Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO3 Material for High-Capacity Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Setup
3.1. Synthesis
3.2. Structural Analysis
3.3. Electrochemical Fabrication and Cell Assembly
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarascon, J.M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B. Evolution of Strategies for Modern Rechargeable Batteries. Acc. Chem. Res. 2013, 46, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Manthiram, A.; Goodenough, J.B. Lithium Insertion into Fe2(MO4)3 Frameworks: Comparison of M = W with M = Mo. J. Solid. State Chem. 1987, 71, 349–360. [Google Scholar] [CrossRef]
- McNulty, D.; Hennessy, A.; Li, M.; Armstrong, E.; Ryan, K.M. A Review of Li-Ion Batteries for Autonomous Mobile Robots: Perspectives and Outlook for the Future. J. Power Sources 2022, 545, 231943. [Google Scholar] [CrossRef]
- Howard, W.F.; Spotnitz, R.M. Theoretical Evaluation of High-Energy Lithium Metal Phosphate Cathode Materials in Li-Ion Batteries. J. Power Sources 2007, 165, 887–891. [Google Scholar] [CrossRef]
- Betz, J.; Brinkmann, J.P.; Nölle, R.; Lürenbaum, C.; Kolek, M.; Stan, M.C.; Winter, M.; Placke, T. Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium. Adv. Energy Mater. 2019, 9, 1900574. [Google Scholar] [CrossRef]
- Liu, J.; Bao, Z.; Cui, Y.; Dufek, E.J.; Goodenough, J.B.; Khalifah, P.; Li, Q.; Liaw, B.Y.; Liu, P.; Manthiram, A.; et al. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries. Nat. Energy 2019, 4, 180–186. [Google Scholar] [CrossRef]
- Oli, N.; Choudhary, S.; Weiner, B.R.; Morell, G.; Katiyar, R.S. Comparative Investigation of Water-Based CMC and LA133 Binders for CuO Anodes in High-Performance Lithium-Ion Batteries. Molecules 2024, 29, 4114. [Google Scholar] [CrossRef]
- Oli, N.; Flórez Gómez, J.F.; Zuluaga Gómez, C.C.; Katiyar, R.K.; Morell, G.; Katiyar, R.S. Revealing Underestimated Performance in the Bismuth Ferrite (BiFeO3) Anode for High-Capacity and Long-Cycling Lithium-Ion Batteries. ACS Appl. Energy Mater. 2023, 6, 10853–10861. [Google Scholar] [CrossRef]
- Pendashteh, A.; Tomey, R.; Vilatela, J.J. Nanotextile 100% Si Anodes for the Next Generation Energy-Dense Li-Ion Batteries. Adv. Energy Mater. 2024, 14, 2304018. [Google Scholar] [CrossRef]
- Kim, N.; Kim, Y.; Sung, J.; Cho, J. Issues Impeding the Commercialization of Laboratory Innovations for Energy-Dense Si-Containing Lithium-Ion Batteries. Nat. Energy 2023, 8, 921–933. [Google Scholar] [CrossRef]
- Mo, R.; Li, F.; Tan, X.; Xu, P.; Tao, R.; Shen, G.; Lu, X.; Liu, F.; Shen, L.; Xu, B.; et al. High-Quality Mesoporous Graphene Particles as High-Energy and Fast-Charging Anodes for Lithium-Ion Batteries. Nat. Commun. 2019, 10, 1474. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, C.; Weng, M.; Qiu, Y.; Chen, P.; Yang, K.; Huang, W.; Hong, Y.; Li, J.; Zhang, M.; et al. Structural Origin of the High-Voltage Instability of Lithium Cobalt Oxide. Nat. Nanotechnol. 2021, 16, 599–605. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Q.; Oli, N.; Gomez, J.F.F.; Qiu, S.; Tian, H.; Qiu, Q.; Sun, W.; Li, K.; Liu, Z.; et al. A Non-Volatile, Thermo-Reversible, and Self-Protective Gel Electrolyte Providing Highly Precise and Reversible Thermal Protection for Lithium Batteries. Adv. Energy Mater. 2023, 13, 2300143. [Google Scholar] [CrossRef]
- Li, S.; Wang, K.; Zhang, G.; Li, S.; Xu, Y.; Zhang, X.; Zhang, X.; Zheng, S.; Sun, X.; Ma, Y. Fast Charging Anode Materials for Lithium-Ion Batteries: Current Status and Perspectives. Adv. Funct. Mater. 2022, 32, 2200796. [Google Scholar] [CrossRef]
