveiled their correlations.

3. Heterocyclic Derivatives via Tricyanovinyl Intermediates

The authors of publication [29] examined the reaction of TCNE with benzamidine
42 (Scheme 10) in an ethyl acetate medium at room temperature for 5 h. This interaction
resulted in the formation of three compounds: dihydroimidazole derivative 55 with a yield
of 12%, quinazoline 50 with a 37% yield, and iminodihydroquinazoline 52 with 2% yield.
The chemical process was presumed to proceed through the tautomeric form 47′ in two
pathways. The first involves the attachment of the primary amine to the TCNE in a Michael
addition. Subsequently, both prussic acid (compound 49) and malononitrile (compound 51)
can be eliminated. Subsequent intramolecular cyclization of the intermediates 49, 51 yield
the final products 50, 52 through imine and secondary amine pathways, respectively. In the
second pathway, tricyanovinylation of the secondary amine 47′ through the intermediate 53
is followed by intramolecular cyclization 54 according to the Thorpe–Ziegler type, resulting
in the formation of the final product 55 (Scheme 10).
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bonitrile fragment is blue, aromatic amine attaching to triple bond of carbonitrile, is pink.

The authors of [29] achieved an increase in the yield of arylaminoquinazoline 50 from
37% to 93–98% when conducting the same reaction in acetonitrile with the addition of
1 equivalent of acetic acid at room temperature for 7–8 h (Scheme 11).
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The authors of publication [30] obtained arylaminoquinazoline through an alternative
pathway. In the first stage, they conducted the reaction of quinazoline 56 with aniline
derivative 57 in an acidic medium in dioxane at 140 ◦C, followed by the methylation of the
disubstituted amino group of intermediate 58 in dimethylformamide at 0 ◦C in the presence
of methyl iodide and sodium hydride as a strong base for the elimination of hydrogen
iodide. Target product 59 resulted in a yield of 61% (Scheme 12). In the second stage, they
conducted a cross-coupling of this compound 59 with oxyacrylamide 60. The reaction,
catalyzed by a Pd(II) complex, was performed in the polar solvent dimethylformamide
at 100 ◦C in the presence of triethylamine, which is essential for the elimination of the
acrylamide vinyl hydrogen from 60. The hydroxyamide group of the cross-coupling
product 61 was then hydrolyzed in the presence of hydrochloric acid in dioxane, resulting
in the final hydroxyamide 62 with a yield of 30% (Scheme 12).
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Scheme 12. Additional method to obtain quinazoline derivative.

The authors of article [30] evaluated the N-methyl derivative of heterocycles 61 and 62
on the HCT116 cell line (refer to the results in Table 12, “Biological activity of arylamino-
quinazoline derivatives”, in Section 6, “Molecular Research”).

In addition, a significant number of arylaminoquinazolines demonstrate inhibitory
activity against EGFR tyrosine kinase [31–36], Hoechst 33,342 [37], PARP [38], HCA [39],
NAPE-PLD [40], nsP1 [41], PARP-1 [42], PDE-7 [43], and HFDPS [44]. Moreover, several
derivatives also exhibit antibacterial activity [45,46].

The tricyanovinylation of 2-aminobenzylamine (Scheme 13) is carried out through
the benzyl nitrogen [16], followed by the addition of an aromatic amino group via a
Michael double bond. Compound 66 undergoes further chemical transformations along
two pathways: one involving the elimination of malononitrile (compound 67), and the
other involving the production of prussic acid (compound 68) (Scheme 13).
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Additionally, TCNE-based syntheses enable the one-step formation of five-membered
heterocycles, including pyrazoles [47,48], triazoles [49], and thiazoles [50].

Syntheses involving TCNE and hydrazine derivatives yield N-substituted pyra-
zoles [47,48]. According to publications [47,48], the cyclization of TCNE with hydrazines
proceeds via tricyanovinyl intermediates. The authors of [47] conducted the synthesis using
N-methylhydrazine 69a in water, initially stirring for one hour at 0 ◦C followed by refluxing
for 45 min in the temperature range 40–100 ◦C (see conditions A, Scheme 14). They propose
a bifurcated reaction pathway involving the triple bond of the carbonitrile group and the
double bond of TCNE. Addition of the N-methyl fragment 69a to the carbonitrile of TCNE
forms tricyanovinylimine 70a, which cyclizes to iminopyrazole 71a with elimination of
cyanoacetic acid. Zwitterion 71a converts to iminopyrazole 72a, which tautomerizes to
aminopyrazole 73a, achieving a yield of 27%. Alternatively, attachment via the double bond
of TCNE leads the authors of [47] to suggest the formation of tetracarbonitrile zwitterion
74a, which tautomerizes to ketenimine 75a, followed by elimination of cyanoacetic acid
yielding tricyanovinylhydrazine 76a. Intramolecular Thorp–Ziegler cyclization produces
3-iminopyrazole 77a, which tautomerizes to 3-aminopyrazole 78a with a yield of 53%,
surpassing the yield of 5-aminopyrazole 73a at 27%.
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Scheme 14. N-substituted hydrazines with TCNE.

