
Citation: Wang, F.; Wang, Y.; Shen, X.;

Zhao, R.; Li, Z.; Wu, J.; Shen, H.; Yao,

X. Research Progress on Methods for

the Deacidification of Small Berry

Juice: An Overview. Molecules 2024,

29, 4779. https://doi.org/10.3390/

molecules29194779

Academic Editor: Adele Papetti

Received: 30 August 2024

Revised: 1 October 2024

Accepted: 2 October 2024

Published: 9 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Research Progress on Methods for the Deacidification of Small
Berry Juice: An Overview
Fei Wang 1,2,3, Yao Wang 1,2,3, Xinting Shen 1,2,3, Rui Zhao 1,2,3, Zhebin Li 1,2,3, Jiawu Wu 1,2,3, Huifang Shen 1,2,3,*
and Xinmiao Yao 1,2,3,*

1 Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
wangf2022822@163.com (F.W.); wang1221yao1221@163.com (Y.W.); 15663585599@163.com (X.S.);
lilyamongthorns@163.com (R.Z.); lizhebin2010@163.com (Z.L.); wujiawu1115@163.com (J.W.)

2 Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
3 Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
* Correspondence: shenhuifang_1987@126.com (H.S.); cocoyococo@163.com (X.Y.); Tel.: +86-0451-86610259 (X.Y.)

Abstract: As some of the richest sources of natural antioxidants, small berry fruits have attractive
colors and special tastes, with recognized benefits for human health. However, sour tastes in small
berry juices result in a poor flavor and low acceptance among consumers, greatly limiting their
marketability. Among the most commonly used deacidification methods, chemical deacidification
methods can neutralize fruit juice via the addition of a deacidification agent, while physical deacidifi-
cation methods include freezing deacidification, ion-exchange resin deacidification, electrodialysis
deacidification, and chitosan deacidification. All of these methods can markedly improve the pH
of fruit juice, but they introduce new substances into the juice that may have an influence on its
color, taste, and stability. Biological deacidification can effectively remove malic acid from fruit juice,
reducing the content from 15 g/L to 3 g/L; additionally, it maintains the taste and stability of the
juice. Therefore, it is widely applied for fruit juice deacidification. On this basis, some compound
deacidification technologies have also emerged, but they also present problems such as high costs
and complicated working procedures. This review of deacidification methods for small berry juice
provides a foundation for the industrial development of such juices.

Keywords: small berry; organic acid; deacidification; key technology

1. Introduction

Small berries represent a very diverse group, including a variety of red, blue, or purple
small-sized and highly perishable fruits. Also named soft fruits, this group includes straw-
berries, currants (black, red, or white) [1], gooseberries, blackberries, raspberries (black or
red), blueberries, cranberries, and other berries of minor economic importance (i.e., boy-
senberries, bilberries, jostaberries, cloudberries, loganberries, and lingonberries) [2]. These
fruits are a hot topic in the field of food research at present. They have the characteristics of
unique flavors, bright colors, high nutritional value, rich taste, popularity with consumers,
and huge market potential [3]. At the same time, berries are rich in phenolic compounds [4],
organic acids [5], flavonoids [6], and anthocyanins [7], which have strong antioxidant [8],
anti-inflammatory [9], anticancer [10], and hypolipidemic functions [11]. Therefore, small
berries are considered potential green and healthy functional foods [12]. However, due
to their soft texture, sour taste, and perishable state, berries are often processed into vari-
ous products, rather than being eaten fresh. The pH of these berries is low, in the range
of 2.7–3.6. The sugar content determines the acidity of the flavor, which results from the
presence of citric acid and malic acid. In particular, high concentrations of malic acid cause
undesirable acidity in the final product.

