
Citation: Cruz-Martínez, H.;

García-Hilerio, B.; Montejo-Alvaro, F.;

Gazga-Villalobos, A.; Rojas-Chávez, H.;

Sánchez-Rodríguez, E.P. Density

Functional Theory-Based Approaches

to Improving Hydrogen Storage in

Graphene-Based Materials. Molecules

2024, 29, 436. https://doi.org/

10.3390/molecules29020436

Academic Editors: Luca Tortora and

Gianlorenzo Bussetti

Received: 17 December 2023

Revised: 10 January 2024

Accepted: 11 January 2024

Published: 16 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Density Functional Theory-Based Approaches to Improving
Hydrogen Storage in Graphene-Based Materials
Heriberto Cruz-Martínez 1 , Brenda García-Hilerio 1, Fernando Montejo-Alvaro 1 , Amado Gazga-Villalobos 1,
Hugo Rojas-Chávez 2 and Elvia P. Sánchez-Rodríguez 3,*

1 Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena,
Santiago Suchilquitongo, Oaxaca 68230, Mexico; heri1234@hotmail.com (H.C.-M.);
brenda.hilerio@itvalletla.edu.mx (B.G.-H.); moaf1217@gmail.com (F.M.-A.);
gazgavillalobos@gmail.com (A.G.-V.)

2 Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Tláhuac,
Ciudad de México 13550, Mexico; hugo.rc@tlahuac2.tecnm.mx

3 School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Mexico
* Correspondence: elvia.sanchez@tec.mx

Abstract: Various technologies have been developed for the safe and efficient storage of hydrogen.
Hydrogen storage in its solid form is an attractive option to overcome challenges such as storage and
cost. Specifically, hydrogen storage in carbon-based structures is a good solution. To date, numerous
theoretical studies have explored hydrogen storage in different carbon structures. Consequently,
in this review, density functional theory (DFT) studies on hydrogen storage in graphene-based
structures are examined in detail. Different modifications of graphene structures to improve their
hydrogen storage properties are comprehensively reviewed. To date, various modified graphene
structures, such as decorated graphene, doped graphene, graphene with vacancies, graphene with
vacancies-doping, as well as decorated-doped graphene, have been explored to modify the reactivity
of pristine graphene. Most of these modified graphene structures are good candidates for hydrogen
storage. The DFT-based theoretical studies analyzed in this review should motivate experimental
groups to experimentally validate the theoretical predictions as many modified graphene systems are
shown to be good candidates for hydrogen storage.

Keywords: decorated graphene; defective graphene; doped graphene; decorated-doped graphene
DFT calculations

1. Introduction

Hydrogen is gaining importance as a clean energy carrier with higher energy density
than conventional fuels [1,2]. Although it is the most abundant element in the universe [3],
it is not a primary energy source available on our planet. Therefore, various technologies
have been proposed that allow for the efficient and safe production, storage, and utilization
of hydrogen [4–6]. Currently, hydrogen is obtained from a wide range of resources, such as
renewable resources and fossil fuels [7,8]. Unfortunately, the element has a low density un-
der ambient conditions. Consequently, many storage technologies have been developed for
storing it with a high density [9,10]. Diverse electrochemical systems with extremely high
efficiencies have been proposed to obtain clean electrical energy from hydrogen [11–13].

The existing hydrogen storage technologies are based on liquefaction or compression
or a combination of the two. However, the liquefaction and pressurization of hydrogen are
not economically viable alternatives for hydrogen storage [14,15]. Hence, hydrogen storage
in materials is considered a good storage option [14] because some of the explored materials
provide H2 storage capacities like or better than the requirements prescribed by the U.S.
Department of Energy (DOE) [16,17]. Therefore, in recent years, numerous materials have
been explored to store hydrogen [18–23]. Among them, carbon-based materials are of high
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importance because of their suitable properties, such as high specific surface area, low
density, and high thermal as well as chemical stability, making them promising materials
for hydrogen storage [24,25].