Our synthesis [48] involved TCNE and substituted hydrazines—dimethylhydrazine
69b and pyridyl hydrazine 69c—at room temperature in methanol for one day (see
conditions B, Scheme 14). In contrast to the synthesis described above [47], the reac-
tion with dimethylhydrazine 69b [48] proceeds chemoselectively, yielding exclusively
5-aminopyrazole 73a with a yield of 91%. Similarly, under these conditions [48], pyridyl
hydrazine 69c also yields pyrazole derivative 73c with a yield of 89%. We hypothesized
the formation of pyrazoles based on dimethylhydrazine 73a and pyridyl hydrazine 73c
following the same pathway as described in publication [47], involving an addition of the
substituted fragment of the corresponding hydrazine to the carbonitrile group of TCNE.
Chromatographic methods and qualitative reactions with Prussian blue [48] confirmed that
in the case of dimethylhydrazine 69b, during the cyclization of tricyanovinylimine 70b to
iminopyrazole 72b, acetonitrile is eliminated, while in the case of pyridyl hydrazine 69c,
cyanoacetic acid is eliminated (Scheme 14).

The conditions of syntheses for the original hydrazines 69a–c, pyrazoles 73a, c, and
78a as well as their yields are presented in Table 4.
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Table 4. Conditions of syntheses and yields of N-substituted pyrazoles.

Conditions Original
Hydrazine Product and Yield (%)

A 1. H2O, 0 ◦C, stirring 1 h;
2. Reflux, 40–100 ◦C 45 min
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The reaction of TCNE with substituted phenylthiosemicarbazones (79a–c) [49] is
quite unusual (Scheme 15). It is proposed that thiocarbazones 79a–c, through zwitterion
80 and its tautomeric form 81, protonate TCNE to form the tetracyanoethyl derivative
82. This derivative undergoes elimination of hydrogen cyanide, yielding a tricyanovinyl
intermediate 83, which then undergoes intramolecular cyclization to form triazole 84.
Subsequently, a Thorpe–Ziegler-type spiro attachment of the malononitrile fragment to the
cyano group in molecule 84 produces dicyanocyclopropanimine 85. A 1,3-hydride transfer
occurs, leading to the formation of an unstable zwitterion 86, which opens the cyclopropane
during the nucleophilic attack by the malononitrile fragment on the three-membered ring.
The resulting iminomalononitrile 87 then tautomerizes to aminomalononitrile 88a–c. The
reaction was conducted in ethyl acetate at room temperature for 48 h. Based on the yields
presented in Scheme 15, it can be inferred that the formation of the target 1,2,4-triazolium-
3-thiolates decreases with increasing multiplicity and aromaticity of the substituents on
the thiosemicarbazones.

Molecules 2024, 29, x FOR PEER REVIEW 16 of 36 
 

 

A 
1. H2O, 0 °C, stirring 1 h; 

2. Reflux, 40–100 °C 45 min  
69a  

73a, 27% 

 
 

78a, 53% 

B MeOH, r.t. 

 
69b 

N
N

C

C

H2N

H3C N

N

 
73a, 91% 

 
69c 

 
73c, 89% 

The reaction of TCNE with substituted phenylthiosemicarbazones (79a–c) [49] is 
quite unusual (Scheme 15). It is proposed that thiocarbazones 79a–c, through zwitterion 
80 and its tautomeric form 81, protonate TCNE to form the tetracyanoethyl derivative 82. 
This derivative undergoes elimination of hydrogen cyanide, yielding a tricyanovinyl in-
termediate 83, which then undergoes intramolecular cyclization to form triazole 84. Sub-
sequently, a Thorpe–Ziegler-type spiro attachment of the malononitrile fragment to the 
cyano group in molecule 84 produces dicyanocyclopropanimine 85. A 1,3-hydride transfer 
occurs, leading to the formation of an unstable zwitterion 86, which opens the cyclopro-
pane during the nucleophilic attack by the malononitrile fragment on the three-membered 
ring. The resulting iminomalononitrile 87 then tautomerizes to aminomalononitrile 88a–
c. The reaction was conducted in ethyl acetate at room temperature for 48 h. Based on the 
yields presented in Scheme 15, it can be inferred that the formation of the target 1,2,4-
triazolium-3-thiolates decreases with increasing multiplicity and aromaticity of the sub-
stituents on the thiosemicarbazones. 

