Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials
Abstract
:1. Introduction
2. Hydrogen Storage on Pristine Graphene
3. Hydrogen Storage on Decorated Graphene
3.1. Hydrogen Storage on Single-Atom Decorated Graphene
3.2. Hydrogen Storage in Cluster-Decorated Graphene
4. Hydrogen Storage on Doped Graphene
4.1. Hydrogen Storage on Single-Atom-Doped Graphene
4.2. Hydrogen Storage for Different Doping Concentrations
4.3. Hydrogen Storage on Cluster-Doped Graphene
4.4. Hydrogen Storage on Co-Doped Graphene
5. Hydrogen Storage on Graphene with Vacancies
6. Hydrogen Storage on Doped-Decorated Graphene
7. Hydrogen Storage on Graphene with Vacancy-Doping
8. Hydrogen Storage on Graphene with Co-Doping and Vacancies
9. Conclusions and Future Directions
- (a)
- Graphene structures decorated with single-atoms or atom clusters for hydrogen storage have been examined. The commonly used strategy is to decorate graphene with single atoms. Therefore, more studies on cluster-decorated graphene for hydrogen storage are required. Further, since bimetallic and trimetallic systems are known to have properties very different from those of monometallic systems, it will be interesting to investigate graphene decorated with bimetallic or trimetallic clusters for hydrogen storage. Most graphene systems decorated with clusters or atoms comply with the DOE requirement for hydrogen storage via physisorption. Furthermore, several of the investigated materials, in particular, graphene decorated with Al, Ca, Li, and Ti, had gravimetric capacities higher than the target set by the DOE.
- (b)
- The use of doped graphene for hydrogen storage has been widely investigated. Several strategies, such as single-atom doping, cluster doping, and co-doping, were implemented. These types of doping substantially modify the reactivity of graphene, providing promising materials for hydrogen storage. However, theoretical studies on cluster-doped and co-doped graphene for hydrogen storage are still scarce. Therefore, it is necessary to conduct more detailed research on cluster-doped and co-doped graphene for hydrogen storage.
- (c)
- The use of graphene with vacancies, doped-decorated graphene, and graphene with vacancies-doping are other strategies to modify the reactivity of pristine graphene for hydrogen storage. The existing studies have shown promising results for hydrogen storage. However, comprehensive studies on these systems are necessary.
- (d)
- The graphene structures with co-doping and vacancies have been examined for hydrogen storage. The available studies show that graphene structures with co-doping and vacancies are good candidates for hydrogen storage. However, more studies are required on this type of modified graphene.
- (e)
- Future theoretical studies on modified graphene for hydrogen storage must adopt dispersion corrections. Many existing studies did not include these corrections, limiting the quality of the results. Future studies should also report the gravimetric capacity of the systems as it is an important parameter to determine whether a material is a good candidate for hydrogen storage. Many existing studies only reported the adsorption energy of the H2 molecule, which is not enough to identify new materials for hydrogen storage.
- (f)
- These theoretical results discussed herein should motivate experimental groups to experimentally validate the theoretical predictions, as many modified graphene systems are shown to be good candidates for hydrogen storage. The knowledge of these systems can be systematized, and the systems can be experimentally evaluated for hydrogen storage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Nazir, H.; Louis, C.; Jose, S.; Prakash, J.; Muthuswamy, N.; Buan, M.E.; Kannan, A.M. Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods. Int. J. Hydrog. Energy 2020, 45, 13777–13788. [Google Scholar] [CrossRef]
- Jain, I.P. Hydrogen the fuel for 21st century. Int. J. Hydrog. Energy 2009, 34, 7368–7378. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrog. Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Da Silva Veras, T.; Mozer, T.S.; da Silva César, A. Hydrogen: Trends, production and characterization of the main process worldwide. Int. J. Hydrog. Energy 2017, 42, 2018–2033. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrog. Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Niaz, S.; Manzoor, T.; Pandith, A.H. Hydrogen storage: Materials, methods and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 457–469. [Google Scholar] [CrossRef]