Juice, as a representative berry product, may meet modern consumers’ demands for
fruit juice products. Consumers’ tastes have changed from the simple pursuit of taste in
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the past to placing equal emphasis on taste and nutritional value. In recent years, a series
of foods made from small berries have been successfully launched abroad and have been
popular among people who prioritize healthy eating. Because of the high acid content
of small berries, many manufacturers produce fruit wines and juices by adding water to
balance the taste. The addition of water not only reduces the content of organic acids
but also modifies small berries’ characteristic aromas, nutritional components, and health-
promoting functions. These influencing factors seriously restrict the development and
promotion of small berry products. In this review, we summarize a series of deacidification
methods that can be applied to small berry juice, including chemical, physical, biological,
and compound deacidification, to provide new ideas for the industrial development of
small berry juice.

2. Organic Acids in Small Berry Juice

The composition and contents of organic acids influence fruits’ organoleptic proper-
ties [13]. A fruit’s organic acid content has a strong relationship with its species, cultivar,
cultivation conditions, etc. [14]. The sugar–acid balance and contents are the primary deter-
minants of a fruit’s taste [15]. The acids most commonly found in fruits are citric, malic,
and tartaric acids, which affect taste–aroma formation and many physiological processes
and are known as “fruit acids” [16,17].

2.1. Citric Acid

The most common organic acid in fruits, citric acid has a strong sour taste that can
promote saliva secretion and aid digestion; it also has antioxidant and antibacterial effects.
In berry fruits, citric acid accounts for 30% to 95% of the total organic acid content. In
research by Li et al. [18], strawberry fruits were found to be rich in citric acid, malic acid,
succinic acid, and oxalic acid. Li Jiaxiu et al. [19] showed that the organic acid contents of
ten strawberry juices mainly comprised citric acid, malic acid, and fumaric acid. Among
these, the content of citric acid was the highest, accounting for 62.39~82.73% of the total
organic acid content, followed by malic acid, accounting for 16.22~37.51%, and fumaric
acid, accounting for only 0.05~0.17%. No tartaric acid was detected. Lerceteau et al. [20]
also found that the main organic acids in strawberry fruits were citric acid and malic acid,
and the content of citric acid was much higher than that of malic acid, but no fumaric
acid was detected in their study. Basson et al. [21] showed that citric acid accounted for
two-thirds of the total acid content in strawberry fruits. Cetin et al. [22] determined that the
organic acid composition of red raspberry mainly consisted of citric acid, which accounted
for 13.1 g/kg (fw), and a small amount of malic acid was also detected. The citric acid
content was as high as 10~12 times that of malic acid. Kuang et al. [23] determined the
average contents of various organic acids in six kinds of red raspberries. In order from
high to low contents, citric acid, lactic acid, DL-malic acid, and oxalic acid were detected.
No tartaric acid was detected. The contents of organic acids in the various varieties of red
raspberry displayed an obvious difference, but among them, the content of citric acid was
the highest, ranging from 1058.41 to 1825.45 mg/100 g. Citric acid, the main organic acid in
small berries, has a mild and refreshing sour taste, which endows a pleasant acidity and
flavor to fruit juice. However, an excessive content of citric acid causes an unacceptably
sour taste. In such cases, it is necessary to adopt certain deacidification methods to improve
the acceptance of small berry juice among consumers.

2.2. Malic Acid

Malic acid is the second prevailing organic acid in berry fruits [24]. Its acidity is
slightly weaker than that of citric acid, but it provides the desired sense of sweet and sour
balance. Malic acid can promote metabolism, can help people sweat, and has an anti-fatigue
effect. Fu et al. [25] found that the content of DL-malic acid in sea buckthorn juice reached
22.58 mg/mL, about 20 times higher than that of citric acid; this explains why seabuckthorn
juice is sour in its taste, with high acid and low sugar contents. In Aronia melanocarpa, the
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total acid content is 8.20–16.80 g/L [26], among which malic acid is the main organic acid,
at 5.60–16.30 g/kg [27]. Malic acid has a pungent and refreshing sour taste, slightly bitter
and astringent, with a long-lasting aftertaste. Because of its high content and acidity, malic
acid has a strong effect on the flavor of juices and wines. Taking wine as an example, a high
content of malic acid may cause wine to ferment in its bottle, leading to a decline in wine
quality or even rancidity, which is not conducive to the successful preservation and sale of
finished wines [28].