 
Scheme 15. Mesoionic 1,2,4-triazolium-3-thiolate derivatives 88a–c. 

The reaction of TCNE with disubstituted thiosemicarbazides proceeds differently 
[50]. The authors of [50] propose that the initial stage involves a complexation reaction 
(TC–complex). This is followed by the decomposition of the complex into the thiosemi-
carbazide cation radical (89′) and tetracyanoethane (90). The cation radical 89′ then proto-
nates the anion radical 90, resulting in the formation of two radical species (91 and 92). 
The addition of the tetracyanoethane radical (92) to the multiple bond of radical 91, 

H
N N

H

RHN

S

CN

C
N

C N

C
N

TCNE
+

EtOAc
48h, r.t.

HN
N

R
N

SH
C

CN

N

CCN
N

H

HCN HN N

R
N

SHC
N

C
CN

N

N N

R
N SH

CN

C
CN

N

H
N N

N SH

RC
CN

N

HN HN N

N S

R

C

CN

N

HN

N N

N S

R

C

CN

N

HN

H N N

N S

R

C

CN

N

H2N

79a-c 80 81 82 83

84 85 86 87 88a-c
88a 76%; 88b 71%; 88c 67%

R = a
H2
C

CH3
;

H2
C

C
H

CH2 ; cb

HN
N

RH
N

SH
C

CN

N

CCN
N

HN
HN

RH
N

S
C

CN

N

CCN
N

Scheme 15. Mesoionic 1,2,4-triazolium-3-thiolate derivatives 88a–c.



Molecules 2024, 29, 4727 16 of 37

The reaction of TCNE with disubstituted thiosemicarbazides proceeds differently [50].
The authors of [50] propose that the initial stage involves a complexation reaction (TC–
complex). This is followed by the decomposition of the complex into the thiosemicarbazide
cation radical (89′) and tetracyanoethane (90). The cation radical 89′ then protonates the
anion radical 90, resulting in the formation of two radical species (91 and 92). The addition
of the tetracyanoethane radical (92) to the multiple bond of radical 91, accompanied by the
redistribution of electron density, yields the tetracyanoethyl derivative 93. This derivative
is subsequently protonated by a second thiosemicarbazide molecule (94a–f), leading to
the elimination of malononitrile and the formation of anion 95. The anion 95 is again
protonated by molecule 94a–f to produce ketenimine 97. The subsequent intramolecular
cyclization—via the addition of an amino group to the multiple bond of ketenimine—results
in the formation of the target thiazoles (98a–f) (Scheme 16).
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The reaction of TCNE with thiosemicarbazides (89a–f) was conducted in five different
solvents: tetrahydrofuran, dichloromethane, benzene, acetonitrile, and dioxane. The
reactions in acetonitrile and dioxane have been previously studied [50], and a notably
favorable result was observed in tetrahydrofuran. The results are summarized in Table 5.

The reaction of TCNE with anthranilic (o-aminobenzoic) acid hydrazide 99 offers the
opportunity to access a seven-membered cycle that is challenging to obtain [51], holding
interest in the realms of organic and pharmaceutical chemistry as a potential antibacterial,
antiviral, and psychotropic agent [52–54]. The interaction (Scheme 17) takes place through
the terminal nitrogen of the hydrazide. Subsequent to the Michael addition (100), the
elimination of malononitrile results in the formation of dicyanoazepine 101 (Scheme 17).
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Table 5. Yields of synthetic products 98a–f in different solvents.

Structure
Yield 88a–f, %

THF CH2Cl2 Benzene CH3CN 1,4-Dioxane
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4. Heterocyclic Derivatives via Tricyanovinyl Intermediates

The interaction of TCNE with triazenes 102a–c [55] is presumed to proceed through
the rearrangement of intermediates 103–106, followed by cleavage of bond 81 resulting in
the formation of malonitriles 107a,b and 108a,b (Scheme 18).
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The syntheses based on TCNE and triazenes 102a–c have demonstrated that symmetric
aryltriazenes 102a,b yield Schiff’s bases 107a,b and hydrazones 108a,b with high yields
(85–89%), whereas the same compounds derived from asymmetric aryltriazenes 102c result
in relatively lower yields in the range of 33–58%. The original compounds and the products
are presented in Table 6.

Structures 108a,b were found to affect the oxidative phosphorylation in mitochondria
from rat liver, Paracoccus denitrificans bacteria, Candida albicans, yeast, and animal
leukemia cells P388 [56].

