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Abstract: Hydrogen storage has been a bottleneck factor for the application of hydrogen energy.
Hydrogen storage capacity for titanium-decorated boron-doped C20 fullerenes has been investigated
using the density functional theory. Different boron-doped C20 fullerene absorbents are examined to
avoid titanium atom clustering. According to our research, with three carbon atoms in the pentagonal
ring replaced by boron atoms, the binding interaction between the Ti atom and C20 fullerene is
stronger than the cohesive energy of titanium. The calculated results revealed that one Ti atom can
reversibly adsorb four H2 molecules with an average adsorption energy of −1.52 eV and an average
desorption temperature of 522.5 K. The stability of the best absorbent structure with a gravimetric
density of 4.68 wt% has been confirmed by ab initio molecular dynamics simulations. These findings
suggest that titanium-decorated boron-doped C20 fullerenes could be considered as a potential
candidate for hydrogen storage devices.

Keywords: hydrogen storage capacity; fullerene; Ti-decorated; density function calculation

1. Introduction

Hydrogen energy is the key to a sustainable future because of its effectiveness in
conserving energy and reducing emissions [1–3]. Solid-state hydrogen storage offers the
highest safety and hydrogen storage density, as the adsorption energy of H2 fluctuates
between the range of −0.2 eV to −0.7 eV [4–6]. Apart from that, the host molecules
should hold at least 6.5 weight percentages (also known as wt%) of hydrogen, given by the
guidelines of the United States Department of Energy (US-DOE) [7].

In recent years, various hydrogen storage materials have emerged, such as metastable
alloys [8], magnesium hydride [9–11], zeolites [12], and metal organic framework mate-
rials [13]. Several metal alloys are stable after hydrogen adsorption, but the gravimetric
weight of metal hydrides is often lower than the criteria set by the US-DOE [14]. A group of
magnesium-based metal hydrides showed great theoretical performance with a hydrogen
capacity of up to 7.6 wt% for reversible applications [8,15]. However, the experimental de-
hydrogenation enthalpy of magnesium is high due to its higher working temperature [16].
It needs a high temperature to discharge hydrogen molecules, and the kinetics of hydrogen
adsorption and desorption are too slow for commercial use, which are also inevitable issues.
It is difficult for zeolitic materials to capture enough amount of hydrogen molecules, as a
result of which the hydrogen storage capacity fails to meet the expected value for practical
applications [17]. MOF-210 has been holding the record for the highest H2 capacity of
17.6 wt% but at an extremely low temperature of 77.15 K and a high pressure of 8000 kPa,
making it impractical for civil applications [18]. The ultimate technical aim of superior
hydrogen storage materials requires a system gravimetric capacity of 6.5 wt%, as set by the
US-DOE.
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Under such a background, carbon-based nanomaterials stepped into the horizons
of the scientific community and have shown promising results as hydrogen storage ma-
terials [19–23], like graphene [24,25], graphdiynes [26], carbon nanotubes [27,28], and
fullerenes [29]. Studies have clearly demonstrated that the connection between hydrogen
molecules and undoped carbon nanomaterials is very weak, and the reason for this phe-
nomenon is that the van der Waals forces between the substrates and gaseous molecules
are relatively weak [30,31]. Metal atom decoration on these carbon nanomaterials has
been proven to be an efficient approach for hydrogen adsorption. A total of 2.53 wt% of
gravimetric hydrogen storage capacity is observed for dual osmium-decorated SWCNTs
in work by Verma et al. [32]. Hydrogen storage capabilities of metal-decorated graphene
systems were predicted using DFT first-principle calculations, suggesting that an applied
strain can stabilize supported metal atoms and increase the gravimetric density of hydrogen
storage [33].

