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Abstract: Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated
from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues
that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by
a tetrahydro-β-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in
combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in
adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung
cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the
molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma
cells of the tumoral microenvironment, and how these compounds regulate immune cell function
and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination
with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors,
are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other
bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation.
These approaches intend to tackle the complexity of managing cancer patients in the context of
precision medicine and the application of tailor-made strategies aiming at the reduction of undesired
side effects.

Keywords: trabectedin; lurbinectedin; macrophages; lymphocytes; ecteinascidins; combined thera-
pies; innate immunity; adaptative immunity; molecular oncology

1. Introduction

Oceans and seas constitute 71% of the Earth’s surface and account for 90% of biodiver-
sity on our planet. Marine ecosystems are composed of complex communities of animals,
plants, fungi, and microorganisms such as bacteria, protozoa, algae, and chromists [1].
Hence, the marine biosphere is rising as a fundamental potential source of bioactive
molecules [2].

Thousands of marine natural products with biological therapeutic relevance are iden-
tified every year; in 2017, 1490 novel compounds were reported in 477 articles and 1544
were reported in 2018, which were vastly documented in 469 publications [3].
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There is a growing interest within the pharmaceutical field for drug screening, dis-
covery, and development in aquatic ecosystems due to the secondary metabolites that are
generated by marine organisms.

2. Ascidians as a Source of Bioactive Molecules: Ecteinascidia turbinata

Ascidians are ancestral marine urochordates and tunicates that are considered filter-
feeders [4]. This is the reason why they are considered pollution indicators and present
unique characteristics in the animal kingdom; these organisms produce alternative proteins,
such as specific oxidases and phytochelatins, and synthesize cellulose.

This enormous family is composed of more than 3000 different species whose repro-
duction is both sexual and asexual and, up-to-date, these organisms have directly been
identified as a source of more than 1200 bioactive molecules [5].

Thus, ascidians have drawn the attention of the biomedical field due to their ability
to synthesize secondary metabolites. Attending to the chemical nature and molecular
structure of these biomolecules, there are three main groups: alkaloids, peptides, and
polyketides [5–7].

Alkaloids are the most prominent family of compounds that exert antimicrobial [6]
and anti-tumour activities [1,5,8]. Within this group it is relevant to mention saframycins,
jorumycins, renieramycins, and ecteinascidins that share structural similarities within
the bis-tetrahydroisoquinoline chemical moieties [9]. They inhibit essential kinases that
regulate the cell cycle, such as protein kinase B (PKB) and cyclin-dependent kinases (CDKs),
and alter the mitochondrial inner membrane potential [5]. Trabectedin and lurbinectedin,
the anti-tumour compounds marketed by PharmaMar, belong to this category. Peptides
from two to eighteen amino acids constitute a smaller subset (5% of bioactive molecules)
distributed into linear peptides, cyclic peptides, and depsipeptides (peptides composed
by ester and amide bonds). Finally, a third group has been identified, polyketides, which
are complex molecules built from simple carboxylic acids and synthesized by polyketide
synthetases [5,10].

This is a simplified overview as, not only are these molecules synthesized by ascidians,
but their associated symbiont microorganisms have a pivotal role in the production of
these defensive molecules that protect these marine creatures from their natural preda-
tors [5,7,11,12].

Ascidians show enhanced cellular plasticity within the Chordate phylum, and for this
reason, are used as regenerative biology models [13].

Ecteinascidia turbinata is a tunicate that normally inhabits the Caribbean Sea, Gulf
of Mexico, Bermuda, East Coast of Florida, and it has been seen in the Mediterranean
Sea in the warmest periods [4] (Figure 1). This organism and a symbiont, Candidatus
Endoecteinascidia frumetensis, are the natural sources of trabectedin [6,11], and it was the
first ascidian compound with an anti-tumour activity to receive both EU (EMA) and US
(FDA) approval [4].
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Figure 1. Ecteinascidia turbinata, the ascidian source for trabectedin and lurbinectedin (Courtesy of
PharmaMar S.A., Madrid, Spain).
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3. Trabectedin and Lurbinectedin Molecular Structures

Ecteinascidins’ structures were first reported in 1987 by Rinehart et al., although
the anti-tumour activity of these compounds was reported in 1969 from tunicate total
extracts; however, due to the limited availability of the primary source, it took almost two
decades to identify the molecular structure of the compounds that exerted the anti-tumour
activity [14].