Additionally, compounds 108a,b exhibited a notably significant MAO inhibitory ac-
tivity (against monoamine oxidase, which promotes the catabolism of monoamines and
catalyzes the synthesis of neurotransmitters and hormones in the body) [57], (refer to IC50
results in Table 13, “MAO inhibitory activity of the compounds”, in Section 6, “Molecular
Research”). The authors of publication [57] also constructed a graphical model illustrating
the binding sites of dicarbonitriles with the FAD center of monoamine oxidase (see Figure 2,
“Binding of dicarbonitriles to the FAD center of monoamine oxidase”, below).

In publication [58], derivatives of carbonohydrazonoyl dicarbonyl 113 were synthe-
sized from the diazo compound following Scheme 19. Initially, diazonium salt 110 was
prepared using standard diazotization conditions, where an aqueous solution of sodium
nitrite was slowly added to an aqueous solution of arylamine 109 in hydrochloric acid at
0 ◦C to prevent decomposition. Subsequently, malononitrile 111 in sodium acetate was
added to diazonium chloride 110 at 0 ◦C to minimize rapid nitrogen release. The resulting
azo compounds 112 then underwent tautomerization to yield the final products 113a–e.
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Table 6. Yields of Schiff’s bases and hydrazones.
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Scheme 19. Synthesis of pyrazole based on hydrazine hydrate. * indicates binding between water
and hydrazine in hydrazine hydrate.

In article [59], the authors employed carbonohydrazonyl dicarbonitriles 113a–e in
the synthesis of pyrazole derivatives 118a–e using hydrazine hydrate (HH) in PEG-400
(polyethylene glycol 400). Conversely, in article [60], the same synthesis was conducted
in EtOH according to Scheme 19. It is postulated that the basicity of HH facilitated the
transformation of structure 113 into ketenimine 114. Subsequent addition of hydrazine
to tautomeric form 115 produced enamine 116, and its intramolecular cyclization led to
iminopyrazolone 117. Tautomerization of the latter resulted in the formation of the target
pyrazole 118 (Scheme 19).

However, the obtained pyrazoles 118a–e did not exhibit significant MAO inhibitory
activity compared to the initial reagents 113a–e used in their synthesis.

The cyclization of dicarbonitriles 119a–h into pyrazoles is also described in publica-
tions [61,62]. The synthesis was carried out using bromomethyl acetate 120 in the presence
of potassium carbonate—which is essential for the elimination of hydrogen bromide—in
a toluene/dioxane system [61] or in toluene [62] with microwave irradiation at 90 W and
110 ◦C (Scheme 20). In article [61], the authors performed further modifications with
heterocycle 122. This was accomplished by adding chloroacetic acid chlorohydride 123
to heterocycle 124 in a sufficiently basic solvent dimethylformamide (DMF), which is nec-
essary for hydrogen elimination from amine 122 to form amide 124. The reaction was
conducted at room temperature to prevent the rapid release of hydrogen chloride. Potas-
sium thiocyanate was added to the monosubstituted amide 124 in an acetone solution,
leading to the formation of thiocyanoacetamide 125, which cyclized into oxothiazolidines
126a–h (Scheme 20).

The yields of the obtained pyrazoles are shown in Table 7.
Dicarbonitriles 102a–d were also utilized in the two-stage synthesis of triazines with

yields ranging from 40 to 94% [62] (Scheme 21). In the first stage, the authors of article [62]
conducted the reaction with secondary amines 128a–e in ethanol at 60 ◦C. It is presumed
that the tautomeric form of dicarbonitriles 129, stabilized by the basic amines 128a–e
(analogous to Scheme 19), interacted with them to form enamine 131. Acetals 132a,b were
added to this compound 131 when heated in toluene in the presence of p-toluenesulfonic
acid (TSA) as acetals are hydrolyzed in an acidic medium. This process resulted in the
formation of amino-acetal 133, which tautomerized to imino-acetal 134. The intramolecular
cyclization of 134 led to the formation of triazines 135a–i (Scheme 21).
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Original compounds: dicyanopyrazoles 127a–d, disubstituted amines 128a–e, target
triazines 135a–i, and their yields are presented in Table 8.
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Table 8. Reagents 127a–d, 128a–e, 132a,b, target compounds 135a–i, and their yields.
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The authors of publication [63] obtained pyrimidine derivatives 139a,b, which were
evaluated for antitumor activity against four cell lines. Doxorubicin was used as a pos-
itive control (see Table 14, “Antitumor activity of compounds” in Section 6, “Molecular
Research”). Heterocycles 139a,b were synthesized from dicarbonitriles 136a,b and car-
bamide 137. The latter, 137, reacted with hydrazone dicarbonitriles 136a,b, resulting in the
formation of imine 138, which subsequently tautomerized to yield the target compounds
139a,b (Scheme 22).
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The resulting compound is also the strongest inhibitor of folic acid [64], and its
derivatives are inhibitors of dihydrofolate reductase [65,66].