- Tellez-Cruz, M.M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13, 3064. [Google Scholar] [CrossRef] [PubMed]
- Das, V.; Padmanaban, S.; Venkitasamy, K.; Selvamuthukumaran, R.; Blaabjerg, F.; Siano, P. Recent advances and challenges of fuel cell based power system architectures and control—A review. Renew. Sustain. Energy Rev. 2017, 73, 10–18. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Guerra-Cabrera, W.; Flores-Rojas, E.; Ruiz-Villalobos, D.; Rojas-Chávez, H.; Peña-Castañeda, Y.A.; Medina, D.I. Pt-Free Metal Nanocatalysts for the Oxygen Reduction Reaction Combining Experiment and Theory: An Overview. Molecules 2021, 26, 6689. [Google Scholar] [CrossRef]
- Ren, J.; Musyoka, N.M.; Langmi, H.W.; Mathe, M.; Liao, S. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. Int. J. Hydrog. Energy 2017, 42, 289–311. [Google Scholar] [CrossRef]
- Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D.J. High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, S.; Hashmi, S.A.R.; Kim, K.H. MXenes: Emerging 2D materials for hydrogen storage. Nano Energy 2021, 85, 105989. [Google Scholar] [CrossRef]
- Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.G.; Cool, P.; Denayer, J.F. Hydrogen clathrates: Next generation hydrogen storage materials. Energy Storage Mater. 2021, 41, 69–107. [Google Scholar] [CrossRef]
- Jena, P. Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett. 2011, 2, 206–211. [Google Scholar] [CrossRef]
- Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 2012, 112, 782–835. [Google Scholar] [CrossRef]
- Yartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, V.E.; Ares, J.R.; Zhu, M. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrog. Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Jain, I.P.; Jain, P.; Jain, A. Novel hydrogen storage materials: A review of lightweight complex hydrides. J. Alloy. Compd. 2010, 503, 303–339. [Google Scholar] [CrossRef]
- Rusman, N.A.A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrog. Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Akbayrak, S.; Özkar, S. Ammonia borane as hydrogen storage materials. Int. J. Hydrog. Energy 2018, 43, 18592–18606. [Google Scholar] [CrossRef]
- Mohan, M.; Sharma, V.K.; Kumar, E.A.; Gayathri, V. Hydrogen storage in carbon materials—A review. Energy Storage 2019, 1, e35. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Z.; Zhu, Y. Porous carbon-based materials for hydrogen storage: Advancement and challenges. J. Mater. Chem. A 2013, 1, 9365–9381. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Rojas-Chávez, H.; Matadamas-Ortiz, P.T.; Ortiz-Herrera, J.C.; López-Chávez, E.; Solorza-Feria, O.; Medina, D.I. Current progress of Pt-based ORR electrocatalysts for PEMFCs: An integrated view combining theory and experiment. Mater. Today Phys. 2021, 19, 100406. [Google Scholar] [CrossRef]
- Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J.K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Li, Y. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mat. 2021, 33, 2008151. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Martínez, H.; Tellez-Cruz, M.M.; Solorza-Feria, O.; Calaminici, P.; Medina, D.I. Catalytic activity trends from pure Pd nanoclusters to M@PdPt (M = Co, Ni, and Cu) core-shell nanoclusters for the oxygen reduction reaction: A first-principles analysis. Int. J. Hydrog. Energy 2020, 45, 13738–13745. [Google Scholar] [CrossRef]
- Muckerman, J.T.; Fujita, E. Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime. Chem. Comm. 2011, 47, 12456–12458. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Shin, Y.; Persson, K.A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Curtarolo, S.; Hart, G.L.; Nardelli, M.B.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design. Nat. Mater. 2013, 12, 191–201. [Google Scholar] [CrossRef]
- Kose, A.; Yuksel, N.; Fellah, M.F. Hydrogen adsorption on Ni doped carbon nanocone. Diam. Relat. Mater. 2022, 124, 108921. [Google Scholar] [CrossRef]
- Ganji, M.D.; Hosseini-Khah, S.M.; Amini-Tabar, Z. Theoretical insight into hydrogen adsorption onto graphene: A first-principles B3LYP-D3 study. Phys. Chem. Chem. Phys. 2015, 17, 2504–2511. [Google Scholar] [CrossRef]
- Rangel, E.; Sansores, E. Theoretical study of hydrogen adsorption on nitrogen doped graphene decorated with palladium clusters. Int. J. Hydrog. Energy 2014, 39, 6558–6566. [Google Scholar] [CrossRef]