Trabectedin (ET-743 or TRB) was first isolated in 1990 and its X-ray crystallographic
structure was resolved in 1992 [13]. It is a tetrahydroquinoline alkaloid with a molecu-
lar weight of 761.81 g/mol and a complex chemical structure composed of three fused
tetrahydroisoquinoline rings (subunits A–C): a mono-bridged pentacyclic skeleton of two
tetrahydroisoquinoline rings (subunits A and B) linked by a 10-member lactone bridge
through a benzylic sulphide linkage attached to an additional ring by a -spyro ring to a
third tetrahydroisoquinoline structure (Figure 2A). It is semi-synthetically produced and
currently marketed as Yondelis® (Madrid, Spain) [15]. The complete synthesis of this
compound by Ma and Chen’s group has recently been reviewed by Gao et al. [9], along
with other tetrahydroisoquinoline alkaloid compounds.

Lurbinectedin (PM01183 or LUR) is a structural derivative of the former molecule.
TRB and LUR differ in the C-subunit; TRB presents a tetrahydroisoquinoline (circled in
blue) which is replaced by a tetrahydro-β-carboline (circled in red; Figure 2B) [16,17]. As
a consequence, there are important pharmacodynamic and pharmacokinetic modifica-
tions [17]; LUR exhibits a distribution volume four times lower than TRB and exhibits a
three-fold higher tolerance dose (MTD), presenting a distinct profile [18]. The LUR molecu-
lar structure is slightly larger. The molecular weight for PM01183 is 784.87 g/mol, and it is
commercialized as Zepzelca® (Madrid, Spain).
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4. Trabectedin and Lurbinectedin Uses in Oncology

TRB is indicated, in combination with pegylated liposomal doxorubicin, for patients
with relapsed platinum-sensitive ovarian cancer [19–21], as well as for the treatment of
advanced soft tissue sarcoma in adults [22–25] when ifosfamides and anthracyclines have
failed [19,20].

TRB is applied for soft tissue sarcoma (STS) [26] and is applied in a phase III study of
mesenchymal chondrosarcoma [27] as well as in a phase II study of extraskeletal myxoid
chondrosarcoma. It is also used in non-operable liposarcomas and leiomyosarcomas [28–34]
and it is applied for metastatic synovial sarcoma [35,36].

Recently, monocyte to lymphocyte ratio was demonstrated to be a prognostic tool in
the treatment of STS with trabectedin. This ratio could be easily applied in clinical practice
to assess TRB efficacy [37].

Lurbinectedin (LUR) was approved by the FDA in June 2020 after a phase II/III trial
for the treatment of small cell lung carcinoma [38]. Additional assays were conducted
for the treatment of ovarian cancer, breast cancer (ongoing in patients of BRCA1 loss of
function), sarcoma, and acute myeloid leukaemia [39–43].



Molecules 2024, 29, 331 4 of 21

5. Mechanism of Action of Trabectedin and Lurbinectedin

Several mechanisms of action have been described for TRB and LUR. The most ex-
tensively documented mechanisms are related to their role as DNA-binding agents and
transcriptional modulators. Still, there is mounting evidence suggesting that, apart from
the well-known molecular mechanisms that are affected in tumoral cells (described below),
the impact on the immune system compartment is of pivotal importance in the outcome of
patients who are treated with these ecteinascidins [44,45].

5.1. TRB and LUR Act as DNA Intercalating Agents and Transcriptional Regulators

Both compounds bind to guanines in the DNA minor groove, specifically to the
exocyclic N2 amino moiety through an in situ iminium intermediate that is formed by the
dehydration of the carbinolamine that is located in the A subunit. Thus, TRB and LUR act
as intercalating DNA agents [45]. The DNA-TRB or LUR adduct is additionally stabilised
by existing van der Waals interactions and hydrogen bonds between the A and B subunits.
This covalent, newly formed interaction induces a DNA torsion towards the major groove;
this feature seems to be unique to these families of compounds [17,46,47].

Combinatorial chemical substitutions revealed that the carbinolamine moiety is rel-
evant to the pharmacological activity of these molecules since derived compounds (ET-
745) lacking this functional group fail to bind to DNA. Both anti-tumour drugs induce
transcription-dependent stress and genomic instability [48]. In addition, this interaction
with the DNA interferes with the transcription of genes whose promoter regions contain
CG-rich sequences. Moreover, this transcriptional regulation is implemented by the de-
phosphorylation, ubiquitination, and degradation of the RNA polymerase II (Pol II) on the
DNA template [49].