Dicarbonitrile 140 (Scheme 23) is no less interesting to create γ-lactam 143. In publica-
tion [67], this heterocycle was derived from vinyl methylketene 141. In diethyl ether the
yield was 7.7%, in acetonitrile, 8.1% (Scheme 23).
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Scheme 23. Synthesis of γ-lactam.

The synthesis of the azetidine derivative via compound 140 is also described in publica-
tion [68]. The authors of [68] initially obtained ketenimine 144′ from N-mesitylcyclopropan-
carbimidoyl chloride 144 in the presence of the strong base potassium tert-butoxide to
eliminate hydrogen chloride. This reaction occurred in tetrahydrofuran at 0 ◦C to pre-
vent the decomposition of cyclopropane. Cyclopropylidene 144′ then underwent a [2+2]-
cycloaddition reaction with carbonimidoyl dicyanide 140, resulting in the formation of
azaspirohexane 145 (Scheme 24).

Molecules 2024, 29, x FOR PEER REVIEW 25 of 36 
 

 

Scheme 23. Synthesis of γ-lactam. 

The synthesis of the azetidine derivative via compound 140 is also described in pub-
lication [68]. The authors of [68] initially obtained ketenimine 144′ from N-mesitylcyclo-
propancarbimidoyl chloride 144 in the presence of the strong base potassium tert-butox-
ide to eliminate hydrogen chloride. This reaction occurred in tetrahydrofuran at 0 °C to 
prevent the decomposition of cyclopropane. Cyclopropylidene 144′ then underwent a 
[2+2]-cycloaddition reaction with carbonimidoyl dicyanide 140, resulting in the formation 
of azaspirohexane 145 (Scheme 24). 

 
Scheme 24. Synthesis of azaspiro [2,3]-hexane. 

5. Synthesis of Optically Active Compounds via Pericyclic Reactions with TCNE 
TCNE-based syntheses of optically active butadiene 1,1,4,4-tetracarbonitriles are uti-

lized to create chromophores [69–71] and photosensitizers [72-73] that have widespread 
applications in organic chemistry [70–73]. According to publication [73], disubstituted 
acetylenes 146a–c undergo [2+2]-cycloaddition with TCNE, leading to the formation of 
cyclobutenes 147 (Scheme 25). In this case, the donor, which is a substituent of the aro-
matic ring, contributes to the displacement of electron density, resulting in the cleavage 
of the four-membered cycle 147 into derivatives of butadiene 148a–c (Scheme 25). 

C

C

C

C
N

N N

N

TCNE

Ar C N

1.2 equiv.

146a,b,c

+ THF, 20oC, 12h
C

C

C

CN

N N

N
C NAr

147

Ar

C

C
C

N

N

N

148a 60%; 148b 97%; 148c 98%

Ar =
NH2

;

a

N
;

b

CH3

CH3
N

c

C
CN

N

 
Scheme 25. The [2+2] cycloaddition. 

The synthesized compounds absorb UV radiation within the wavelength range of 
300–550 nm. Among them, the hexahydrobenzoquinoline derivative 148c exhibits the 
most significant bathochromic shift (up to 500 nm) and the highest radiation intensity. 
Compound 148c proves to be highly effective for use as a photosensitive material due to 
its strong fluorescent response and high yield (98%) under relatively simple synthesis con-
ditions. 

Pericyclic reactions were also employed in the synthesis of calorimetric sensors for 
sulfide ions [72]. Initially, 4-iodoaminobenzene 149 underwent cross-coupling catalyzed 
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applications in organic chemistry [70–73]. According to publication [73], disubstituted
acetylenes 146a–c undergo [2+2]-cycloaddition with TCNE, leading to the formation of
cyclobutenes 147 (Scheme 25). In this case, the donor, which is a substituent of the aromatic
ring, contributes to the displacement of electron density, resulting in the cleavage of the
four-membered cycle 147 into derivatives of butadiene 148a–c (Scheme 25).
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The synthesized compounds absorb UV radiation within the wavelength range of
300–550 nm. Among them, the hexahydrobenzoquinoline derivative 148c exhibits the most
significant bathochromic shift (up to 500 nm) and the highest radiation intensity. Compound
148c proves to be highly effective for use as a photosensitive material due to its strong
fluorescent response and high yield (98%) under relatively simple synthesis conditions.