Recently, Dai et al. have reported on the hydrogen storage capacity of fullerene family
molecules (C56, C60, and C70) by grand canonical Monte Carlo simulations [34]. Paul
et al. studied yttrium-decorated C30 as a potential hydrogen storage material, where Y
atoms adsorbing seven H2 molecules are observed [35]. Porous fullerene substituted by B
atoms and doped with Ti atoms has been reported to have high hydrogen capacity [36].
Mahamiya et al. studied hydrogen adsorption in yttrium-doped C24 fullerene [37]. They
have reported that with one Y atom doped, C24 fullerene can reversibly adsorb six H2
and reach an average desorption temperature of 477 K. Huang et al. performed a DFT
study about the hydrogen storage capacity of Ti-decorated carbon atomic chain-terminated
C20-4C5 and boron–nitrogen chain-terminated C20-4B3N2, which are good candidates for
hydrogen storage [38]. Muniyandi et al. constructed a series of nanocages using C20 and
B12N12 to adsorb beryllium hydride clusters and beryllium hydride molecules [39]. Ammar
et al. took Ti-deposited C20 and Si20 as hydrogen storage materials [40]. Kareem et al.
showed that adsorption is an endothermic process for C20 fullerene and an exothermic
process for C20-nTin heterofullerenes [41]. All the above studies focused on how to improve
the hydrogen adsorption ability of fullerenes by decorating atoms. The transition metal Ti
has been used to modify C60 fullerene to improve the hydrogen storage capacity [42]. It is
well known that the adsorption energy of hydrogen on host materials could be improved by
replacing C with boron atoms [43,44]. There are only a few studies on hydrogen storage of
Ti-doped C20. Parkar et al. did a comprehensive study on the hydrogen storage properties
of Ti-doped C20 nanocages [45]. It is inspiring to research the hydrogen storage capability
of titanium-decorated boron-doped C20 fullerenes.

In this research, the hydrogen storage capability of titanium-decorated boron-doped
C20 fullerenes has been investigated by density theory simulations. Their structural stability
and hydrogen gravimetric weight were checked. A thermodynamic analysis of the system
under different serving conditions was performed. Density of states and a Bader charge
analysis of the host both with and without hydrogen molecules adsorbed were carried
out. These theoretical simulations could inspire experimentalists to target synthesize a
titanium-decorated boron-doped C20 fullerene system as a hydrogen storage material.

2. Computational Details

Density functional theory (DFT) calculations and an ab initio molecular dynamics
simulation (AIMD) were carried out by the Vienna ab initio simulation package (VASP) [46].
The electron–ion interaction was described by the projector augmented wave (PAW)
method [47]. The generalized gradient approximation (GGA) was used for the exchange-
correlation energy [48]. Spin polarization and dipole correction were considered in all
calculations. Additionally, van der Waals interactions were accounted for through the
application of the DFT-D2 method with Becke–Johnson damping [49,50]. The cutoff en-
ergy for the plane wave basis was set to 450 eV. All atoms are allowed to relax during
structural optimization, and the cell shape and cell volume are not allowed to change.
Geometry optimization was achieved until the energy and force were less than 10−5 eV and
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0.02 eV/Å, respectively. The vacuum of 30 Å was used to avoid the interactions between
the periodically repeating slabs. The k-point with a (1 × 1 × 1) mesh was sampled by the
Monkhorst–Pack procedure. Ab initio molecular dynamics simulations were performed for
a B123 model in microcanonical (NVE) and canonical (NVT) ensembles for five picoseconds
of time duration, with a time step of one femtosecond.

The stability of the metal is ascertained through the binding energy (Eb), which is
calculated as follows:

Eb = EC20+metal − Emetal − EC20 (1)

where EC20 , Emetal , and EC20+metal are the energies of C20,, metal atom and metal atom-
decorated C20, respectively. According to the equation, a negative binding energy suggests
that the metal atom can be attached to C20.

To describe the adsorption strength between the hydrogen molecules and the absorbent
structure, the adsorption energy (Ead) is calculated as follows:

Ead =
(
Esystem − Emetal − n × EH2

)
/n (2)

where EH2 and Esystem represent the energy of an isolated hydrogen molecule and the
total energy of the combined hydrogen–metal C20 system, respectively, and n denotes the
number of hydrogen molecules that have been adsorbed.

The consecutive adsorption energy (Ecad) is calculated as follows:

Ecad = En−system − En−1−system − EH2 (3)

where En−system and En−1−system represent the total energies of the systems, with n and
n − 1 being the numbers of hydrogen molecules adsorbed on each metal atom, respectively.