5.2. TRB and LUR Affect Homologous Recombination (HR) and Nucleotide Excision Repair (NER)
DNA Repair Mechanisms

The main DNA repairing mechanism that is affected by TRB and LUR is nucleotide
excision repair (NER). When there is a lack of this process, the cytotoxic capacity of these
molecules over tumour cells is diminished [50]. If the affected mechanism is homologous
recombination (HR), as it occurs in decreased expression of BRCA1/2, the reported cyto-
toxic effect is higher. TRB and LUR inhibit both NER and HR in tumoral cells [51]. Two of
the principal components of the NER mechanism are XPG (Xeroderma pigmentosum group
G) and XPF (Xeroderma pigmentosum group F) endonucleases that cleave the damaged
DNA double-strand and correct the lesion [52]. In vivo studies in the yeast S. pombe showed
that Rad13, a homolog protein, forms a tertiary complex, Rad13-DNA-TRB, that induces
double-strand breaks, leading to the activation of programmed cell death processes [53].

5.3. TRB and LUR Affect Transcription, Cell Cycle, and Induce Apoptosis in Tumour Cell Lines

The steric hindrance induced by the tertiary complex prevents transcription fac-
tor binding to conserved consensus DNA sequences where there is an enrichment in
GC. A dose-dependent binding inhibition has been reported at low micromolar doses
(50–300 µM) for TBP, E2F, SRF, and CCAAT transcription factors by gel shift assays, and at
even lower concentrations for NF-Y (10–30 µM). TRB induced a decrease of nucleosomes at
100 nM [54,55].

NF-Y is a central transcription factor that mediates the activation of the human gene
that codes for P-glycoprotein or MDR-1, which recruits histone acetyltransferase PCAF to
the MDR-1 promoter. TRB abrogates its transcriptional activation [56,57] and in doing so, it
prevents ABCB1 channel activity, and therefore, it avoids the multidrug resistance that is
associated with the overexpression of this protein in tumour cells [58–60].

In the low nanomolar range, TRB inhibits B2 cyclin transcription which might explain
G2 cell cycle blockade [55,61]. It activates non-dependent P53 apoptosis and produces a
cell cycle blockade in the late S and G2-M phases [53,61].
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These anti-tumour compounds trigger RNA polymerase dephosphorylation and facili-
tate RNA polymerase II degradation via ubiquitination [16,62–64], drastically modulating
messenger RNA transcription [16,65].

TRB and LUR induce apoptosis by both the intrinsic and extrinsic pathways in lung
cancer A549 cell lines [66], and in MCF-7 and MDA-MB-453 breast cancer cells [67] in a
time- and concentration-dependent fashion. It has been proposed that lurbinectedin in
monotherapy is more effective for relapsed SCLC than other approved therapies [68–70].

5.4. TRB and LUR Regulate Tumour Microenvironment

It has extensively been reported that these anti-tumour drugs impact the tumour mi-
croenvironment (TME), target human tumour-associated macrophages (hTAM) [46,71–73],
and inhibit the transcription of pro-inflammatory cytokines such as CCL2 (chemokine
ligand 2), IL-6 [74], VEGF [65], CCL3, CCL7, and CCL14 [53,75]. TRB and LUR are known
to modulate the immune response within the tumour microenvironment by specifically
targeting mononuclear phagocytes [44,65,73,76,77]. Furthermore, it has recently been
shown that TRB and LUR modulate the macrophage electrophysiology and polarisation
state towards a proinflammatory-like (M1) activation state in quiescent macrophages, sug-
gesting that TAMs pro-inflammatory re-education occurs in murine peritoneal rodent
macrophages [78]. Moreover, LUR effectively eliminates both cancer cells and cancer stem
cells in preclinical models of uterine cervical cancer [79]. Human TAMs are functionally
inhibited and depleted by TRB, which improves the anti-tumour adaptative response to
anti-PD-1 therapy [80].

5.5. TRB and LUR Affect the Human Immune System

Both TRB and LUR exert a direct impact on all the immune cell subsets, which probably
contributes to the therapeutic actions of these drugs. Nevertheless, adverse effects have
occasionally been observed in oncological patients, constituting an exclusion criterion for
patients undergoing treatment with these anti-tumour drugs [75,81–83]. At this point, the
development of prognostic biomarkers associated with the appearance of adverse effects
after treatment with these drugs is a relevant area of research. Additionally, both drugs
have been proposed to be applied in combination with immune checkpoint inhibitors,
along with a plethora of specific targeted therapies, as addressed in Section 7.

5.5.1. Impact on Phagocytes/Myeloid Compartment (Neutrophils,
Monocyte/Macrophages, DCs)

The most common adverse effect of TRB or LUR administration is neutropenia, which
is reported in one-third of cancer patients undergoing these treatments, and if it is severe, it
constitutes a motive for withdrawal. Both drugs target the mononuclear phagocytic system,
specifically, monocytes and macrophages. They can inhibit cytoskeleton dynamics and
motility, phagocytosis, and efferocytosis, and trigger apoptosis, as well as the recruitment
of monocytes to the tumour site and induce apoptosis [65,84–86].