- Lopez-Corral, I.; de Celis, J.; Juan, A.; Irigoyen, B. DFT study of H2 adsorption on Pd-decorated single walled carbon nanotubes with C-vacancies. Int. J. Hydrog. Energy 2012, 37, 10156–10164. [Google Scholar] [CrossRef]
- Rodríguez-Quintana, R.; Carbajal-Franco, G.; Rojas-Chávez, H. DFT study of the H2 molecules adsorption on pristine and Ni doped graphite surfaces. Mater. Lett. 2021, 293, 129660. [Google Scholar] [CrossRef]
- Ren, H.; Cui, C.; Li, X.; Liu, Y. A DFT study of the hydrogen storage potentials and properties of Na-and Li-doped fullerenes. Int. J. Hydrog. Energy 2017, 42, 312–321. [Google Scholar] [CrossRef]
- Lopez-Chavez, E.; Peña-Castañeda, Y.; García-Quiroz, A.; Castillo-Alvarado, F.; Díaz-Gongora, J.; Jimenez-Gonzalez, L. Ti-decorated C120 nanotorus: A new molecular structure for hydrogen storage. Int. J. Hydrog. Energy 2017, 42, 30237–30241. [Google Scholar] [CrossRef]
- Akbari, F.; Reisi-Vanani, A.; Darvish Nejad, M.H. DFT study of the electronic and structural properties of single Al and N atoms and Al-N co-doped graphyne toward hydrogen storage. Appl. Surf. Sci. 2019, 488, 600–610. [Google Scholar] [CrossRef]
- Ding, F.; Yakobson, B.I. Challenges in hydrogen adsorptions: From physisorption to chemisorption. Front. Phys. 2011, 6, 142–150. [Google Scholar] [CrossRef]
- Valdés-Madrigal, M.A.; Montejo-Alvaro, F.; Cernas-Ruiz, A.S.; Rojas-Chávez, H.; Román-Doval, R.; Cruz-Martinez, H.; Medina, D.I. Role of defect engineering and surface functionalization in the design of carbon nanotube-based nitrogen oxide sensors. Int. J. Mol. Sci. 2021, 22, 12968. [Google Scholar] [CrossRef]
- Singla, M.; Jaggi, N. Theoretical investigations of hydrogen gas sensing and storage capacity of graphene-based materials: A review. Sens. Actuator A Phys. 2021, 332, 113118. [Google Scholar] [CrossRef]
- Shiraz, H.G.; Tavakoli, O. Investigation of graphene-based systems for hydrogen storage. Renew. Sustain. Energy Rev. 2017, 74, 104–109. [Google Scholar] [CrossRef]
- Cabria, I.; López, M.J.; Alonso, J.A. Searching for DFT-based methods that include dispersion interactions to calculate the physisorption of H2 on benzene and graphene. J. Chem. Phys. 2017, 146, 214104. [Google Scholar] [CrossRef]
- Meng, S.; Kaxiras, E.; Zhang, Z. Metal− diboride nanotubes as high-capacity hydrogen storage media. Nano Lett. 2007, 7, 663–667. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Q.; Sun, Q.; Jena, P. Functionalized graphitic carbon nitride for efficient energy storage. J. Phys. Chem. C 2013, 117, 6055–6059. [Google Scholar] [CrossRef]
- Jin, X.; Qi, P.; Yang, H.; Zhang, Y.; Li, J.; Chen, H. Enhanced hydrogen adsorption on Li-coated B12C6N6. J. Chem. Phys. 2016, 145, 164301. [Google Scholar] [CrossRef] [PubMed]
- Ao, Z.; Dou, S.; Xu, Z.; Jiang, Q.; Wang, G. Hydrogen storage in porous graphene with Al decoration. Int. J. Hydrog. Energy 2014, 39, 16244–16251. [Google Scholar] [CrossRef]
- Cui, S.; Zhao, N.; Shi, C.; Feng, C.; He, C.; Li, J.; Liu, E. Effect of hydrogen molecule dissociation on hydrogen storage capacity of graphene with metal atom decorated. J. Phys. Chem. C 2014, 118, 839–844. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Yang, S.; Xu, H.; Lan, Z.; Xiong, J.; Gu, H. A DFT study on enhanced adsorption of H2 on Be-decorated porous graphene nanosheet and the effects of applied electrical fields. Int. J. Hydrog. Energy 2021, 46, 5891–5903. [Google Scholar] [CrossRef]
- Ataca, C.; Aktürk, E.; Ciraci, S. Hydrogen storage of calcium atoms adsorbed on graphene: First-principles plane wave calculations. Phys. Rev. B 2009, 79, 041406. [Google Scholar] [CrossRef]
- Lee, H.; Ihm, J.; Cohen, M.L.; Louie, S.G. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett. 2010, 10, 793–798. [Google Scholar] [CrossRef]
- Beheshti, E.; Nojeh, A.; Servati, P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon 2011, 49, 1561–1567. [Google Scholar] [CrossRef]
- Hussain, T.; Pathak, B.; Ramzan, M.; Maark, T.A.; Ahuja, R. Calcium doped graphane as a hydrogen storage material. Appl. Phys. Lett. 2012, 100, 183902. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, N.; Li, J.; Liu, E.; He, C.; Shi, C. Hydrogen spillover storage on Ca-decorated graphene. Int. J. Hydrog. Energy 2012, 37, 11835–11841. [Google Scholar] [CrossRef]
- Wang, V.; Mizuseki, H.; He, H.P.; Chen, G.; Zhang, S.L.; Kawazoe, Y. Calcium-decorated graphene for hydrogen storage: A van der Waals density functional study. Comput. Mater. Sci. 2012, 55, 180–185. [Google Scholar] [CrossRef]