3. Results and Discussion
3.1. Absorbent Structure

The optimized structure of C20 fullerene is shown in Figure 1a. C20 has a three-layer
structure, where the top and the bottom layers are symmetrically connected to the middle
layer. The five top carbon atoms in the pentagonal ring are labeled. Firstly, we calculated
the adsorption energy between the bare C20 and the H2 molecule (−0.04 eV), indicating that
pure C20 is unsuitable as a carrier for hydrogen [51]. It has been reported that boron atom
doping can enhance the binding strength of metal atoms and carbon-based materials [52,53].
To determine how many and which carbon atoms should be replaced with boron atoms for
better stability and hydrogen adsorption ability, we established several different models.
The models are named after the doping position of the boron atoms. For example, to
construct a model named “B12-1”, we first replaced carbon atom numbers 1, 2, and carbon
atom number 1 on the symmetrical pentagonal ring with boron atoms. Using this method,
a series of models were constructed, and the binding energies were calculated. Because
the cluster of metal atoms is very disadvantageous to hydrogen adsorption, some models
have been elected with the binding energy of each Ti atom less than the cohesive energy
of Ti (−4.85 eV) [54]. Taking these thoughts into consideration, a series of non-equivalent
models were constructed. As shown in Figure 1c, the binding energy for the model B123
is −4.91 eV, which is lower than the cohesive energy of Ti when the boron atoms replace
the carbon atoms at position 123. Thus, C20 fullerene with three boron atoms doped
on the C20 fullerene is adopted here. The most stable doped model was displayed in
Figure 1b. Herein, we further analyze the stability of the adsorbent structure using an
ab initio molecular dynamics simulation, as shown in Figure 1d. The simulation results
show that the fluctuations for both bond length and energy are very small, demonstrating
that this adsorbent structure has only tiny deformation under ambient conditions. The
simulations ensure that the Ti atom will not dislocate from the carbon nanostructure at the
desorption temperature and temperature below. This phenomenon is similar to the results
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for Ti-decorated boron-doped twin graphene, where five and six boron atoms are doped on
twin graphene [55].
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Figure 1. (a) Top and side views of C20. (b) Top and side views of the adsorbent B123 model.
(c) Binding energy of different amounts of boron doping, where brown, green and blue represent
carbon, boron and titanium atoms respectively. (d) Changes in energy and bond length in the ab
initio molecular dynamics simulation (300 K, 5 ps) of the B123 model.

3.2. Hydrogen Adsorption

After selecting and examining the adsorbent structure, we continue to build hydrogen
adsorption models, as shown in Figure 2. The number of hydrogen molecules increases step
by step in the order of left to right. This result is consistent with previous studies where
each Ti atom could adsorb up to four H2 molecules, regarding the standard performance of
one Ti atom [51–53,56]. For nH2 = 5, ∆Eads is found to be the near-zero value of −0.055 eV,
which means that H2 adsorption has already reached the saturated adsorption state with
four H2 molecules adsorbed. We calculated the adsorption energy (Ead) and the consecutive
adsorption energy (Ecad) of these four models. The results clearly show that four hydrogen
molecules are strongly adsorbed. The average adsorption energy is −1.52 eV, and the
peak of adsorption energy is −2.36 eV. Slight Jahn−Teller distortion can be observed; the
nature of a Jahn−Teller distortion could be manipulated by the application of pressure or
temperature [54]. These results also prove the stability of the hydrogen adsorption.
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3.3. Calculations of Desorption Temperature and Gravimetric Weight Percentage of Hydrogen

Desorption temperature is a vital datum that measures both the stability of a hydrogen
adsorption and if it can be put into practical use. We calculated the average desorption
temperature of hydrogen molecules using the Van’t Hoff equation [55].