2.3. Tartaric Acid

Tartaric acid is abundant in grapes, and its content in wine is relatively high [29,30].
High contents of tartaric acid are also found in fruits of the Ericaceae family, representing
up to 17% of the total analyzed organic acids in berry fruits [31]. Tartaric acid is weak in
its acidity but has a unique sour taste. It can also promote calcium absorption and help
prevent osteoporosis. Bordonaba and Terry [32] found that tartaric acid accounted for the
second-highest proportion of acids (after citric acid) in blackcurrant fruit, with a content of
3.42 mg/g. Tartaric acid also has a dominant effect on a wine’s pH. Although the tartaric
acid content of small berries can gradually decrease with maturity, some of this acid is still
present in mature fruits, resulting in a certain impact on the taste of small berry juice.

All these organic acids not only imbue small berries with a sour and refreshing taste
but also have certain health-promoting effects. In addition, small berries may contain other
organic acids, such as quinic acid [33], fumaric acid [34], and succinic acid [35]. The total
contents of these other acids account for about 3% of the total organic acid content, and the
specific components may be different in different varieties and growing environments. The
specific types and contents of organic acids found in small berries are shown in Table 1.

Table 1. Types and contents of organic acids found in different small berries [21,24,36–38].

Fruit Species Citric Acid
(g/kg)

Malic Acid
(g/kg)

Tartaric Acid
(g/kg)

Fumaric Acid
(g/kg)

Oxalic Acid
(g/kg)

Total Organic
Acids (mmol/kg)

Strawberry Rosaceae 9.3 ± 0.39 0.98 ± 0.15 - 51.7 ± 6.51 7.9 ± 0.36 57.4 ± 1.9
Blackberry Rosaceae 5.6 ± 0.42 2.05 ± 0.22 - 34.1 ± 2.54 28.2 ± 2.45 45.1 ± 3.1

Rowanberry Rosaceae 1.2 ± 0.06 30.28 ± 0.90 0.37 ± 0.03 28.0 ± 1.17 16.1 ± 1.03 235.0 ± 7.2
American
cranberry Ericaceae 14.7 ± 0.86 0.71 ± 0.15 1.968 ± 0.142 35.8 ± 3.24 17.7 ± 0.70 93.9 ± 7.1

Highbush
blueberry Ericaceae 10.3 ± 0.47 0.59 ± 0.06 - - 27.2 ± 3.84 57.7 ± 8.0

Black mulberry Moraceae 4.5 ± 0.42 0.74 ± 0.06 - 67.7 ± 2.36 13.6 ± 1.00 29.6 ± 2.6
Goji berry Solanaceae 2.1 ± 0.28 1.38 ± 0.13 - 11.6 ± 1.45 27.5 ± 3.7 21.5 ± 2.4

Sweet cherry Rosaceae 0.37 ± 0.17 110.55 ± 261.81 - 112.43 ± 263.51 - 72.17 ± 13.33
Red raspberry Rosaceae 10.8 ± 0.62 0.94 ± 0.07 0.085 ± 0.013 35.5 ± 2.48 14.2 ± 1.42 5.15 ± 1.27