There are no currently available studies on dendritic cells regarding TRB and LUR. It
would be very interesting to evaluate the dual role of these cells in tumour immunity [87–92].
However, TRB antitumoral activity was assessed in an orthotopic xenograft murine model
bearing a doxorubicin-resistant follicular dendritic cell sarcoma derived from a patient and
it was concluded that this tumour was slightly sensitive to TRB, but it was not statistically
significant [93].

It has been proposed, extensively studied, and reviewed that these anti-tumour
molecules exert “tropism” for hTAM [44]. They inhibit angiogenesis by inhibiting the
expression of VEGF, PDGF, FGF, and metastasis by regulating MMPs, and abolish the im-
munosuppression that is established within the TME. In this sense, LUR has been identified
as an inhibitor of myeloid suppressor cells, both in vivo and in vitro [79,94].

The impact of TRB and LUR on human macrophages has been extensively reported:
these antitumoral compounds induce programmed cell death in sensitive macrophages [86]
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and, in those that retain viability, it favours a pro-inflammatory-like activated state. These
compounds upregulate HLA (MHC class I and II) transcripts, glycolysis, NF-κB, and P38
proinflammatory pathways, and induce mitochondrial biogenesis. Additionally, both
antitumoral drugs activate PPP and increase NADPH-oxidase-dependent ROS production
as well as O2

− generation and induce a rupture of the TCA cycle at MDH and IDH,
favouring the metabolic HIF-1α stabilisation. This metabolic reconfiguration leads to the
canonical hMφ proinflammatory activation [95]. TNFα and IL-8 are augmented in the
supernatant of primary hMφ [96] (Figure 3).
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production is predicted by RNAseq and fluxomic approaches [96].

Hence, not only do these ecteinascidins impact the tumour microenvironment and the
tumour itself, but they also trigger a proinflammatory activation, at least in in vitro primary
human macrophages’ cell culture. Macrophage polarisation is driven by macrophage
metabolism, and it regulates the biological function of these innate cells [95,97,98]. The un-
derstanding of these processes is crucial to comprehend the interplay between immune cells
and the tumour and its microenvironment to design specific targeted therapies to improve
oncologic patient outcomes and overall survival, as well as progression-free survival.

5.5.2. Impact on Lymphoid Subsets (T Cells, B Cells, NK Cells, and NKT Cells)

These molecules activate NK cells; TRB triggers direct and NK-mediated cytotoxicity
in multiple myeloma [99], and both TRB and LUR exert a cytotoxic effect targeting B cells
in Chronic Lymphocytic Leukaemia (CLL) [43,100]. TRB exhibited cytotoxic effects in
diffuse large B cell leukaemia [101]. TRB and LUR have been shown to activate CD4+ and
CD8+ T-cells as well, promoting the adaptive anti-tumour immune response, inducing their
infiltration in vivo and the proliferation of activated effector T-cells in vitro [43,100,102,103].

Globally, TRB and LUR functionally/mechanistically exert three major roles: these
drugs induce apoptosis in tumour cells and stromal supporting cells (TAMs), modulate the
TME, and instruct both innate and adaptive immune cells towards an anti-tumour-activated
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phenotype. Thus, they directly kill tumour cells and prevent the immunosuppressive
milieu that is established. These molecules potentiate the anti-tumour immune response to
neutralise the tumour.

It has been suggested that the expression of TRAIL-R in the different leukocyte subsets
is related to the mechanism of TRB-induced apoptosis and could be useful to explain
the differential viability effects on cell viability of each of the myeloid and lymphoid
subsets [44,100].

Figure 4 recapitulates the most extensively reported effects of TRB and LUR on tumour
cells, the tumour microenvironment, and tumour-supporting cells, as well as immune cell
activation, and is supported by experimental evidence [86,96].
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Figure 4. Reported molecular mechanisms for TRB and LUR in tumour cells, the tumour microen-
vironment, and immune cells. TRB and LUR are DNA intercalating molecules and transcriptional
regulators. They impact human TAM biology acting as TME regulators and immunomodulate human
immune response and activation.

Both drugs exert a direct cytotoxic effect in tumour cells by interfering with the tran-
scription machinery and cell cycle and inducing immunogenic tumour cell death. As
a result, they inhibit the immunosuppressive milieu that is normally established by the
tumour and tumour supporting cells. TRB and LUR downregulate the expression of
VEGF and several metalloproteases, preventing both tumour progression and metasta-
sis and simultaneously activating NK-mediated cytotoxicity, T-cell infiltration (in vivo),
and macrophage proinflammatory activation (in vitro). They reduce monocyte migration
(Figure 4).