- Parekh, M.H.; Sediako, A.D.; Naseri, A.; Thomson, M.J.; Pol, V.G. In Situ Mechanistic Elucidation of Superior Si-C-Graphite Li-Ion Battery Anode Formation with Thermal Safety Aspects. Adv. Energy Mater. 2020, 10, 1902799. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, W.; Chen, X.; Shan, R.; Han, Q.; Qiu, X.; Oli, N.; Florez Gomez, J.F.; Zhu, L.; Wu, X.; et al. Bimetallic Cobalt-Nickel Selenide Nanocubes Embedded in a Nitrogen-Doped Carbon Matrix as an Excellent Li-Ion Battery Anode. ACS Appl. Mater. Interfaces 2023, 15, 25536–25549. [Google Scholar] [CrossRef]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium Ion, Lithium Metal, and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density. J. Solid State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Piątek, J.; Afyon, S.; Budnyak, T.M.; Budnyk, S.; Sipponen, M.H.; Slabon, A. Sustainable Li-Ion Batteries: Chemistry and Recycling. Adv. Energy Mater. 2021, 11, 2003456. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Anode Materials for Lithium-Ion Batteries: A Review. Appl. Surf. Sci. Adv. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Bitew, Z.; Tesemma, M.; Beyene, Y.; Amare, M. Nano-Structured Silicon and Silicon Based Composites as Anode Materials for Lithium Ion Batteries: Recent Progress and Perspectives. Sustain. Energy Fuels 2022, 6, 1014–1050. [Google Scholar] [CrossRef]
- Li, P.; Kim, H.; Myung, S.T.; Sun, Y.K. Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Mater. 2021, 35, 550–576. [Google Scholar] [CrossRef]
- Kim, S.O.; Manthiram, A. A Facile, Low-Cost Synthesis of High-Performance Silicon-Based Composite Anodes with High Tap Density for Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2015, 3, 2399–2406. [Google Scholar] [CrossRef]
- Pan, H.; Wang, L.; Shi, Y.; Sheng, C.; Yang, S.; He, P.; Zhou, H. A Solid-State Lithium-Ion Battery with Micron-Sized Silicon Anode Operating Free from External Pressure. Nat. Commun. 2024, 15, 2263. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wei, Y.; Zhong, Y.; Yang, Y.; Cheng, H.; Yuan, L.; Xu, H.; Huang, Y. Building Practical High-Voltage Cathode Materials for Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2200912. [Google Scholar] [CrossRef]
- Gomez-Martin, A.; Reissig, F.; Frankenstein, L.; Heidbüchel, M.; Winter, M.; Placke, T.; Schmuch, R.; Gomez-Martin, A.; Frankenstein, L.; Heidbüchel, M.; et al. Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries. Adv. Energy Mater. 2022, 12, 2103045. [Google Scholar] [CrossRef]
- Clément, R.J.; Lun, Z.; Ceder, G. Cation-Disordered Rocksalt Transition Metal Oxides and Oxyfluorides for High Energy Lithium-Ion Cathodes. Energy Environ. Sci. 2020, 13, 345–373. [Google Scholar] [CrossRef]
- Su, Y.S.; Manthiram, A. Lithium–Sulphur Batteries with a Microporous Carbon Paper as a Bifunctional Interlayer. Nat. Commun. 2012, 3, 1166. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, M.; Chen, G.; Dudko, N.; Li, Y.; Liu, H.; Shi, L.; Wu, G.; Zhang, D. High-Performance Microsized Si Anodes for Lithium-Ion Batteries: Insights into the Polymer Configuration Conversion Mechanism. Adv. Mater. 2022, 34, 2109658. [Google Scholar] [CrossRef]
- McDowell, M.T.; Woo Lee, S.; Wang, C.; Cui, Y. The Effect of Metallic Coatings and Crystallinity on the Volume Expansion of Silicon during Electrochemical Lithiation/Delithiation. Nano Energy 2012, 1, 401–410. [Google Scholar] [CrossRef]