Pericyclic reactions were also employed in the synthesis of calorimetric sensors for
sulfide ions [72]. Initially, 4-iodoaminobenzene 149 underwent cross-coupling catalyzed by
Pd(II) with trimethylsilyl acetylene 150 in the presence of a disubstituted amine and copper
iodide as a buffer. The authors of [72] subsequently removed the trimethylsilyl group from
compound 151 using potassium carbonate in a mixture of methanol and dichloromethane
for 16 h. Thereafter, the monosubstituted acetylene derivative underwent a cross-coupling
reaction with 4-iodoaminobenzene 153 under conditions similar to the preparation of anilyl
acetyltrimethylsilane 151. This reaction led to the formation of bis-para-anilyl-acetylene 153.
Reaction of compound 153 with TCNE via [2+2]-cycloaddition intermediate 154 resulted in
the formation of butadiene-tetracarbonitrile 155 (Scheme 26).
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article have a wide range of biological activities and are quite convenient in analytical 
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Table 9. Cont.
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As an example of the effect of solvent polarity on the shift of light absorption to
longer wavelengths, solutions of tricyanovinylated DMA in these solvents are presented
in [22] (Figure 1).

The derivatives of reactions between TCNE and aromatic amines considered in this ar-
ticle have a wide range of biological activities and are quite convenient in analytical studies.

Thus, the ability of TCNE to complex with nitrogen- and oxygen-containing com-
pounds was used by the authors of [28] to establish spectrometric characteristics that
determine the behavior of drugs in the human body. Identification of TCNE complexes
by spectroscopic methods allows us to determine the mechanism of the drug’s action,
the binding site of the active ingredient molecule to the biological target, physical and
thermodynamic properties, and to quantify the purity of the drug. Moreover, TCNE-based
complex compounds are active against both Gram-positive and Gram-negative bacteria.
The main advantage of the method proposed by the authors of article [28] is the possibility
of conducting the study without isolating the active substance from the drug substance,
which is quite time-consuming and accompanied by significant losses of the target product.
In the experiment described in article [28], eight drugs were used, as outlined below:

1. Glycoside, which is used for the treatment of type 2 diabetes through blood glucose
control [74];

2. Papaverine hydrochloride, which aims to treat renal colic as well as gastrointestinal,
bile duct, and ureteral spasms [75];

3. Pilocaprine hydrochloride, which pharmacologically stimulates exocrine glands
that promote sweating, salivation, lacrimation, and gastric and pancreatic secretion.
Additionally, this drug has been used for a long time to treat glaucoma [76];

4. Procaine hydrochloride, which reduces pain from intramuscular injections of peni-
cillin and is used in dentistry [77];
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5. Aminoantipyrine, which finds application in pharmacological, biological, biochemical,
and analytical studies, and can reduce bleeding and denature bovine hemoglobin [78];

6. Sulfamethoxazole, which is a cheap and effective synthetic antibiotic used against
most Gram-positive and Gram-negative bacteria [79];

7. Sulfathiazole, which has the same characteristics as Sulfamethoxazole [80];
8. Simvastathathione, which aims to reduce cholesterol levels and the risks of atheroscle-

rosis and myocardial infarction, additionally possessing anti-inflammatory effects on
the skin and crack healing [81].

The authors of [28] also determined the thermodynamic parameters (Table 10) and
found their correlations. The enthalpy value is strongly correlated with entropy and Gibbs
energy. The correlation between entropy and Gibbs energy is especially pronounced.

Table 10. Thermodynamic parameters of complex compounds.

Abbreviation Drug, Weight (g/mol) Complex ∆H* (JK−1

mol−1)
∆S* (JK−1

mol−1)
∆G* (JK−1

mol−1)
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namic parameters of the studied compounds. During light absorption measurements, the 
authors of [28] noticed an interesting phenomenon: the peaks of TCNE complexes with 
Drugs 1, 4, 5, and 7 have one absorption maximum, while the Drug 2, 3, 6, and 8 complexes 
split into two peaks. The authors believe that one maximum of light absorption corre-
sponds to the n→π* transition, further corresponding to the interaction of the TCNE dou-
ble bond with the drug by one reaction center—the unshared electron pair of the N or O 
atom with (type A interaction, Table 11) two maximums—the π→π* transition, implying 
the interaction of the TCNE double bond by two reaction centers—the unshared electron 
pair of the N or O atom and the electron density of the aromatic ring or C=O (type B in-
teraction, Table 11). 
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Table 10. Cont.