Taken together, these data strongly suggest that TRB and LUR elicit a higher immune
response through two different paths: these drugs prevent the functional pro-tumoral
immune suppression in the TME and favour immune cell activation, which explains
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tumour regression and overall patient improvement and makes these molecules great
candidates for their combination with immunotherapy. Therefore, it is highly relevant to
establish and explain how these ecteinascidins modulate the human adaptative immune
response since mounting evidence demonstrates that, not only do these drugs induce
tumour cell death, but they also instruct the immune system to activate and respond to
neutralise the tumour.

6. Novel Functional and Molecular Targets for Trabectedin

Trabectedin induces ferroptosis via HIF-1α/IRP1/TFR1 and Keap1/Nrf2/GPX4 in
non-small cell lung cancer cells (nSCLC) [104]. This biological process is proven to be essen-
tial in macrophage function and is arising as a novel target in oncology that is increasingly
becoming a hot topic within the molecular oncology and immunotherapy field. NRF2 and
redox biology seem to be regulated by the molecular mechanism of TRB [96,104], although
this observation deserves further investigation.

It has additionally been nominated as a potential candidate for drug repositioning
in the FDA for type II diabetes treatment by docking. It has been postulated as an α-
glucosidase inhibitor with an in vitro IC50 of 1.2 ± 0.7 µM, alongside demeclocycline.
Nonetheless, this repositioning needs to be further assessed due to its systemic toxicity,
hence, a well-justified safety study ought to be conducted [105].

Recently, it has been shown that TRB inhibited therapy induced senescence in tumours
by altering glutamine metabolism [106].

7. Combination Therapies Involving Trabectedin and Lurbinectedin

There is a pressing need to design combination treatments that may include con-
ventional chemotherapeutic agents, immunologically targeted therapies such as immune
checkpoint inhibitors (ICIs), or specific inhibitor molecules that target signaling or metabolic
regulators, due to the complexity of tumoral biology and adaptation capacity, as well as re-
sistance generation. In this sense, the field is experiencing a remarkable expansion: globally,
TRB is assessed in combination with ICIs (antiPD-1/PD-L1 [107–110] and/or CTLA-4 [109]),
monoclonal antibodies (-mAbs) that may act as either molecular inhibitors or activators,
specific inhibitors of molecular targets (PARP [51,111–113], MDM2 [114], VEGF [115–117],
CCR5 [118], m-TOR [119], IGF1-R [120], BCL2 [121], ATM/ATR [122],PPAR-γ [123], and
CK-2/CLK2 [124]), recombinant proteins (shTRAIL [125]), topoisomerase inhibitors (irinote-
can [126–131], topotecan [127], and camptothecin [132]), and immuno-modulatory biomolecules
such as L19-mTNF [133] or dexamethasone [134], combined with propranolol [135], a
β-adrenergic receptor inhibitor, or Wnt/β-catenin inhibitors [136] (PRI-724). It is combined
with physical agents (hyperthermia [137] and radiation [138–141], among other strategies)
as it is shown in Table 1, where it is indicated in which pathologies and cellular or murine
models are applied.

Table 1. Combination therapies involving trabectedin.

Category Treatment Co-Treatment Function Type of Cancer Ref.

Monoclonal
antibodies (mAb)

TRB + bevacizumab Anti–VEGF Partially platinum-sensitive recurrent
ovarian cancer [115]

TRB + AVE1642 Anti–IGF1R Ewing sarcoma [120]

TRB + VE-821 +
KU-60019

Anti–ATR (VE-821)
Anti–ATM (KU-60019) Cervical carcinoma, ovarian carcinoma [122]
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Table 1. Cont.

Category Treatment Co-Treatment Function Type of Cancer Ref.