- Valencia, H.; Gil, A.; Frapper, G. Trends in the hydrogen activation and storage by adsorbed 3d transition metal atoms onto graphene and nanotube surfaces: A DFT study and molecular orbital analysis. J. Phys. Chem. C 2015, 119, 5506–5522. [Google Scholar] [CrossRef]
- Ma, S.; Chen, J.; Wang, L.; Jiao, Z. First-principles insight into hydrogen adsorption over Co4 anchored on defective graphene. Appl. Surf. Sci. 2020, 504, 144413. [Google Scholar] [CrossRef]
- Choudhary, A.; Malakkal, L.; Siripurapu, R.K.; Szpunar, B.; Szpunar, J. First principles calculations of hydrogen storage on Cu and Pd-decorated graphene. Int. J. Hydrog. Energy 2016, 41, 17652–17656. [Google Scholar] [CrossRef]
- Malček, M.; Bučinský, L. On the hydrogen storage performance of Cu-doped and Cu-decorated graphene quantum dots: A computational study. Theor. Chem. Acc. 2020, 139, 167. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Wang, R.; Hao, L.; Song, D.; Li, Z. DFT study of hydrogen adsorption on Eu-decorated single-and double-sided graphene. Phys. Status Solidi B 2014, 251, 229–234. [Google Scholar] [CrossRef]
- Ataca, C.; Aktürk, E.; Ciraci, S.A.L.İ.M.; Ustunel, H.A.N.D.E. High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 2008, 93, 043123. [Google Scholar] [CrossRef]
- Zhou, M.; Lu, Y.; Zhang, C.; Feng, Y.P. Strain effects on hydrogen storage capability of metal-decorated graphene: A first-principles study. Appl. Phys. Lett. 2010, 97, 103109. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, J.; Shen, J.; Ouyang, C.; Shi, S. First-principles study of high-capacity hydrogen storage on graphene with Li atoms. J. Phys. Chem. Solids 2012, 73, 245–251. [Google Scholar] [CrossRef]
- Hussain, T.; De Sarkar, A.; Ahuja, R. Strain induced lithium functionalized graphane as a high capacity hydrogen storage material. Appl. Phys. Lett. 2012, 101, 103907. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Hwang, Y.; Yun, K.H.; Chung, Y.C. Hydrogen storage in Li dispersed graphene with Stone–Wales defects: A first-principles study. Int. J. Hydrog. Energy 2014, 39, 13189–13194. [Google Scholar] [CrossRef]
- Seenithurai, S.; Pandyan, R.K.; Kumar, S.V.; Saranya, C.; Mahendran, M. Li-decorated double vacancy graphene for hydrogen storage application: A first principles study. Int. J. Hydrog. Energy 2014, 39, 11016–11026. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, T.; Hou, X.; Zhang, W.; Tang, S.; Sun, H.; Zhang, J. Li-decorated porous graphene as a high-performance hydrogen storage material: A first-principles study. Int. J. Hydrog. Energy 2017, 42, 10099–10108. [Google Scholar] [CrossRef]
- Tachikawa, H.; Iyama, T. Mechanism of hydrogen storage in the graphene nanoflake–lithium–H2 system. J. Phys. Chem. C 2019, 123, 8709–8716. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Lu, F.; Yu, A.; Song, S.; Shi, H.; Liao, B. Hydrogen adsorption on Li decorated graphyne-like carbon nanosheet: A density functional theory study. Int. J. Hydrog. Energy 2020, 45, 24938–24946. [Google Scholar] [CrossRef]
- Zheng, N.; Yang, S.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. A DFT study of the enhanced hydrogen storage performance of the Li-decorated graphene nanoribbons. Vacuum 2020, 171, 109011. [Google Scholar] [CrossRef]
- Ibarra-Rodriguez, M.; Sanchez, M. Lithium clusters on graphene surface and their ability to adsorb hydrogen molecules. Int. J. Hydrog. Energy 2021, 46, 21984–21993. [Google Scholar] [CrossRef]
- Amaniseyed, Z.; Tavangar, Z. Hydrogen storage on uncharged and positively charged Mg-decorated graphene. Int. J. Hydrog. Energy 2019, 44, 3803–3811. [Google Scholar] [CrossRef]
- Sigal, A.; Rojas, M.I.; Leiva, E.P.M. Interferents for hydrogen storage on a graphene sheet decorated with nickel: A DFT study. Int. J. Hydrog. Energy 2011, 36, 3537–3546. [Google Scholar] [CrossRef]
- Cabria, I.; López, M.J.; Fraile, S.; Alonso, J.A. Adsorption and dissociation of molecular hydrogen on palladium clusters supported on graphene. J. Phys. Chem. C 2012, 116, 21179–21189. [Google Scholar] [CrossRef]
- Faye, O.; Szpunar, J.A.; Szpunar, B.; Beye, A.C. Hydrogen adsorption and storage on palladium–functionalized graphene with NH-dopant: A first principles calculation. Appl. Surf. Sci. 2017, 392, 362–374. [Google Scholar] [CrossRef]
- Kishnani, V.; Yadav, A.; Mondal, K.; Gupta, A. Palladium-functionalized graphene for hydrogen sensing performance: Theoretical studies. Energies 2021, 14, 5738. [Google Scholar] [CrossRef]