Bilberry Ericaceae 5.7 ± 0.32 2.71 ± 0.15 1.852 ± 0.028 - 71.3 ± 4.29 62.5 ± 2.8

3. Methods to Reduce the Acidity of Small Berry Juice
3.1. Chemical Deacidification

Chemical deacidification usually refers to the addition of basic weak-acid salts to
neutralize certain organic acids in fruit juice or fruit wine, thus reducing the product’s
acidity. The most common deacidifying agents include calcium carbonate, potassium
carbonate, sodium carbonate, and sodium tartrate. Edwin et al. [39] found that the pH of
passion fruit juice could be improved by adding calcium carbonate and calcium hydroxide.
However, the added calcium carbonate released CO2, hindering its thorough mixing with
the fruit juice and affecting the juice’s quality. Calcium hydroxide, as an ideal additive,
effectively reduced the acidity of raspberry wine via the addition of a combination of
CaCO3, KHCO3, CaCO3-KHCO3, K2C4H4O6, KHCO3, and K2C4H4O6 using the double
salt method, but the limited deacidification effect and ease of precipitation affected the
quality of the wine [40]. Although the chemical deacidification method is simple and
effective, the chemical reactions involved may affect the taste and color of fruit juice.



Molecules 2024, 29, 4779 4 of 12

3.2. Physical Deacidification
3.2.1. Freezing Deacidification

In this method, fruit wine or fruit juice is cooled using freezing equipment; as a result,
the tartrates in the wine or juice are crystallized and precipitate. They can then be filtered
out, reducing the acidity by removing the equivalent of 0.5~2.0 g/L of tartaric acid [36,41].
The removal of frozen potassium hydrogen tartrate crystals causes a marked reduction in
the acid content. This deacidification method is usually carried out in winter and combined
with cold filtration, and it is mainly suitable for reducing the acidity of fruit juice with a
high tartaric acid content. For example, this method is often applied to wines during cold
stability treatment, but it has no significant effect on reducing other organic acids. In this
application, no exogenous reagents or strains are introduced, offering high safety, but it has
a narrow application scope and is less feasible in actual production.

3.2.2. Ion-Exchange Resin Deacidification

Acidification via ion exchange is a method that reduces acidity by exchanging ions
in an ion-exchange resin with acid radical ions in an acid solution [42]. According to the
different properties of the exchanged groups, ion-exchange resins can be divided into cation-
exchange resins and anion-exchange resins. Yuan et al. [43] used different anion-exchange
resins to deacidify sea buckthorn juice and found that different types of ion-exchange
resins can adsorb sea buckthorn fruit acids. D941, a weakly basic anion-exchange resin,
has a strong adsorption capacity for titratable acid but a weak adsorption capacity for
Vc. Its apparent exchange adsorption capacity for titratable acid is 2.70 g/100 mL, with
an adsorption equilibrium time of 3 h, a suitable working flow rate of 4 BV/h, a suitable
regenerant NaOH concentration of 0.2%, and up to four regeneration cycles. Li et al. [44]
found that the removal rate of tartaric acid reached 69.01% when concentrated grape juice
was treated using anion-exchange resin 335 at a ratio of 1:6 at 15.57 ◦C for 4.35 h, and the
removal effect of anion-exchange resin 335 was the best among those studied. Ke et al. [45]
studied the effects of different deacidification methods on soaked raspberry wine. The
results showed that the introduction of D301 macroporous resin at more than 4 g/L reduced
the total acid content of the raspberry wine, with the deacidification rate reaching 40%. The
resulting wine was clear and mellow. Ion-exchange resin deacidification is widely used in
the deacidification of fruit juices and wines because of its advantages of selective separation
and easy industrial operation, without any degradation of the fruit juice/wine’s quality
due to the introduction of other impurities.