Immune
checkpoint

inhibitors (ICIs)

TRB + durvalumab Anti–PD-L1 Platinum-refractory ovarian carcinoma [107]

TRB + avelumab Anti–PD-L1 Advanced liposarcoma and
leiomyosarcoma [110]

TRB + nivolumab +
talimogene

laherparepvec (TVEC)

Anti–PD-1 (nivolumab)
Replication within

tumours and production of
GM-CSF (TVEC)

Advanced previously treated sarcomas [108]

TRB + ipilimumab +
nivolumab

Anti–CTLA-4 (ipilimumab)
Anti–PD-1 (nivolumab) Advanced soft tissue sarcoma [109]

TRB + α-PD-1 mAb Ovarian cancer [142]

Inhibitors

TRB + olaparib PARP inhibitor Breast cancer [111]

Advanced and unresectable bone and
soft-tissue sarcomas [112]

Ewing sarcoma [113]

Osteosarcoma, leiomyosarcoma [143]

TRB + RG7112 MDM2 antagonist Soft tissue sarcoma [114]

TRB + rucaparib PARP inhibitor Soft tissue sarcoma,
dedifferentiated liposarcoma [51]

TRB + PRI-724 Wnt/β-Catenin inhibitor Soft tissue sarcoma [136]

TRB + ponatinib Multi-tyrosine
kinase inhibitor Solitary fibrous tumour of the pleura [116]

TRB + propranolol β-adrenergic
receptors antagonist Cervical cancer, ovarian cancer [135]

TRB + pioglitazone PPARγ agonist Myxoid liposarcoma [123]

TRB + topotecan Topoisomerase I inhibitor Ovarian clear cell carcinoma [127]

TRB + irinotecan Topoisomerase I inhibitor

Ovarian clear cell carcinoma [127]

Rhabdomyosarcoma [128]

Cisplatin-resistant osteosarcoma [129]

Relapsed desmoplastic small round
cell tumour [131]

Desmoplastic small round cell tumour [130]

TRB + everolimus mTOR inhibition
Cisplatin-resistant and

paclitaxel-resistant ovarian clear
cell carcinoma

[119]

TRB + maraviroc CCR5 antagonist Classical Hodgkin
lymphoma-mesenchymal stromal cells [118]

TRB + metformin
+ CB-2

Hypoglycemic agent
(metformin)

MCT4 inhibitor (CB-2)
Diabetes-associated breast cancer [144]

TRB + camptothecin Topoisomerase I inhibitor Myxoid/round cell liposarcoma,
undifferentiated pleomorphic sarcoma [132]

TRB + obatoclax Bcl-2 inhibitor Malignant pleural mesothelioma [121]

TRB + ABT-199 Bcl-2 inhibitor Malignant pleural mesothelioma [121]

TRB + OSI-906 IGF1R inhibitor Ewing sarcoma [120]

TRB + silmitasertib CK2/CLK double-inhibitor Uveal melanoma [124]

TRB + cabozantinib c-MET/TAM (TYRO3, Axl,
MERTK) receptor inhibitor Uveal melanoma [124]
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Table 1. Cont.

Category Treatment Co-Treatment Function Type of Cancer Ref.

Biological agents

TRB + FOLFIRI
(leucovorin +

5-fluorouracil +
irinotecan)

Treatment of
colorectal cancer Colorectal cancer [126]

TRB + mitotane Treatment of
adrenocortical carcinoma Adrenocortical carcinoma [145]

TRB + dexamethasone Glucocorticoid medication Advanced/metastatic soft tissue
sarcoma [134]

TRB + gemcitabine

Treatment of advanced
pancreatic cancer can

disrupt DNA replication
and activate the S
phase checkpoint

Pancreatic cancer [146]

TRB + paclitaxel Treatment of advanced
solid tumours Advanced solid tumours [147]

TRB + docetaxel Treatment of ovarian and
peritoneal cancer

Recurrent/persistent ovarian and
peritoneal cancer [148]

TRB + enterolactone Anti-angiogenic activity Epithelial ovarian cancer [117]

TRB + cisplatin Treatment of malignant
pleural mesothelioma Malignant pleural mesothelioma [121]

TRB + carboplatin Treatment of advanced
solid tumours Advanced solid tumours [149]

TRB + shTRAIL Targets cancer cells to
induce apoptosis Colon cancer [125]

TRB + pAXL × CD3ε
Redirects T-lymphocyte

cytotoxicity to
AXL-expressing cells

Osteosarcoma [150]

TRB + L19-mTNF Pro-inflammatory cytokine Fibrosarcoma [133]

Physical agents

TRB + radiotherapy Lung cancer, colon cancer [138]

Advanced soft tissue sarcoma [139]

Localized resectable
myxoid liposarcoma

[140,
141]

Retroperitoneal leiomyosarcoma [151]

TRB + hyperthermia Osteosarcoma, liposarcoma,
synovial sarcoma [137]

LUR has been evaluated in combination with ICIs (anti-PD-L1 and anti-CTLA-4 [152])
and in combination with irinotecan [153,154], ATR [122,155] alone or combined with
ATM [156] and PARP [157] inhibitors, anti-VEGF [158] combined with cisplatin [83,159,160],
paclitaxel [158], gemcitabine [161], capecitabine [162], doxorubicin [41,163,164], and im-
munomodulatory biomolecules such as antibody-drug complexes commonly referred to as
ADCs (4C9-DM1 that targets c-Kit [165]).