- Sharma, V.; Kagdada, H.L.; Wang, J.; Jha, P.K. Hydrogen adsorption on pristine and platinum decorated graphene quantum dot: A first principle study. Int. J. Hydrog. Energy 2020, 45, 23977–23987. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Yuan, L.; Zhang, M.; Zhang, C. Sc-decorated porous graphene for high-capacity hydrogen storage: First-principles calculations. Materials 2017, 10, 894. [Google Scholar] [CrossRef]
- Lebon, A.; Carrete, J.; Gallego, L.J.; Vega, A. Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. Int. J. Hydrog. Energy 2015, 40, 4960–4968. [Google Scholar] [CrossRef]
- Yuan, L.; Kang, L.; Chen, Y.; Wang, D.; Gong, J.; Wang, C.; Wu, X. Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation. Appl. Surf. Sci. 2018, 434, 843–849. [Google Scholar] [CrossRef]
- Ghalami, Z.; Ghoulipour, V.; Khanchi, A. Hydrogen and deuterium adsorption on uranium decorated graphene nanosheets: A combined molecular dynamics and density functional theory study. Curr. Appl. Phys. 2019, 19, 536–541. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, D.; Gong, J.; Zhang, C.; Zhang, L.; Zhang, M.; Kang, L. First-principles study of V-decorated porous graphene for hydrogen storage. Chem. Phys. Lett. 2019, 726, 57–61. [Google Scholar] [CrossRef]
- Yuan, L.; Chen, Y.; Kang, L.; Zhang, C.; Wang, D.; Wang, C.; Wu, X. First-principles investigation of hydrogen storage capacity of Y-decorated porous graphene. Appl. Surf. Sci. 2017, 399, 463–468. [Google Scholar] [CrossRef]
- Lebon, A.; Carrete, J.; Longo, R.C.; Vega, A.; Gallego, L.J. Molecular hydrogen uptake by zigzag graphene nanoribbons doped with early 3d transition-metal atoms. Int. J. Hydrog. Energy 2013, 38, 8872–8880. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X. First-principles study of Li decorated coronene graphene. Int. J. Mod. Phys. B 2017, 31, 1750216. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, L.; He, Y.; Cheng, H.P. Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations. J. Phys. Condens. Matter. 2010, 22, 445301. [Google Scholar] [CrossRef] [PubMed]
- Bakhshi, F.; Farhadian, N. Co-doped graphene sheets as a novel adsorbent for hydrogen storage: DFT and DFT-D3 correction dispersion study. Int. J. Hydrog. Energy 2018, 43, 8355–8364. [Google Scholar] [CrossRef]
- Faye, O.; Eduok, U.; Szpunar, J.; Szpunar, B.; Samoura, A.; Beye, A. Hydrogen storage on bare Cu atom and Cu-functionalized boron-doped graphene: A first principles study. Int. J. Hydrog. Energy 2017, 42, 4233–4243. [Google Scholar] [CrossRef]
- Fadlallah, M.M.; Abdelrahman, A.G.; Schwingenschlögl, U.; Maarouf, A.A. Graphene and graphene nanomesh supported nickel clusters: Electronic, magnetic, and hydrogen storage properties. Nanotechnology 2019, 30, 085709. [Google Scholar] [CrossRef]
- Ambrusi, R.E.; Luna, C.R.; Juan, A.; Pronsato, M.E. DFT study of Rh-decorated pristine, B-doped and vacancy defected graphene for hydrogen adsorption. RSC Adv. 2016, 6, 83926–83941. [Google Scholar] [CrossRef]
- Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed on 5 November 2023).
- Cruz-Martínez, H.; Rojas-Chávez, H.; Valdés-Madrigal, M.A.; López-Sosa, L.; Calaminici, P. Stability and catalytic properties of Pt–Ni clusters supported on pyridinic N-doped graphene nanoflakes: An auxiliary density functional theory study. Theor. Chem. Acc. 2022, 141, 46. [Google Scholar] [CrossRef]
- Wang, X.; Sun, G.; Routh, P.; Kim, D.H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098. [Google Scholar] [CrossRef]
- Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S.Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catalys. 2015, 5, 5207–5234. [Google Scholar] [CrossRef]
- Martínez-Vargas, A.; Vásquez-López, A.; Antonio-Ruiz, C.D.; Cruz-Martínez, H.; Medina, D.I.; Montejo-Alvaro, F. Stability, Energetic, and Reactivity Properties of NiPd Alloy Clusters Deposited on Graphene with Defects: A Density Functional Theory Study. Materials 2022, 15, 4710. [Google Scholar]
- Putri, L.K.; Ong, W.J.; Chang, W.S.; Chai, S.P. Heteroatom doped graphene in photocatalysis: A review. Appl. Surf. Sci. 2015, 358, 2–14. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.P.; Vargas-Hernández, C.N.; Cruz-Martínez, H.; Medina, D.I. Stability, magnetic, energetic, and reactivity properties of icosahedral M@Pd12 (M = Fe, Co, Ni, and Cu) core-shell nanoparticles supported on pyridinic N3-doped graphene. Solid State Sci. 2021, 112, 106483. [Google Scholar] [CrossRef]