- Qin, G.; Jia, Z.; Sun, S.; Wu, H.; Hu, K.; Liu, D.; Gao, Y.; Chen, J. Carbon-Coated Si Nanosheets as Anode Materials for High-Performance Lithium-Ion Batteries. ACS Appl. Nano Mater. 2024, 7, 7595–7604. [Google Scholar] [CrossRef]
- Pach, G.F.; Adhikari, P.R.; Quinn, J.; Wang, C.; Singh, A.; Verma, A.; Colclasure, A.; Kim, J.H.; Teeter, G.; Veith, G.M.; et al. Boron-Silicon Alloy Nanoparticles as a Promising New Material in Lithium-Ion Battery Anodes. ACS Energy Lett. 2024, 9, 2492–2499. [Google Scholar] [CrossRef] [PubMed]
- Tabani, Z.; Maghsoudi, H.; Fathollahi Zonouz, A. High Electrochemical Stability of Polyvinylidene Fluoride (PVDF) Porous Membranes Using Phase Inversion Methods for Lithium-Ion Batteries. J. Solid State Electrochem. 2021, 25, 651–657. [Google Scholar] [CrossRef]
- Yuca, N.; Taskin, O.S.; Arici, E. An Overview on Efforts to Enhance the Si Electrode Stability for Lithium Ion Batteries. Energy Storage 2020, 2, e94. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Figgemeier, E. Confronting the Challenges of Next-Generation Silicon Anode-Based Lithium-Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders. ChemSusChem 2019, 12, 2515–2539. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, S.; Zhang, Y.; Liu, C.; Wei, X.; Luo, D.; Lin, Z. Towards Efficient Binders for Silicon Based Lithium-Ion Battery Anodes. Chem. Eng. J. 2021, 406, 126807. [Google Scholar] [CrossRef]
- Lai, Y.; Li, H.; Yang, Q.; Li, H.; Liu, Y.; Song, Y.; Zhong, Y.; Zhong, B.; Wu, Z.; Guo, X. Revisit the Progress of Binders for a Silicon-Based Anode from the Perspective of Designed Binder Structure and Special Sized Silicon Nanoparticles. Ind. Eng. Chem. Res. 2022, 61, 6246–6268. [Google Scholar] [CrossRef]
- Zhu, W.; Zhou, J.; Xiang, S.; Bian, X.; Yin, J.; Jiang, J.; Yang, L. Progress of Binder Structures in Silicon-Based Anodes for Advanced Lithium-Ion Batteries: A Mini Review. Front. Chem. 2021, 9, 712225. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.F.; Yang, G.; Li, B.; Zhang, Y.; Zhao, S.; Zhang, S.; Erwin, A.; Zhang, Z.; Sokolov, A.P.; Nanda, J.; et al. Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes. ACS Energy Lett. 2019, 4, 1171–1180. [Google Scholar] [CrossRef]
- Liu, Z.; Fang, C.; He, X.; Zhao, Y.; Xu, H.; Lei, J.; Liu, G. In Situ-Formed Novel Elastic Network Binder for a Silicon Anode in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 46518–46525. [Google Scholar] [CrossRef]
- Jeong, D.; Yook, J.; Kwon, D.S.; Shim, J.; Lee, J.C. Interweaving Elastic and Hydrogen Bond-Forming Polymers into Highly Tough and Stress-Relaxable Binders for High-Performance Silicon Anode in Lithium-Ion Batteries. Adv. Sci. 2023, 10, 2302027. [Google Scholar] [CrossRef]
- Kim, J.O.; Kim, E.; Lim, E.Y.; Kwon, T.; Kim, I.J.; Lee, J.; Ko, J.W.; Lee, J.H. Stress-Dissipative Elastic Waterborne Polyurethane Binders for Silicon Anodes with High Structural Integrity in Lithium-Ion Batteries. ACS Appl. Energy Mater. 2024, 7, 1629–1639. [Google Scholar] [CrossRef]
- Xu, Z.; Chu, X.; Wang, K.; Zhang, H.; He, Z.; Xie, Y.; Yang, W. Stress-Dissipated Conductive Polymer Binders for High-Stability Silicon Anode in Lithium-Ion Batteries. J. Mater. 2023, 9, 378–386. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, L.; Huang, Q.; Wu, T.; Zhao, F.; Guo, Y.; Hu, B.; Ge, Y.; Zhang, J.; Xie, K.; et al. Accordion Frameworks Enable Free-Standing, High Si Content Anode for Li-Ion Batteries. Energy Environ. Mater. 2023, 6, e12400. [Google Scholar] [CrossRef]