TRB in combination with Anti-AXLxCD3ε has proven to be more effective than TRB
alone in sarcoma cells [150]. TNT treatment (talimogene laherparepvec, nivolumab, and
trabectedin) has shown to be synergistic against advanced sarcoma [108]. There is an
ongoing phase I/II SAINT study using ipilimumab (CTLA-4 inhibitor), nivolumab (PD-
1 inhibitor), and trabectedin, as a first-line treatment for advanced soft tissue sarcoma
(ASTS) (NCT03138161) [109]. TRB + irinotecan has proven to be effective on a desmoplastic
small round cell tumour patient-derived xenograft [130,131], cisplatin-resistant osteosar-
coma [129], and rhabdomyosarcoma [128]. TRB + β-blocker propranolol combination has
proven to be effective in vitro and ex vivo evaluations in cervical cancer in patient-derived
organoids [135].

In the ovarian cancer cell model, TRB + anti-PD-1-mab showed synergistic effi-
cacy [102], favouring the activation of effector CD4+ and CD8+ T-cells in vivo by the upreg-
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ulation of IFN-γ and inducing a decrease of immunosuppressive MDSCs and regulatory
T-cells [103,142]. Three dose levels of TRB + durvalumab (PD-L1 inhibitor) showed promis-
ing efficacy in a phase Ib multicentre trial (TRAMUNE) in relapsed platinum-refractory
ovarian cancer [107,166].

A similar approach was conducted in murine osteosarcoma models where TRB inhib-
ited osteosarcoma primary tumour growth and metastasis and enhanced the number of
T-cell tumour-infiltrated cells (both CD4+ and CD8+). TRB induced the overexpression of
PD-1 in vivo but it did not in vitro, and Chiara Ratti et al. proved that TRB + anti-PD-1
blocking antibody increased CD8+ infiltrating cells and TRB efficacy, whereas anti-PD-1
alone did not reduce osteosarcoma growth. The combination further increased CD4+ and
CD8+ recruitment, shifted CD4+ naïve T cells to CD4+ effector memory cells, and rendered
a higher efficacy compared to TRB alone, preventing osteosarcoma progression. This com-
bination enhanced the expression of CTLA-4, suggesting that it might be a third suitable
partner for combined immunotherapy [167].

TRB + everolimus was synergistic in cisplatin and paclitaxel-resistant ovarian clear
cell carcinoma cell lines and mice xenografts [119]. TRB + maraviroc (CCR5 antagonist)
was effective in classical Hodgkin lymphoma mesenchymal stromal cells [118]. In a
phase II clinical trial, TRB + dexamethasone improved safety in pre-treated soft tissue
sarcoma patients [134]. TRB + mitotane reduced invasiveness and metastatic processes
in adrenocortical carcinoma [145]. TRB + metformin + CB2 emerged as a novel venue for
diabetes-associated breast cancer in cell lines and xenograft murine models [144]. TRB +
PRI-724 [136] and TRB + RG7112 [114] were effective in human in vitro soft tissue sarcoma
cell lines (in MDM2-amplified liposarcoma and fibrosarcoma cell lines [114] and STS cell
lines and primary cultures [136]). TRB + radiotherapy combination has been assayed in
A549 and HT-29 cell lines [138]. This approach has been identified as beneficial for STS
patients, especially when tumour sinkage for symptomatic relief is required [139], and
for phase I and phase II clinical trials for patients with myxoid liposarcoma. In the first
one, there is an improvement in both safety and antitumoral activity [141]; in the second
one, the primary endpoint was not achieved but the combination was well-tolerated and
effective in terms of pathological response.

LUR has been combined with several agents as it is shown in Table 2 where, again, it
is indicated in which pathologies/cellular or murine models the combinations are applied.
LUR has been combined with irinotecan in ovarian cell clear carcinoma cell lines showing
synergistic effects [154] and in a case report showing BRCA-mutated platinum-resistant
ovarian cancer patients had exceptional clinical responses [153]. LUR + olaparib (PARP
inhibitor), in a phase I clinical trial for advanced solid tumours, is feasible and exhibited
a disease control rate of 72.6% [157]. LUR + doxorubicin improved safety in a phase III
clinical trial of SCLC [164], and in a phase II clinical trial, a benefit was observed in several
types of metastatic and unresectable sarcomas [41]. In an expanded phase I clinical trial
for advanced endometrial cancer, this combination favoured a better response rate as its
duration progressed [163].