- Carrete, J.; Longo, R.C.; Gallego, L.J.; Vega, A.; Balbás, L.C. Al enhances the H2 storage capacity of graphene at nanoribbon borders but not at central sites: A study using nonlocal van der Waals density functionals. Phys. Rev. B 2012, 85, 125435. [Google Scholar] [CrossRef]
- Zhang, H.P.; Luo, X.G.; Lin, X.Y.; Lu, X.; Leng, Y. Density functional theory calculations of hydrogen adsorption on Ti-, Zn-, Zr-, Al-, and N-doped and intrinsic graphene sheets. Int. J. Hydrog. Energy 2013, 38, 14269–14275. [Google Scholar] [CrossRef]
- Cho, J.H.; Yang, S.J.; Lee, K.; Park, C.R. Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. Int. J. Hydrog. Energy 2011, 36, 12286–12295. [Google Scholar] [CrossRef]
- Nayyar, I.; Ginovska, B.; Karkamkar, A.; Gennett, T.; Autrey, T. Physi-sorption of H2 on pure and boron–doped graphene monolayers: A dispersion–corrected DFT study. C 2020, 6, 15. [Google Scholar] [CrossRef]
- Choi, W.I.; Jhi, S.H.; Kim, K.; Kim, Y.H. Divacancy-nitrogen-assisted transition metal dispersion and hydrogen adsorption in defective graphene: A first-principles study. Phys. Rev. B 2010, 81, 085441. [Google Scholar] [CrossRef]
- Tabtimsai, C.; Rakrai, W.; Wanno, B. Hydrogen adsorption on graphene sheets doped with group 8B transition metal: A DFT investigation. Vacuum 2017, 139, 101–108. [Google Scholar] [CrossRef]
- Ikot, I.J.; Olagoke, P.O.; Louis, H.; Charlie, D.E.; Magu, T.O.; Owen, A.E. Hydrogen storage capacity of Al, Ca, Mg, Ni, and Zn decorated phosphorus-doped graphene: Insight from theoretical calculations. Int. J. Hydrog. Energy 2023, 48, 13362–13376. [Google Scholar] [CrossRef]
- Singla, M.; Sharma, D.; Jaggi, N. Effect of transition metal (Cu and Pt) doping/co-doping on hydrogen gas sensing capability of graphene: A DFT study. Int. J. Hydrog. Energy 2021, 46, 16188–16201. [Google Scholar] [CrossRef]
- Rangel, E.; Ramirez-Arellano, J.M.; Carrillo, I.; Magana, L.F. Hydrogen adsorption around lithium atoms anchored on graphene vacancies. Int. J. Hydrog. Energy 2011, 36, 13657–13662. [Google Scholar] [CrossRef]
- Yang, S.; Lan, Z.; Xu, H.; Lei, G.; Xie, W.; Gu, Q. A first-principles study on hydrogen sensing properties of pristine and Mo-doped graphene. J. Nanotechnol. 2018, 2018, 2031805. [Google Scholar] [CrossRef]
- Ao, Z.M.; Peeters, F.M. Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene. J. Phys. Chem. C 2010, 114, 14503–14509. [Google Scholar] [CrossRef]
- Petrushenko, I.K.; Petrushenko, K.B. Hydrogen physisorption on nitrogen-doped graphene and graphene-like boron nitride-carbon heterostructures: A DFT study. Surf. Interfaces 2019, 17, 100355. [Google Scholar] [CrossRef]
- Ramos-Castillo, C.M.; Reveles, J.U.; Cifuentes-Quintal, M.E.; Zope, R.R.; De Coss, R. Ti4-and Ni4-doped defective graphene nanoplatelets as efficient materials for hydrogen storage. J. Phys. Chem. C 2016, 120, 5001–5009. [Google Scholar] [CrossRef]
- Alshareef, B.S. DFT investigation of the hydrogen adsorption on graphene and graphene sheet doped with osmium and tungsten. J. Phys. Chem. 2020, 10, 197–204. [Google Scholar] [CrossRef]
- Ramos-Castillo, C.M.; Reveles, J.U.; Zope, R.R.; De Coss, R. Palladium clusters supported on graphene monovacancies for hydrogen storage. J. Phys. Chem. C 2015, 119, 8402–8409. [Google Scholar] [CrossRef]
- Granja-DelRio, A.; Alonso, J.A.; Lopez, M.J. Competition between palladium clusters and hydrogen to saturate graphene vacancies. J. Phys. Chem. C 2017, 121, 10843–10850. [Google Scholar] [CrossRef]
- Granja-DelRío, A.; Alonso, J.A.; López, M.J. Steric and chemical effects on the hydrogen adsorption and dissociation on free and graphene–supported palladium clusters. Comput. Theor. Chem. 2017, 1107, 23–29. [Google Scholar] [CrossRef]
- Liao, J.H.; Zhao, Y.J.; Yang, X.B. Controllable hydrogen adsorption and desorption by strain modulation on Ti decorated defective graphene. Int. J. Hydrog. Energy 2015, 40, 12063–12071. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Fu, Z.; Yuan, L.; Yang, X.; Tang, Y.; Zhang, H. Hydrogen adsorption on palladium anchored defected graphene with B-doping: A theoretical study. Int. J. Hydrog. Energy 2015, 40, 2473–2483. [Google Scholar] [CrossRef]
- Granja-DelRío, A.; Alducin, M.; Juaristi, J.I.; López, M.J.; Alonso, J.A. Absence of spillover of hydrogen adsorbed on small palladium clusters anchored to graphene vacancies. Appl. Surf. Sci. 2021, 559, 149835. [Google Scholar] [CrossRef]