Abbreviation Drug, Weight (g/mol) Complex ∆H* (JK−1

mol−1)
∆S* (JK−1

mol−1)
∆G* (JK−1

mol−1)
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To investigate the obtained complex compounds, the authors of [28] performed spec-
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namic parameters of the studied compounds. During light absorption measurements, the 
authors of [28] noticed an interesting phenomenon: the peaks of TCNE complexes with 
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split into two peaks. The authors believe that one maximum of light absorption corre-
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To investigate the obtained complex compounds, the authors of [28] performed spec-
trophotometric measurements, stoichiometric titration, and determined the thermodynamic
parameters of the studied compounds. During light absorption measurements, the authors
of [28] noticed an interesting phenomenon: the peaks of TCNE complexes with Drugs 1, 4,
5, and 7 have one absorption maximum, while the Drug 2, 3, 6, and 8 complexes split into
two peaks. The authors believe that one maximum of light absorption corresponds to the
n→π* transition, further corresponding to the interaction of the TCNE double bond with
the drug by one reaction center—the unshared electron pair of the N or O atom with (type
A interaction, Table 11) two maximums—the π→π* transition, implying the interaction of
the TCNE double bond by two reaction centers—the unshared electron pair of the N or O
atom and the electron density of the aromatic ring or C=O (type B interaction, Table 11).

The authors of article [30] evaluated the derivatives of compound 56 for its cytotoxic
activity against the HCT116 colon cancer cell line (Table 12). The HCT116 cells were
cultured in RPMI-1640 medium, which lacks growth factors, necessitating supplementation
with 10% fetal calf serum (FCS) and 1% glutamine. The FCS was pretreated with the
antitumor agent mitomycin C and irradiated with ultraviolet light to inhibit cell division,
thereby allowing it to serve only a metabolic function to support HCT116 cell growth. The
colon cancer cells were incubated at 37 ◦C in a humidified atmosphere with 5% CO2, which
likely helped neutralize ammonia generated from the decomposition of glutamine. After
24 h, the medium containing the cells was treated with the test compounds at various
concentrations. The cells, along with the quinozaline derivatives, were incubated for an
additional 72 h. Subsequently, 100 µL of CellTiter-Glo Reagent was added to each well to
assess the biological activity of the compounds via luminescence and spectrophotometric
analysis. The CellTiter-Glo Reagent produces a luminescent signal through its interaction
with adenosine triphosphate (ATP) molecules, the intensity of which is directly proportional
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to the number of viable HCT116 cells. A reduction in luminescence indicates the inhibitory
effect of the tested compounds on tumor cell proliferation.

Table 11. (A) Non-splitting and (B) splitting absorption of bonds of synthesized complexes.

Type A Non-Splitting Interaction Type B, Splitting Interaction
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Table 12. Biological activity of arylaminoquinazoline derivatives.

Compound

Molecules 2024, 29, x FOR PEER REVIEW 31 of 36 

with adenosine triphosphate (ATP) molecules, the intensity of which is directly propor-
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inhibitory effect of the tested compounds on tumor cell proliferation. 

The compounds tested demonstrated significant antitumor activity against the 
HCT116 cell line, with the results summarized in Table 12. 
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phate buffer. The mixture was incubated in a microplate well at 37 °C for 30 min, after 
which fluorometric measurements were performed. 
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and an emission maximum at 580–590 nm [83]. In the presence of an active test compound, 
the formation of H2O2 is inhibited, resulting in a cessation of the color change and a de-
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The results of these assays are summarized in Table 13. These data indicate that the 
nitrobenzene derivative exhibit the most potent inhibitory effect with the lowest measure-
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The compounds tested demonstrated significant antitumor activity against the HCT116
cell line, with the results summarized in Table 12.

TCNE and triazene derivatives, specifically hydrazonemalononitriles, have demon-
strated significant MAO inhibitory activity (monoamine oxidase inhibition), which plays a
crucial role in the catabolism of monoamines and the regulation of neurotransmitter and
hormone synthesis in the body [57]. MAO inhibitors are widely used in the treatment of
neurodegenerative diseases such as Alzheimer’s and Parkinson’s, as well as in managing
conditions like anxiety, panic attacks, social phobia, and post-traumatic stress disorder.

The MAO inhibitory activity of hydrazonemalononitriles was assessed through fluoro-
metric detection of hydrogen peroxide (H2O2), a by-product generated during the oxidative
deamination of amines by monoamine oxidase (MAO). In this assay, horseradish peroxi-
dase (acting as a model enzyme), tyramine (the substrate to be deaminated), resazurin (a
fluorescent indicator for H2O2), and the test compound were used. Resazurin and tyramine,
both dissolved in phosphate buffer solution, along with the test compound dissolved in
DMSO, were sequentially added to a solution of horseradish peroxidase in phosphate
buffer. The mixture was incubated in a microplate well at 37 ◦C for 30 min, after which
fluorometric measurements were performed.