Td =
(

Ecad
k

)(
∆S
R − lnP

)−1
(4)

where Td is the desorption temperature of the hydrogen molecules, Ecad is the average
consecutive adsorption energy of −0.708 eV, ∆S is the entropy difference of hydrogen in
transition from the gaseous to the liquid state, R is the gas constant, and P is the pressure.
Using this method, we found that the average desorption temperature is 522.5 K under
standard atmospheric pressure. The Td under different pressures was calculated, as shown
in Figure 3. When the pressure of a gas container is 12 bar, the desorption temperature
is 616.7 K. It can reach 682.8 K when the pressure rises to 40 bar. We can notice that the
stable conditions of this titanium-decorated boron-doped C20 fullerene under ambient
temperature and pressure are mild, indicating carbon-based materials have application
prospects in the field of hydrogen storage.
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Gravimetric weight percentage indicates the capability of hydrogen molecules, and
it is also a very important parameter for hydrogen storage materials. Gravimetric weight
percentage is calculated by the equation below:

GWP = gabsorbent structure
gsystem

× 100% (5)

where gabsorbent structure is the weight of the absorbent structure, and gsystem is the weight of
the absorbent structure with all hydrogen molecules absorbed. On the basis of the above
analysis, one Ti atom can adsorb up to four hydrogen molecules stably. If we put the other Ti
atom on top of the symmetrical pentagonal carbon ring, there are eight hydrogen molecules
adsorbed on the C20 substrate, and a gravimetric capacity of 4.68% can be achieved.

3.4. Thermomechanical Analysis

As a result of serving under ambient conditions, we studied the stability of this
material under different temperatures and pressures. We used relative energy to measure
its stability [57–59], which is given by the following:

Er = Ead − nµH2(T, P) (6)
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where n is the number of absorbed hydrogen molecules, and µH2(T, P) is the chemical
potential of hydrogen under temperature T and pressure P. µH2(T, P) is calculated from [60]
the following:

µH2(T, P) = H(T)− H(0)− T[S(T)− S(0)] + kTln
(

P
P0

)
(7)

where k is the Boltzmann constant, H(T) and H(0) represent the enthalpy of hydrogen
at temperature T and 0 K, respectively, S(T) and S(0) represent the entropy of hydrogen
at temperature T and 0 K, respectively, and P0 is the standard atmospheric pressure of
0.1 MPa. The data needed in Equation (7) are obtained from the NIST database [61].

According to Equation (6), an adsorption system is stable when Er is negative. We cal-
culated Er under three different pressure conditions to simulate ambient serving conditions.
The three reference pressure conditions are given by the U.S. Department of Energy. From
Figure 4a, it can be clearly concluded that a hydrogen adsorption system requires higher
pressure and lower temperature to maintain better stability. This adsorption system is
stable at 430.63 K, 475.01 K, and 502.37 K under 0.1 MPa, 0.5 MPa, and 1.2 MPa, respectively.
All three figures are far higher than room temperature and outdoor temperature, indicating
that this adsorption system can be used under common serving conditions and can bear
high temperatures since it reaches over 200 ◦C. Also, as shown in Figure 4b, the system
can remain stable under very low pressures of 6.48 × 10−6 MPa at 223.15 K, 8.02 × 10−5

MPa at 298.15 K, and 2.47 × 10−4 MPa at 358.15 K. These data indicate that there is no
need for a large increase in pressure to balance the temperature variation within the range
of service. A thermomechanical analysis shows that this adsorption system is very stable
under the given serving conditions, and this indicates a bright and promising prospect
for the commercial applications of this hydrogen storage material. The calculation results
mentioned above are valued and convincing because this calculation method has been
validated by the works of peers with experiments [62,63].
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3.5. Bonding Mechanism and Orbital Interactions between Titanium Atoms and C20 Fullerene
3.5.1. Total Density of States (TDOS) Analysis

To elucidate the origin of the dopant dependence of B/Ti adsorption energy, the spin-
polarized total density of states (TDOS) of C20 fullerene and the B123 model are studied, as
shown in Figure 5. The primary contributions to the TDOS of C20 fullerene stem from the
C 2p orbitals, corresponding to Figure 6a. The band gap of C20 fullerene was found to be
0.47 eV, while there is no band gap after being doped with B and Ti.
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3.5.2. Partial Density of States (PDOS) Analysis

As shown in Figure 6, the C 2p orbitals, B 2p orbitals, and Ti 3d orbitals significantly
contribute to the total DOS of the B123 system. The presence of B 2p peaks and Ti 3d
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peaks at the Fermi level further signifies the orbital hybridization between the C atom, B
atom, and Ti atom, as expected. This electronic interaction leads to the formation of bonds
between the C atom, B atom, and the metals, resulting in the very high cohesive energy of
the Ti atom. This suggests obvious electron transfer between the Ti atom and C20 fullerene
in the presence of a 3B atom.