- López-Corral, I.; Piriz, S.; Faccio, R.; Juan, A.; Avena, M. A van der Waals DFT study of PtH2 systems absorbed on pristine and defective graphene. Appl. Surf. Sci. 2016, 382, 80–87. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, Y.; Tian, W.; Wang, Y.; Liu, T.; Chen, Y.; Yuan, H. A study on hydrogen storage performance of Ti decorated vacancies graphene structure on the first principle. RSC Adv. 2021, 11, 13912–13918. [Google Scholar] [CrossRef] [PubMed]
- Ao, Z.M.; Jiang, Q.; Zhang, R.Q.; Tan, T.T.; Li, S. Al doped graphene: A promising material for hydrogen storage at room temperature. J. Appl. Phys. 2009, 105, 074307. [Google Scholar] [CrossRef]
- Xiang, C.; Li, A.; Yang, S.; Lan, Z.; Xie, W.; Tang, Y.; Gu, H. Enhanced hydrogen storage performance of graphene nanoflakes doped with Cr atoms: A DFT study. RSC Adv. 2019, 9, 25690–25696. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chu, W.; Jing, F.; Zheng, J.; Sun, W.; Xue, Y. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study. Appl. Surf. Sci. 2017, 410, 166–176. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.; Chung, Y.C. Enhanced hydrogen storage properties under external electric fields of N-doped graphene with Li decoration. Phys. Chem. Chem. Phys. 2013, 15, 3243–3248. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Jo, S.; Chung, Y.C. Strain effects on hydrogen storage in Ti decorated pyridinic N-doped graphene. Phys. Chem. Chem. Phys. 2013, 15, 12757–12761. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.; Choi, H.; Yoo, D.S.; Chung, Y.C. Effect of nitrogen induced defects in Li dispersed graphene on hydrogen storage. Int. J. Hydrog. Energy 2013, 38, 4611–4617. [Google Scholar] [CrossRef]
- Rangel, E.; Sansores, E.; Vallejo, E.; Hernández-Hernández, A.; López-Pérez, P.A. Study of the interplay between N-graphene defects and small Pd clusters for enhanced hydrogen storage via a spill-over mechanism. Phys. Chem. Chem. Phys. 2016, 18, 33158–33170. [Google Scholar] [CrossRef]
- Luo, Z.; Fan, X.; Pan, R.; An, Y. A first-principles study of Sc-decorated graphene with pyridinic-N defects for hydrogen storage. Int. J. Hydrog. Energy 2017, 42, 3106–3113. [Google Scholar] [CrossRef]
- Singla, M.; Jaggi, N. Enhanced hydrogen sensing properties in copper decorated nitrogen doped defective graphene nanoribbons: DFT study. Phys. E Low Dimens. Syst. Nanostruct. 2021, 131, 114756. [Google Scholar] [CrossRef]
- Rajasekaran, G.; Narayanan, P.; Parashar, A. Effect of point and line defects on mechanical and thermal properties of graphene: A review. Crit. Rev. Solid State Mater. Sci. 2016, 41, 47–71. [Google Scholar] [CrossRef]
- Liu, L.; Qing, M.; Wang, Y.; Chen, S. Defects in graphene: Generation, healing, and their effects on the properties of graphene: A review. J. Mater. Sci. Technol. 2015, 31, 599–606. [Google Scholar] [CrossRef]
- Yadav, S.; Zhu, Z.; Singh, C.V. Defect engineering of graphene for effective hydrogen storage. Int. J. Hydrog. Energy 2014, 39, 4981–4995. [Google Scholar] [CrossRef]
- Gehringer, D.; Dengg, T.; Popov, M.N.; Holec, D. Interactions between a H2 molecule and carbon nanostructures: A DFT study. C 2020, 6, 16. [Google Scholar] [CrossRef]
- Sunnardianto, G.K.; Bokas, G.; Hussein, A.; Walters, C.; Moultos, O.A.; Dey, P. Efficient hydrogen storage in defective graphene and its mechanical stability: A combined density functional theory and molecular dynamics simulation study. Int. J. Hydrog. Energy 2021, 46, 5485–5494. [Google Scholar] [CrossRef]
- Lone, B. Mg Decorated Boron doped Graphene for Hydrogen Storage: A DFT Method. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 109–181. [Google Scholar] [CrossRef]
- Wu, H.Y.; Fan, X.; Kuo, J.L.; Deng, W.Q. DFT study of hydrogen storage by spillover on graphene with boron substitution. J. Phys. Chem. C 2011, 115, 9241–9249. [Google Scholar] [CrossRef]
- Nachimuthu, S.; Lai, P.J.; Jiang, J.C. Efficient hydrogen storage in boron doped graphene decorated by transition metals–A first-principles study. Carbon 2014, 73, 132–140. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Wang, R. Prediction of hydrogen storage on Y-decorated graphene: A density functional theory study. Appl. Surf. Sci. 2014, 296, 204–208. [Google Scholar] [CrossRef]
- Nachimuthu, S.; Lai, P.J.; Leggesse, E.G.; Jiang, J.C. A first principles study on boron-doped graphene decorated by Ni-Ti-Mg atoms for enhanced hydrogen storage performance. Sci. Rep. 2015, 5, 16797. [Google Scholar] [CrossRef]