Currently, at the molecular level, owing to advances in density functional theory
(DFT)-based methods and computer equipment, novel materials with good performances
have been proposed for hydrogen technologies [26–30]. The DFT-based approach has
gained greater importance as it maintains a good balance between computational time and
accuracy in terms of agreement with the experimental results [31–33].

To date, numerous carbon structures (e.g., graphene, graphite, graphene, nanotube,
nanocone, fullerene, nanotorus) have been explored for hydrogen storage at the DFT level,
and promising results have been achieved [34–41]. These structures are shown in Figure 1.
Although carbon structures are good candidates for hydrogen storage, pristine carbon
structures have limited reactivity for hydrogen storage [42,43]. Therefore, to improve
the hydrogen storage properties of these structures, diverse approaches such as defect
engineering and surface functionalization have been implemented. These strategies allow
us to improve hydrogen storage in carbon structures such as graphene, carbon nanotubes,
and fullerenes [44,45]. Consequently, the modification of carbon structures through de-
fect engineering and surface functionalization for hydrogen storage is a relevant topic for
designing novel carbon-based hydrogen storage materials. Among the structures inves-
tigated for hydrogen storage at the DFT level, graphene is the most studied structure. In
this sense, there are some review articles that analyze the applicability of graphene for
hydrogen storage. For instance, in 2017, some theoretical studies on the hydrogen storage
properties of modified graphene were revised [45]. Recently, Singla and Jaggi reviewed
the theoretical studies on graphene and its derivatives for hydrogen detection and storage
applications [44]. They analyzed the effect of different dopants (i.e., alkali and alkaline
earth atoms, transition metal atoms) on the properties of graphene-based structures to
improve their hydrogen detection and storage capabilities [44]. These review articles show
the importance of modified graphene to be used for hydrogen storage [44,45]. However,
to date, there has been no detailed review article that explains in detail the modifications
made to graphene structures for improving their hydrogen storage properties. Therefore, in
this review, we analyze the DFT-based theoretical advances in the design of novel graphene-
based hydrogen storage materials, highlighting the most popular modifications made to
the graphene structure to improve the hydrogen storage properties.
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2. Hydrogen Storage on Pristine Graphene

One of the first theoretical investigations on the use of pristine graphene to store hy-
drogen was reported by Ganji et al. [35]. They investigated hydrogen storage on graphene
nanoflakes using the B3LYP-D3 method and demonstrated that hydrogen was adsorbed
on a coronene surface with a physisorption energy of approximately −0.05 eV. In another
study, H2 interaction on pristine graphene was investigated by using different DFT-based
methods that incorporated dispersion corrections. The computed hydrogen adsorption
energies on pristine graphene were less than −0.08 eV [46]. The investigated adsorp-
tion energies computed were less than the optimal hydrogen adsorption energy (−0.2 to
−0.6 eV/H2) [47–49]. Therefore, to improve the hydrogen storage properties of graphene,
graphene modification using methods such as defect engineering and surface functional-
ization is necessary. These studies also demonstrated that dispersion corrections must be
included to explain the interactions of hydrogen on graphene accurately [35,46].

3. Hydrogen Storage on Decorated Graphene
3.1. Hydrogen Storage on Single-Atom Decorated Graphene

The use of decorated graphene is one of the strategies used to improve the hydro-
gen storage properties of pristine graphene. This approach involves the deposition of
single-atoms (Figure 2a) or clusters (Figure 2b) on pristine graphene. Ample reports of DFT
studies on hydrogen storage on decorated graphene are available in the literature [50–93].
Single-atom decoration is the commonly used strategy to decorate graphene [50–59,61–93].
Figure 3 shows different single-atoms that have been used to decorate graphene. The com-
monly used elements for decoration are Li, Ca, Ti, and Pd. Interestingly, several studies have
considered dispersion corrections that substantially improve the description of the interac-
tion between H2 and decorated graphene [50,52,53,56,60,62,68,72–75,81,83,85,86,90,91,93].
When the hydrogen molecule is adsorbed on graphene decorated with single-atoms, hydro-
gen is adsorbed on the decorating atoms as they function as active centers. Many studies
showed that the adsorption energies of hydrogen on decorated graphene were higher than
those of hydrogen on pristine graphene, highlighting that most single-atom-decorated
graphene systems comply with the DOE requirement for hydrogen storage through ph-
ysisorption. Other important parameters to consider when exploring new materials for
hydrogen storage are gravimetric capacity and volumetric capacity. The 2025 targets set
by the DOE are a gravimetric capacity of 5.5 wt.% and a volumetric capacity of 40 g L−1