- Jia, D.C.; Feng, Y.Y.; Zhang, C.L.; Li, J.J.; Zhang, B.W.; Dou, Y.H.; Roy, J.C.; Zhu, X.Y.; Zhang, L. Freestanding Carbon Fiber-Confined Yolk-Shelled Silicon-Based Anode for Promoted Lithium Storage Applications. Rare Metals 2023, 42, 3718–3728. [Google Scholar] [CrossRef]
- Huang, A.; Ma, Y.; Peng, J.; Li, L.; Chou, S.; Ramakrishna, S.; Peng, S. Tailoring the Structure of Silicon-Based Materials for Lithium-Ion Batteries via Electrospinning Technology. eScience 2021, 1, 141–162. [Google Scholar] [CrossRef]
- Wang, S.E.; Kim, D.H.; Kim, M.J.; Kim, J.H.; Kang, Y.C.; Roh, K.C.; Choi, J.; Lee, H.W.; Jung, D.S. Achieving Cycling Stability in Anode of Lithium-Ion Batteries with Silicon-Embedded Titanium Oxynitride Microsphere. Nanomaterials 2023, 13, 132. [Google Scholar] [CrossRef]
- Lee, S.S.; Nam, K.H.; Jung, H.; Park, C.M. Si-Based Composite Interconnected by Multiple Matrices for High-Performance Li-Ion Battery Anodes. Chem. Eng. J. 2020, 381, 122619. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, J.; Peng, J.; Liu, H.; Chang, B.; Wang, X. Rational Architecture Design of Yolk/Double-Shells Si-Based Anode Material with Double Buffering Carbon Layers for High Performance Lithium-Ion Battery. Green Energy Environ. 2021, 6, 517–527. [Google Scholar] [CrossRef]
- Martino, A.; Cong, R.; Jo, M.; Park, H.H.; Lee, H.; Lee, C.S. Characteristics and Electrochemical Performance of Hydroxyl-Functionalized Graphene Quantum Dot-Coated Si Nanoparticles/Reduced Graphene Hybrid Anodes for Advanced Li-Ion Batteries. J. Nanomater. 2023, 2023, 6353894. [Google Scholar] [CrossRef]
- Lee, B.S.; Yoon, J.; Jung, C.; Kim, D.Y.; Jeon, S.Y.; Kim, K.H.; Park, J.H.; Park, H.; Lee, K.H.; Kang, Y.S.; et al. Silicon/Carbon Nanotube/BaTiO3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential. ACS Nano 2016, 10, 2617–2627. [Google Scholar] [CrossRef]
- Wang, Z. Modeling and Simulation of Piezoelectrically Driven Self-Charging Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 15893–15897. [Google Scholar] [CrossRef]
- He, X.; Lei, Z.; Liu, H.; Wang, S.; Qiao, T.; Wang, X. Synergetic Enhancing Cycling Stability of Li-S Battery by Hollow SrTiO3 Microspheres Wrapped by Reduced Graphene Oxide. J. Alloys Compd. 2022, 898, 162987. [Google Scholar] [CrossRef]
- Da Silva, L.F.; Avansi, W.; Moreira, M.L.; Mesquita, A.; Maia, L.J.Q.; Andrés, J.; Longo, E.; Mastelaro, V.R. Relationship between Crystal Shape, Photoluminescence, and Local Structure in SrTiO3 Synthesized by Microwave-Assisted Hydrothermal Method. J. Nanomater. 2012, 2012, 890397. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oli, N.; Liza Castillo, D.C.; Weiner, B.R.; Morell, G.; Katiyar, R.S. Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO3 Material for High-Capacity Lithium-Ion Batteries. Molecules 2024, 29, 4750. https://doi.org/10.3390/molecules29194750
Oli N, Liza Castillo DC, Weiner BR, Morell G, Katiyar RS. Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO3 Material for High-Capacity Lithium-Ion Batteries. Molecules. 2024; 29(19):4750. https://doi.org/10.3390/molecules29194750
Chicago/Turabian StyleOli, Nischal, Diana C. Liza Castillo, Brad R. Weiner, Gerardo Morell, and Ram S. Katiyar. 2024. "Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO3 Material for High-Capacity Lithium-Ion Batteries" Molecules 29, no. 19: 4750. https://doi.org/10.3390/molecules29194750
APA StyleOli, N., Liza Castillo, D. C., Weiner, B. R., Morell, G., & Katiyar, R. S. (2024). Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO3 Material for High-Capacity Lithium-Ion Batteries. Molecules, 29(19), 4750. https://doi.org/10.3390/molecules29194750