3.2.3. Deacidification via Electrodialysis

Acid reduction by means of electrodialysis refers to the chemical process of moving
charged substances through a selective membrane under an electric field. When juice passes
through the electric field, H+ ions move through the anode membrane to the cathode, while
acid ions move through the cathode membrane to the anode. Both the cathode and anode
membranes are unidirectional membranes, so the strongly charged ions can be separated,
thus achieving the purpose of acid reduction. Generally speaking, electrodialysis is better
at deacidifying citric acid than malic acid [46], and a bipolar membrane is better than a
unipolar membrane [47]. ED was studied in the deacidification of juices from several fruits
such as cranberries [48], mandarin oranges, passion fruit, tropical fruits (passion fruit,
naranjilla, araza, and mulberries), and pineapples [49]. Elodie et al. [50] used electrodialysis
with bipolar membranes (EDBM) to deacidify cranberry juice. During 6h of treatment,
the pH value of the juice increased from 2.47 to 2.71, with a deacidification rate of 22.84%.
Pelletier et al. [51] also used EDBM to deacidify cranberry juice under a pulsed electric field.
The treatment increased the pH of the cranberry juice from 2.45 to 2.74 and greatly improved
the deacidification rate; additionally, it did not produce any pollutants or waste. This
method is expected to be applied as a green and environmentally friendly deacidification
method in the future.
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3.2.4. Chitosan Deacidification

Chitosan, a natural macromolecular polysaccharide, contains basic polysaccharides
with free amino groups from chitin undergoing deacetylation in the presence of concen-
trated alkali [52]. Therefore, the number of amino groups is related to the degree of
deacetylation. The principle of fruit juice deacidification using chitosan is that the amino
groups in chitosan react with the carboxyl groups of the organic acids in fruit juice. Given a
constant chitosan deacetylation degree, the addition of chitosan has a strong relationship
with the degree of deacidification; however, among the organic acids, chitosan mainly
adsorbs malic acid and citric acid [53]. This results in a limited deacidification ability and
a narrow range of applications. Zhou et al. [54] compared the deacidification effects of
chitosan, sodium carbonate, a combination of chitosan and sodium carbonate, calcium
carbonate, and the double salt method on blueberry wine. The results showed that the
deacidification rate was the highest with 5 g/L calcium carbonate, reaching 26.5%, and
the loss of anthocyanins was low. Although the deacidification effect of chitosan is better
than that of chemical methods to a certain extent, the color of the final juice product may
be affected by its adsorption process. Another limitation is its high cost.

3.3. Biological Deacidification

Physical and chemical deacidification methods have no obvious effect on malic acid,
but the relatively high contents of malic acid in fruit juices have a strong influence on the
juices’ quality and taste [55]. Because of its remarkable deacidification effect, malic–lactic
acid fermentation (MLF) has been applied to the development of fruit juice beverages and
related products with strong acidity [56,57]. MLF refers to the process in which malic acid
is transformed into lactic acid and CO2 under MLE in lactobacillus (LAB) [58] (Figure 1).
Malic acid converts ADP and Pi into ATP under the action of lactic acid bacteria and finally
forms lactic acid and CO2 under the action of enzymes that reduce malic acid. Compared
with chemical deacidification methods, MLF can effectively avoid any adverse effects on
taste [59]. Katja Tiitinen et al. [60] used Oenococcus oeni to reduce the acidity of sea buckthorn
juice. First, the raw sea buckthorn juice was diluted 1:1 with water. When the main organic
acids in the sea buckthorn juice were fermented for 12 h, more than 50% of the malic acid
was converted to lactic acid, resulting in increased astringency. After fermentation for 24 h,
the malic acid content decreased from 15 g/L to 3 g/L. However, with continuous extension
of the fermentation time, the acidity remained stable and unpleasant flavors were generated.
Therefore, this deacidification treatment should be controlled within a short duration. The
sugar, Vc, and sea buckthorn oil contents also remained constant during the process of
microbial deacidification. Sensory evaluations and chemical composition analyses indicated
significant differences between the fermented and unfermented sea buckthorn juice that
depended on the variety of the berries, changes in malic acid and lactic acid reactions,
sensory changes, and chemical composition [61]. Viljakainen et al. [62] successfully reduced
the malic acid and citric acid contents of berry juice by adding Oenococcus oeni (ATCC 39401).
Their results showed that this organism may deacidify berry juice and wine through the
fermentation of malic acid and citric acid. By monitoring the fermentation process, they
found that malic acid was quantitatively removed without the loss of any glucose in the
berry juice, and its pH changed from 3.5 to 3.7. Lu et al. [63] screened strains A3 and B5 with
strong deacidification effects on wild raspberries and Lonicera edulis and explored their
deacidification effects on berry juices by taking the deacidification rate as an index. The
results showed that the deacidification rates of these two strains for malic acid, citric acid,
and tartaric acid were 29.76 ± 0.08%, 29.67 ± 0.12%, and 7.42 ± 0.04% and 42.60 ± 0.10%,
18.28 ± 0.15%, and 13.09 ± 0.07%, respectively, within a period of 5 days. A3 and B5 were
identified as Hanseniaspora uvarum and Zygosaccharomyces bisporus, respectively, which
dominate the field of microbial deacidification.
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3.4. Compound Deacidification