for hydrogen storage systems onboard light-duty vehicles [94]. Interestingly, several of
the investigated materials—decorated graphene materials such as Al [50], Ca [53,55–57],
Li [64–67,72,88], and Ti [65,83]—possess gravimetric capacities higher than the targets set
by the DOE. Thus, these studies show that single-atom-decorated graphene systems are a
good strategy to store hydrogen via physisorption.
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3.2. Hydrogen Storage in Cluster-Decorated Graphene

Another approach to decorate graphene is by using clusters (Figure 2b). Theoret-
ical studies on cluster-decorated graphene have been reported [60,74,77]. For instance,
a theoretical study examined the H2 interaction on Pdn (n = 1–6) clusters supported on
graphene using the PW91 functional [77] and reported that the H2 adsorption energy is
close to the optimal values for hydrogen storage. In another study, hydrogen storage on
Co4 clusters deposited on graphene was investigated using the Perdew–Burke–Ernzerhof
(PBE) functional [60]; the H2 adsorption energy was close to the values required by the
DOE. Recently, H2 adsorption on Lin (n = 1–6) clusters supported on graphene was inves-
tigated using the PBE functional and dispersion corrections [74]. For four H2 molecules
adsorbed on Li6 clusters supported on graphene, the computed adsorption energy was
−0.31 eV/H2. Similar to single-atom-decorated graphene, clusters act as active centers in
cluster-decorated graphene for hydrogen storage [60,74,77]. Thus, these studies show that
the use of graphene systems decorated with clusters or atoms is a good strategy to store
hydrogen via physisorption.

4. Hydrogen Storage on Doped Graphene
4.1. Hydrogen Storage on Single-Atom-Doped Graphene

Another route used to modify the properties of pristine graphene is through substi-
tutional point defects such as doping. This approach substantially modifies the reactivity
of pristine graphene [95–100]. At the DFT level, different types of doping have been in-
vestigated to modify the reactivity of graphene [61,62,79,101–125]. The commonly used
route is to replace a carbon atom in the graphene structure with a dopant atom. To date,
many studies have explored the development of single-atom–doped graphene for hy-
drogen storage [61,62,79,101,102,104–112,114–116,118,121,122,124,125]. Figure 4 shows the
different single atoms used to dope graphene. The commonly used dopant atoms are
N, Ti, Cu, Pd, and Pt. The PBE functional is a popular tool used to study single-atom-
doped graphene for hydrogen storage. Similar to research on decorated graphene, several
studies on single-atom-doped graphene for hydrogen storage adopted dispersion cor-
rections [61,101,104,112,116,118,121,122,124,125]. Interestingly, many studies showed that
the hydrogen adsorption energies on the single-atom-doped graphene fulfill the DOE
requirement for hydrogen storage via physisorption. Meanwhile, the gravimetric capaci-
ties of several single-atom-doped graphene materials were close to the DOE requirement.
These investigations show that the use of single-atom-doped graphene systems is a good
alternative for hydrogen storage.
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4.2. Hydrogen Storage for Different Doping Concentrations