Upon interaction between horseradish peroxidase and tyramine, H2O2 is produced [82],
which subsequently oxidizes resazurin to resorufin. This reaction is accompanied by a color
change from blue to fluorescent pink, with an excitation maximum at 530–570 nm and an
emission maximum at 580–590 nm [83]. In the presence of an active test compound, the
formation of H2O2 is inhibited, resulting in a cessation of the color change and a decrease
in both excitation and emission intensity.

The results of these assays are summarized in Table 13. These data indicate that the
nitrobenzene derivative exhibit the most potent inhibitory effect with the lowest measure-
ment error.
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The authors of publication [57] also developed a graphical model illustrating the bind-
ing sites of dicarbonitriles to the flavin adenine dinucleotide (FAD) center of monoamine
oxidase (Figure 2). The study revealed that the nitro group within the dicarbonitrile
structures plays a crucial role in binding to this coenzyme (FAD).

TCNE-based pyrimidines [63] were evaluated for their antitumor activity against four
cell lines: MCF-7 (breast cancer), NCI-H460 (lung cancer), SF-268 (brain tumor), and WI-38
(normal pulmonary fibroblasts) (Table 14). These cell cultures were maintained in RPMI-
1640 medium, supplemented with glutamine, heat-inactivated fetal bovine serum (FBS)—
which supports cell viability and division—and antibiotics (penicillin and streptomycin)
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to prevent contamination from FBS. The cultures were incubated for 24 h at 37 ◦C in
a humidified atmosphere with CO2 to neutralize the ammonia (NH3) produced during
glutamine degradation.

Table 14. Antitumor activity of compounds.

Compounds
GI50 (mkmol/L)

MCF-7 NCI-H460 SF-268 WI-38
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Following incubation, the cells were stained with sulforhodamine B, a dye that binds
to cellular proteins and forms a red fluorescent complex upon laser excitation, enabling the
quantification of cell numbers [84]. Each test compound was added to the cultured and
stained cells at five different concentrations, with a maximum concentration of 150 µM.
After 48 h, the cells treated with the test compounds were fixed, washed with 0.5% DMSO,
and stained. The stained cells were then dissolved in DMSO for subsequent measurement
of light absorption at 492 nm (noting that sulforhodamine B exhibits maximum absorption
at 565 nm and maximum fluorescence emission at 568 nm [84]).

A reduction in light absorption intensity indicated a decrease in cancer cell viability.
Doxorubicin, tested under similar conditions, served as a reference compound. TCNE-
derived pyrimidines exhibited moderate antitumor activity against the tested cell lines.
The results are summarized in Table 14.

7. Conclusions

The products resulting from the reaction of tetracyanoethylene (TCNE) with ary-
lamines have attracted significant attention across diverse scientific disciplines, including
optics, pharmacology, and organic chemistry. Moreover, this reaction follows alternative
pathways in several notable cases:

- TCNE undergoes a [3+2]-cycloaddition with subsequent rearrangement and C-C bond
cleavage when reacting with triazenes;

- Addition of TCNE to 2-amino-N-benzamidine occurs through multiple reaction cen-
ters, followed by intramolecular cyclization. One instance suggests the elimination of
both hydrogen cyanide and malononitrile;

- Tricyanovinylation selectively proceeds with primary arylamines such as 2-aminoben-
zylamine and anthranilic acid hydrazide. In these cases, TCNE adds to benzylamine
and to the terminal nitrogen of the hydrazide, respectively;
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- Aromatic amino groups in compounds containing alkynes, butadiene moieties, and
nitroso groups do not participate in the reaction with TCNE uniformly. For instance,
disubstituted alkyne derivatives undergo [2+2]-cycloaddition followed by cyclobutene
cleavage, whereas compounds with butadiene moieties undergo [2+4]-cycloaddition
to form stable six-membered cycles. Certain arylamine molecules containing both
amino and nitroso groups add to TCNE, leading to N-N bond cleavage and formation
of malononitrile derivatives.

The deviations from the standard tricyanovinylation scheme in these reactions warrant
further investigation into the chemistry of TCNE with arylamines. TCNE-based syntheses
show promising applications for the future, including the non-destructive analysis of
drugs in pharmaceutical laboratories. Additionally, the facile synthesis of electrically
conductive butadienetetracarbonitriles with high luminescent efficiency (97–98% yield
via straightforward mixing in tetrahydrofuran at room temperature) holds potential for
the development of photoelectronic and photosensitive materials. TCNE’s reactivity also
facilitates the production of complex biologically active heterocyclic structures with high
yields (95–98%) using a relatively simple technique (synthesis of arylaminoquinazolines by
mixing TCNE with benzamidine in acetonitrile at room temperature), making it suitable
for adoption in various pharmaceutical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29194727/s1, Supplementary File S1: Spectral data of
the synthetysed compounds.
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