The existing studies on the deacidification of fruit wine using composite technology
include those on the deacidification of Lonicera edulis fruit wine with a combination of
calcium carbonate and sodium carbonate [64,65] and blueberry wine with a combination
of chitosan and sodium carbonate [54]. There have been studies to screen Lactobacillus
plantarum and Saccharomyces cerevisiae [66], Lactobacillus plantarum and Oenococcus oeni [67],
Saccharomyces cerevisiae (SMR-3) and Schizosaccharomyces [68], non-Saccharomyces cerevisiae
(Pichia kudriavzevii NI15) and Saccharomyces cerevisiae [69], and Saccharomyces cerevisiae
MH020215 and Zygo saccharomyces bailiii 749 [70] for wine deacidification. Some biological–
physical–chemical methods have also been used to reduce the acidity of fruit wine. How-
ever, the current technologies still have problems that need to be solved, such as their high
costs and complicated procedures, to allow for improvements and innovation in other
fruit juice products. Table 2 summarizes the different deacidification methods applied to
fruit juices and wines and compares their deacidification effects. Table 3 summarizes the
advantages and disadvantages of the different methods for reducing acids. The differences
between them can be understood more intuitively from the table.

Table 2. Deacidification methods applied to different fruit juices and wines and the resulting
deacidification rates [38,41,46,48,49,56,64,67–80].

Sample Acid Reduction Method Acid Reduction Rate

Sea buckthorn juice

Physical
deacidification

D941 anion-exchange resin adsorption Organic acids decreased by 70%

Cranberry juice Deacidification via electrodialysis Organic acids decreased by 22.84%

Schisandra chinensis juice Amberlite IRA 67 resin and Lewait
MP62-ENG resin Citric acid decreased by 90%

Dry wild grape wine
Chemical

deacidification

Calcium carbonate mixed with potassium
bicarbonate Tartaric acid decreased by 77.8%

Schisandra chinensis juice CaCO3, K2CO3, KHCO3, Na2CO3
1g Na2CO3 reduced the total acids by

1.30g/L

Blueberry wine

Biological
deacidification

Deacidification with Saccharomyces
cerevisiae L-malic acid decreased by 30%

Cherry juice, apple juice,
black raspberry juice

Lactobacillus plantarum fermentation for
deacidification Tartaric acid decreased by 92%

Lonicera caerulea L. juice Fermentation of Lactobacillus acidophilus
for deacidification

Organic acids decreased by 86.32%, malic
acid decreased by 49.37%, citric acid

decreased by 36.05%
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Table 2. Cont.