Some studies explored the influence of the concentration of doping elements on the
hydrogen-storage properties in doped graphene [103,104,109,112,122]. For instance, DFT
calculations and molecular dynamics were used to study H2 adsorption on Li-doped
graphene (C17Li and C7Li). At atmospheric pressure and 300 K, the C7Li composite could
store up to 6.2 wt.% hydrogen, with an adsorption energy of −0.19 eV/H2 [109]. Interest-
ingly, this material satisfies the DOE requirements. Therefore, it can be a promising material
for hydrogen storage. In another study, hydrogen storage on Ti- and Ti2-doped graphene
was investigated using the PBE functional, as shown in Figure 5 [122]. Ti2-doped graphene
was found to be a better material for hydrogen storage than Ti-doped graphene (Figure 5d).
Thus, these studies show that the concentration of doping elements plays an important role
in determining the hydrogen storage capacity of doped graphene [103,104,109,112,122].
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Figure 5. H2 adsorption on graphene structures. (a) H2 adsorption on Ti-doped graphene (SVG-Ti),
(b) H2 adsorption on double-vacancy graphene (DVG-4), (c) H2 adsorption on Ti2-doped graphene
(DVG-4-Ti), (d) hydrogen molecule adsorption energies on graphene structures. The values reported
between the horizontal yellow lines indicate the optimal adsorption energies for hydrogen storage by
physisorption. Reproduced from reference [122].
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4.3. Hydrogen Storage on Cluster-Doped Graphene

Hydrogen storage on cluster-doped graphene has been explored [113,115–117,120].
For example, Ti4- and Ni4-doped graphene structures were studied for hydrogen storage
using PBE functional [113]. It was observed that the Ti4-doped graphene has a better
gravimetric capacity (3.4 wt.%) than Ni4-doped graphene (0.30 wt.%). In another study,
H2 storage on Pd6-doped graphene was examined by using the PW91 functional. It was
demonstrated that Pd6-doped graphene is a good material for hydrogen storage [117]. In
another study, hydrogen storage was computed on Pdn-doped graphene (n = 1–4) by using
the PBE functional [115]. The variation of the H2 adsorption energies on the Pdn (n = 1–4)
clusters-doped graphene supported as a function of cluster size is illustrated in Figure 6.
The single H2 adsorption energy increases as the Pd cluster size increases. Also, Pd4-doped
graphene can adsorb four molecules of H2 while satisfying the requirements of the DOE,
making it a good candidate for hydrogen storage.
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chemical and physical H2 adsorption are marked. Yellow, purple, and cyan circles represent carbon,
palladium, and hydrogen atoms, respectively. The optimum energy range for reversible H2 absorp-
tion/desorption is marked in a green rectangle. Reproduced with permission from reference [115].

4.4. Hydrogen Storage on Co-Doped Graphene

Hydrogen storage on co-doped graphene has been investigated by various
studies [119,125–131]. In this case, two types of atoms are embedded in the graphene
structure. Figure 7 shows the different configurations that have been explored. Numerous
co-doped graphene systems, such as B–Pd [119], B–Li [125], 3N–Li [126,128], 3N–Ti [127],
3N–Pd, 3N–Pd2, 3N–Pd3, 3N–Pd4 [129], N–Sc, 2N–Sc, 3N–Sc [130], N–Cu, 2N–Cu, and
3N–Cu [131], have been explored for hydrogen storage. Interestingly, most of these systems
meet the DOE requirement for hydrogen storage via physisorption [119,125–131]. For
instance, hydrogen adsorption on B-Li co-doped graphene structure was studied using
the PBE functional [125]. It was computed that B-Li co-doped graphene can adsorb up to
three H2 molecules with an adsorption energy of −0.19 eV/H2. Also, the hydrogen storage
properties for Ti-3N co-doped graphene structure were computed using the PBE functional
considering the van der Waals interactions [127]. The study demonstrated the ability of
Ti-3N co-doped graphene to adsorb up to three H2 molecules with the adsorption energy
required by the DOE [127]. In another investigation, hydrogen storage properties for Sc-N,
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Sc-2N, and Sc-3N co-doped graphene were studied using the PBE functional considering
the van der Waals interactions [130]. The average adsorption energies of H2 molecules on
Sc-N, Sc-2N, and Sc-3N co-doped graphene structures are reported in Table 1. The results
show that the H2 adsorption energy on co-doped graphene increases gradually as the N
concentration increases. In terms of gravimetric capacity, N–Sc, 2N–Sc, and 3N–Sc co-doped
graphene can adsorb up to six H2 molecules with adsorption energies of −0.15, −0.17, and
−0.19 eV, respectively; see Table 1 [130]. Also, DFT-based theoretical computations were
conducted for studying the H2 adsorption on Cu-N, Cu-2N, and Cu-3N co-doped graphene
structures employing the B3LYP functional [31]. It is observed that the Cu-3N co-doped
graphene structure is the best candidate for hydrogen storage. These results show that
co-doped graphene structures are promising candidates for hydrogen storage.
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Table 1. The calculated average adsorption energies (eV/H2) of H2 molecules on Sc-decorated N-,
2N-, 3N-doped graphene structures with 1–6 H2 molecules adsorbed. Reproduced with permission
from reference [130].