Table 2. Combination therapies involving lurbinectedin.

Category Treatment Co-Treatment Function Type of Cancer Ref.

Monoclonal
antibodies (mAb)

LUR + VE-821 +
KU-60019

Anti–ATR (VE-821)
Anti–ATM (KU-60019)

Cervical carcinoma,
ovarian carcinoma [122]

Immune
checkpoint

inhibitors (ICIs)

LUR + αPD-1 +
αCTLA-4

Osteosarcoma, fibrosarcoma, lung
cancer, breast cancer [152]
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Table 2. Cont.

Category Treatment Co-Treatment Function Type of Cancer Ref.

Inhibitors

LUR + irinotecan Topoisomerase I inhibitor Ovarian clear cell carcinoma [154]

BRCA-mutated platinum-resistant
ovarian cancer patient [153]

LUR + olaparib PARP inhibitor Advanced solid tumours [157]

LUR + berzosertib ATR inhibitor Small-cell lung cancer [155]

Biological agents

LUR + doxorubicin

Treatment of
several sarcomas

Relapsed small-cell lung cancer [164]

Leiomyosarcoma, dedifferentiated
liposarcoma, myxoid liposarcoma,

synovial sarcoma, and desmoplastic
small round cell tumour

[41]

Recurrent advanced
endometrial cancer [163]

LUR + capecitaine

Treatment of metastatic
colorectal cancer (mCRC)

and metastatic breast
cancer (MBC)

Metastatic breast cancer [162]

LUR + paclitaxel Treatment of
several sarcoma

Small cell lung cancer, breast cancer,
endometrial cancer [158]

LUR + paclitaxel +
bevacizumab Anti–VEGF (bevacizumab) Epithelial ovarian cancer [158]

LUR + cisplatin Mesothelioma [160]

LUR + gemcitabine Treatment of advanced
pancreatic cancer Advanced solid tumours [161]

LUR + 4C9-DM1 Antibody-drug conjugate
(ADC) that targets c-Kit Small cell lung cancer [165]

LUR + capecitabine was applied in a phase I trial for relapsed metastatic breast cancer
(HR+) with promising results [162]. LUR + paclitaxel showed synergistic antitumoral activ-
ity and improved safety in a phase I trial in SCLC, breast and endometrial cancer patients,
and in combination with bevacizumab (anti-VEGF) for epithelial ovarian cancer [158]. TRB
or LUR + VE-821 + KU-60019 (anti-ATR and anti-ATM respectively) combinations were
evaluated in ovarian and cervical cell lines and showed higher antitumoral activity, suggest-
ing that this venue provided mechanistic evidence that could have potential therapeutic
effects that need to be addressed [122]. For LUR in combination with ICIs: anti-PD-L1 and
anti-CTLA-4 showed strong anti-neoplastic effects in osteosarcoma and fibrosarcoma cell
lines, and breast cancer and fibrosarcoma murine models [152]. LUR + berzosertib (ATR
inhibitor) showed synergy in SCLC in vivo, organoid, and in vitro models [155]. LUR +
cisplatin showed promising activity in malignant pleural mesothelioma [160] but it was
not feasible in advanced solid tumours due to toxicity issues [83]. TRB + gemcitabine was
assessed in the phase I trial for several advanced tumour types showing well-tolerated
results with higher antitumoral activity [161]. Finally, LUR + 4C9-DM1-ADC achieved a
higher tumour growth inhibition rate compared to LUR alone in mice xenografts bearing
human SCLC [165].

Interestingly, it has been proposed that these Ecteinascidins may be combined with
specific antibodies forming antibody-drug complexes (ADC) [165] and nanoparticles [168].
These approaches might help to overcome unwanted collateral side effects and improve
safety parameters, both locally in the vasculature at the injection site, and systemically.
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8. Conclusions/Concluding Remarks

TRB and LUR induce apoptosis and immunogenic cell death in tumours through
diverse molecular mechanisms that are still being identified.

TRB and LUR function as immune-modulatory drugs, both in the TME and over the
innate immune cell compartment, as well as the adaptative compartment, irrespectively
of the myeloid or lymphoid origin, although the most extensively characterised is the
first one.

Both Ecteinascidins are being assessed in combination with a plethora of molecular
targeted inhibitors, monoclonal antibodies, immune checkpoint blockades, as well as
classical oncolytic treatments that include physical agents (radiotherapy or hyperthermia).
and canonical chemotherapeutical drugs (i.e., irinotecan or topotecan) that synergise with
TRB/LUR, enhancing their antitumoral activity and/or their safety profile.
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