Sample Acid Reduction Method Acid Reduction Rate

Prunus mume Biological
deacidification

Lactobacillus fermentation for
deacidification Titratable acid decreased by 71.4%

Wine

Compound
deacidification

Lactobacillus plantarum and Oenococcus oeni L-malic acid decreased by 85%

Wild wine Saccharomyces cerevisiae (SMR-3) mixed
with Schizosaccharomyces

Organic acids decreased by 50%, malic
acid decreased by 81.12%

Grape Juice
non-Saccharomyces cerevisiae (Pichia

kudriavzevii NI15) mixed with
Saccharomyces cerevisiae

Organic acids decreased by 40%

Wine Saccharomyces cerevisiae MH020215 mixed
with Zygo saccharomyces bailiii 749

Tartaric acid decreased by 43%, organic
acids decreased by 12.5%

Kiwifruit wine Combination of Na2CO3 and chitosan for
deacidification Organic acids decreased by 44.27%

Cherry wine Combination of Na2CO3 and potassium
tartrate for deacidification Organic acids decreased by 38.7%

Indigo fruit wine Combination of Na2CO3 and CaCO3 for
deacidification Organic acids decreased by 48%

Lemon fruit wine
Weak basic anion-exchange resin D311

combined with Leuconostoc mesenteroides
fermentation for deacidification

Organic acids decreased by 61%

Table 3. The advantages and disadvantages of the leading technologies available.

Advantages Disadvantages

Chemical Deacidification CaCO3, K2CO3, KHCO3, Na2CO3

Fruit juice treated via sodium
carbonate deacidification has a
strong aroma and suitable taste.

The added chemicals release carbon
dioxide, which affects the quality of
the juice, easily results in flocculent

precipitation, and leads to a poor juice
taste and serious aroma loss.

Physical Deacidification

Freezing Deacidification Does not introduce exogenous
substances.

Mostly used to reduce the content of
tartaric acid in fruit wine; its
application range is narrow.

Ion-Exchange Resin Deacidification

Selective separation technology
does not introduce impurities,

ensures the quality of fruit
juice/wine, and is convenient for

industrial operation.

The cost is high, and it is not suitable
for a wide range of applications.

Deacidification via Electrodialysis
Deacidification is fast, and foreign

substances are not added to the
fruit juice/wine.

Causes certain loss of flavor
substances in fruit juice/wine, the cost
is high, and the dialysis membrane is

easily fouled.

Chitosan Deacidification
Chitosan has a large specific

surface area, strong adsorption,
and a good deacidification effect.

Mainly adsorbs malic acid and citric
acid but has poor adsorption effects

on other organic acids, so its
application has certain limitations.

Biological Deacidification Malic–Lactic Acid
Fermentation (MLF)

Effectively reduces the malic acid
content and improves the quality

of fruit juice/wine.

Malic–lactic acid fermentation is not
suitable for fruit juices/wines with a

high sugar content.

Compound
Deacidification

Physical–Chemical Deacidification,
Chemical–Biological Deacidification,
Physical–Biological Deacidification

Reasonable combinations can
effectively improve the

deacidification rate while
improving the flavor and taste of

fruit juice/wine.

High costs and complicated
procedures render it unsuitable for

large-scale industrial application, and
many aspects need continuous
improvement and innovation.