- Li, Y.; Mi, Y.; Sun, G. First principles DFT study of hydrogen storage on graphene with La decoration. J. Mater. Sci. Chem. Eng. 2015, 3, 87. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, J.M.; Xu, K.W.; Ji, V. Hydrogen adsorption and storage on palladium-decorated graphene with boron dopants and vacancy defects: A first-principles study. Phys. E Low Dimens. Syst. Nanostruct. 2015, 66, 40–47. [Google Scholar] [CrossRef]
- Zhu, X. First principles calculations of hydrogen storage on calcium-decorated, boron-doped bilayer graphene. J. Mater. Sci. Chem. Eng. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Yuan, L.; Zhang, M.; Zhang, C. Scandium decoration of boron doped porous graphene for high-capacity hydrogen storage. Molecules 2019, 24, 2382. [Google Scholar] [CrossRef]
- Chu, S.; Hu, L.; Hu, X.; Yang, M.; Deng, J. Titanium-embedded graphene as high-capacity hydrogen-storage media. Int. J. Hydrog. Energy 2011, 36, 12324–12328. [Google Scholar] [CrossRef]
- Sen, D.; Thapa, R.; Chattopadhyay, K.K. Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage: A first-principles study. Int. J. Hydrog. Energy 2013, 38, 3041–3049. [Google Scholar] [CrossRef]
- Fair, K.M.; Cui, X.Y.; Li, L.; Shieh, C.C.; Zheng, R.K.; Liu, Z.W.; Stampfl, C. Hydrogen adsorption capacity of adatoms on double carbon vacancies of graphene: A trend study from first principles. Phys. Rev. B 2013, 87, 014102. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, J.M.; Xu, K.W.; Ji, V. Hydrogen adsorption and storage of Ca-decorated graphene with topological defects: A first-principles study. Phys. E Low Dimens. Syst. Nanostruct. 2014, 63, 45–51. [Google Scholar] [CrossRef]
- Lotfi, R.; Saboohi, Y. A comparative study on hydrogen interaction with defective graphene structures doped by transition metals. Phys. E Low Dimens. Syst. Nanostruct. 2014, 60, 104–111. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, C.; Jiang, Q. Electric field induced enhancement of hydrogen storage capacity for Li atom decorated graphene with Stone-Wales defects. Int. J. Hydrog. Energy 2016, 41, 10776–10785. [Google Scholar] [CrossRef]
- Mahendran, M.; Rekha, B.; Seenithurai, S.; Kodi Pandyan, R.; Vinodh Kumar, S. Hydrogen storage in Beryllium decorated graphene with double vacancy and porphyrin defect—A first principles study. Funct. Mater. Lett. 2017, 10, 1750023. [Google Scholar] [CrossRef]
- Long, J.; Li, J.; Nan, F.; Yin, S.; Li, J.; Cen, W. Tailoring the thermostability and hydrogen storage capacity of Li decorated carbon materials by heteroatom doping. Appl. Surf. Sci. 2018, 435, 1065–1071. [Google Scholar] [CrossRef]
- Akilan, R.; Vinnarasi, S.; Mohanapriya, S.; Shankar, R. Adsorption of H2 molecules on B/N-doped defected graphene sheets—A DFT study. Struct. Chem. 2020, 31, 2413–2434. [Google Scholar] [CrossRef]
- Ma, K.; Lv, E.; Zheng, D.; Cui, W.; Dong, S.; Yang, W.; Zhou, Y. A first-principles study on titanium-decorated adsorbent for hydrogen storage. Energies 2021, 14, 6845. [Google Scholar] [CrossRef]
- Singla, M.; Jaggi, N. Synergistic effect of Cu decoration and N doping in divacancy defected graphene nanoribbons on hydrogen gas sensing properties: DFT study. Mat. Chem. Phys. 2021, 273, 125093. [Google Scholar] [CrossRef]
Number of H2 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Sc-decorated N-doped graphene | 0.19 | 0.18 | 0.18 | 0.18 | 0.16 | 0.15 |
Sc-decorated 2N-doped graphene | 0.25 | 0.23 | 0.22 | 0.20 | 0.18 | 0.17 |
Sc-decorated 3N-doped graphene | 0.34 | 0.32 | 0.29 | 0.27 | 0.23 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Martínez, H.; García-Hilerio, B.; Montejo-Alvaro, F.; Gazga-Villalobos, A.; Rojas-Chávez, H.; Sánchez-Rodríguez, E.P. Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials. Molecules 2024, 29, 436. https://doi.org/10.3390/molecules29020436
Cruz-Martínez H, García-Hilerio B, Montejo-Alvaro F, Gazga-Villalobos A, Rojas-Chávez H, Sánchez-Rodríguez EP. Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials. Molecules. 2024; 29(2):436. https://doi.org/10.3390/molecules29020436
Chicago/Turabian StyleCruz-Martínez, Heriberto, Brenda García-Hilerio, Fernando Montejo-Alvaro, Amado Gazga-Villalobos, Hugo Rojas-Chávez, and Elvia P. Sánchez-Rodríguez. 2024. "Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials" Molecules 29, no. 2: 436. https://doi.org/10.3390/molecules29020436
APA StyleCruz-Martínez, H., García-Hilerio, B., Montejo-Alvaro, F., Gazga-Villalobos, A., Rojas-Chávez, H., & Sánchez-Rodríguez, E. P. (2024). Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials. Molecules, 29(2), 436. https://doi.org/10.3390/molecules29020436