3.6. Bonding Mechanism and Orbital Interactions between H2 Molecules and Ti-Decorated
B-Doped C20 Fullerene
3.6.1. Partial Density of States (PDOS) Analysis after H2 Adsorption

To clarify the interaction of H2 with C20, the PDOS for the H 1s orbital of isolated H2
and H2-adsorbed C20 fullerene and the Ti 3d orbital of the H2-adsorbed B123 system is
shown in Figure 7. The 1s orbital of the H atom in the isolated H2 has a peak at the Fermi
level, which is highly localized and occupied. For the adsorbed H2, there is a visible upshift
in the 1s orbital of the H atom in the C20 + H2 system. The upshift leads to a more-filled H
1s orbital, which typically leads to weaker binding. For the B123 + H2 system, the 1s orbital
of the H atom becomes delocalized, suggesting strong interaction between the H and the Ti
atoms. The hybridization of the B 2p orbitals and Ti 3d orbitals plays a beneficial role in the
high activity of the B123 toward adsorbing H2.
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3.6.2. Bader Charge Analysis

The interaction between the H2 molecule and C20 fullerene has been characterized by
a significant charge transfer phenomenon. Notably, 0.4 e of the H2 molecule is transferred
to the C20 fullerene.

In contrast, when the B123 system interacts with H2, a reverse charge transfer process
is observed. Specifically, 0.11 e of charge is transferred from the B123 system to H2. The
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electron flow from the fullerene system to the H2 molecule is beneficial for the adsorption
of hydrogen. This charge transfer process is accompanied by a redistribution of electrons
within the B123 system. The Ti atom lost 1.28 e while the B and C atoms gained 0.83 e and
0.34 e, respectively.

3.6.3. Charge Density Difference Analysis

To gain a deeper understanding of the charge transfer phenomenon, we employed
a visualization approach by plotting the charge density difference, as shown in Figure 8.
Figure 8a reveals that a significant amount of charge is transferred from the Ti atom to the
B and C atoms of C20 fullerene. This electron transfer is evidenced by a notable decrease in
charge density around the Ti atom and a corresponding increase for the B and C atoms of
C20 fullerene.

As presented in Figure 8b, in addition to the charge transfer observed within C20
fullerene, there is a further transfer of charge from the Ti atom to the H atoms of the
H2 molecule. This manifests as an enhancement in charge density around the H atoms,
indicating a strengthened Ti-H bond due to the electrons transferred from the Ti atom. This
observation is consistent with the results obtained from the Bader charge analysis and
partial density of states analysis.
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4. Conclusions

On the basis of the first-principle calculations, the hydrogen storage in titanium-
decorated boron-doped C20 fullerenes has been investigated. It is an essential method
for decorated Ti on C20 fullerene to improve the hydrogen storage capacity. A series of
non-equivalent structures by doping position and amount of boron atoms are established,
and the binding energy of each Ti atom is calculated. When the 1, 2, and 3 carbon atoms on
the pentagonal ring are replaced by boron atoms, this structure can adsorb four hydrogen
molecules with a gravimetric weight percentage of hydrogen of 4.68%. From thermody-
namic calculations, this adsorption system is stable at 430.63 K, 475.01 K, and 502.37 K
under 0.1 MPa, 0.5 MPa, and 1.2 MPa, respectively. In order to explore the electronic
structure and charge transfer mechanisms, the partial density of states and a Bader charge
analysis were analyzed. The above research reveals the hydrogen storage capability of
Ti-decorated boron-doped C20 fullerene, which will motivate experimentalists to deeply
study the hydrogen storage capability and provide new inspirations for the discovery of
carbon-based hydrogen storage materials.
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