4. Effects of Deacidification Technology on Fruit Juice Quality

Small berries contain bioactive components such as anthocyanins, polyphenols, and
flavonoids, which endow the berries with unique flavors and rich nutritional value. In
the process of deacidification, a series of chemical reactions cause changes in the small
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berries’ bioactive components. The flavor, color, and nutrient content of small berry juice
are also changed. In the chemical deacidification of fruit wines, the addition of calcium
carbonate may lead to the introduction of excessively many calcium ions into the wine
body, causing the wine to taste bitter and astringent. Additionally, calcium carbonate
can react with tartaric acid in fruit wine to generate extremely unstable calcium tartrate,
thus affecting the stability of the wine after deacidification. This may cause the fruit
wine to lose its luster, produce turbidity, and even cause precipitates to form [64]. In
contrast, a study of wine deacidification using potassium tartrate indicated that the final
quality of the wine was better than that with other deacidifying agents, such as potassium
carbonate and calcium carbonate, and the aroma of the fruit wine was well retained [81]. A
study by Mc Dougall [82] showed that the total anthocyanin content in fermented sorbus
nigricans juice decreased by 99.40% to only 18.40 g mL−1, but its aroma components
and total phenol content increased. Fermentation with lactic acid bacteria can improve
the nutritional properties of small berry juice in terms of polyphenols, flavonoids, and
other active ingredients; modify its sensory properties (flavor, color, etc.); and increase its
nutritional and health-promoting functions. Furthermore, fermentation and metabolism
can generate new substances to increase berry juice’s nutritional and health-promoting
functions [83], including its antioxidant capacity. Yang [84] fermented wild cherry juice
with lactic acid bacteria and measured the characteristics of the juice before and after
fermentation. The results showed that the a*, b*, and L* values of the fermented wild cherry
juice increased, indicating that the color of the fermented product was redder, yellower,
and brighter than that of untreated juice. However, the overall ∆E score showed that
this color change during fermentation could not be distinguished with the naked eye. At
the same time, the antioxidant capacity and the total phenol and total flavonoid contents
of the fermented wild cherry juice were improved, and the number of types of aroma
components increased from 24 to 37. The new flavor substances produced were mainly
alcohols and esters, including 3-hexyl-1-alcohol, linalool, L-menthol, ethyl hexanoate, and
eugenol acetate. Ryu [85] used the Lactobacillus plantarum GBL17 strain to ferment black
raspberry juice with lactic acid. After the fermentation, the contents of total polyphenols
and flavonoids in the black raspberry juice had significantly increased, and the DPPH
radical scavenging activity of the fermented black raspberry juice (70.92%) was higher than
that of the control (62.96%).

5. Discussion and Future Perspectives

In summary, the contents and types of organic acids in small berry juice have a strong
relationship with the maturity of the raw fruit, and the content of organic acids has a
marked influence on the color, taste, flavor, and stability of the resulting juice. The chemical
deacidification method is simple and effective, but it may change the color, taste, and stabil-
ity of the fruit juice due to the incorporation of a large number of metal ions, with effects
such as a loss of lightness and turbidity. Physical deacidification methods do not introduce
chemical substances and have little influence on the quality of the juice. Resin raw materials
have a strong adsorption capacity, easy regeneration, a low cost, and good durability, mak-
ing them suitable for industrial production. Fruit juice after physical deacidification has a
bright color and high clarity, but the process has certain limitations. Most of these methods
are high in cost and are mainly suitable for the deacidification of fruit wine; chitosan can
also adsorb pigments, resulting in a dullness of color in the final product. Compared with
chemical deacidification and physical deacidification, biological deacidification involves
natural raw materials and no additives; it is suitable for decomposing malic acid and can
also deacidify citric acid. The flavor and nutrients in the fruit juice are kept essentially
constant during the deacidification process. At present, compound deacidification has a
narrow application range with its high cost and complex technological requirements. This
provides considerable space for further explorations of the application of deacidification
technologies to small berry juices.
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Although biological deacidification is more effective than other deacidification meth-
ods and has less of an influence on the quality and nutritional components of small berry
juices, it still has some problems. If the method of fermentation followed by deacidification
is adopted, although a better deacidification effect and more accurate data can be obtained,
there is an influence on the juice quality; if the method of deacidification followed by
fermentation is adopted, the fruit juice may become contaminated due to its long-term
exposure to the air, which has a certain influence on analyses of the fruit juice’s various
physical and chemical indexes. Further research is needed to solve the above problems.

In the future, we should pay more attention to the research and development of
deacidification techniques for small berry juices that do not change the flavor, color, or
nutritional components of the original juice. At the same time, we must strengthen the
research on compound deacidification methods, strive to reduce the cost of deacidification,
and simplify deacidification methods in order to deacidify small berry juices in the most
efficient and economical way possible. This will provide an excellent foundation for
developing the market for small berry juice and wine products.
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