Number of H2 1 2 3 4 5 6

Sc-decorated N-doped graphene 0.19 0.18 0.18 0.18 0.16 0.15
Sc-decorated 2N-doped graphene 0.25 0.23 0.22 0.20 0.18 0.17
Sc-decorated 3N-doped graphene 0.34 0.32 0.29 0.27 0.23 0.19

5. Hydrogen Storage on Graphene with Vacancies

Graphene with vacancies exhibits better reactivity than pristine graphene [132,133].
Theoretical studies have shown that different defects can be introduced in the graphene
structure to improve its hydrogen storage properties [122,134–136]. For instance, hydrogen
storage on different types of vacancies such as Stone–Wales (SW), single vacancy (SV), and
three types of double vacancy was theoretically studied; see Figure 8 [134]. Graphene with
SV and mixed SW–SV had gravimetric densities of 5.81 and 7.02 wt.%, respectively, for
hydrogen storage [134]. A recent study demonstrated hydrogen storage in double-vacancy
graphene (DVG) by using the PBE functional [122]. This structure could store up to nine
H2 molecules (Figure 5d). These results show that graphene structures with vacancies are
good candidates for hydrogen storage.
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with permission from reference [134].

6. Hydrogen Storage on Doped-Decorated Graphene

So far, different doped-decorated graphene systems have been studied for hydrogen
storage with promising results [54,55,60,91,93,107,126,128,137–145]. In this approach, the
doping atoms are embedded in the graphene structure, while the decorating atoms are
deposited on the doped graphene sheet. For instance, the use of Mg-decorated B-doped
graphene for hydrogen storage was examined by using local-density approximation (LDA)
methods [137]. The adsorption of six H2 molecules on a Mg-decorated B-doped graphene
corresponds to a computed adsorption energy of −0.55 eV/H2, making this material a
good candidate for hydrogen storage. In another study, hydrogen adsorption on Ni-,
Pd-, and Co-decorated B-doped (BC5) graphene was investigated using the PW91 func-
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tional [139]. When 11 H2 molecules were adsorbed on Ni-decorated B-doped graphene,
the calculated adsorption energy was −0.34 eV/H2. Recently, hydrogen adsorption on
graphene doped with two B atoms and decorated with two Y atoms was investigated
employing the Perdew–Wang (PW) functional; see Figure 9 [140]. This system could store
12 H2 molecules with an adsorption energy of −0.568 eV/H2. In addition, metal-decorated
B-doped (BC5) graphene was studied for hydrogen storage using the PW91 functional [141].
Up to nine H2 molecules could be adsorbed on Ni- and Ti-decorated B-doped graphene
with an adsorption energy of −0.43 and −0.41 eV/H2, respectively. Another study exam-
ined the use of La-decorated B-doped graphene for hydrogen storage by using the LDA
method [142] and showed that up to six H2 molecules were adsorbed with an adsorption
energy of −0.53 eV/H2. These studies show that decorated-doped graphene systems are
good candidates for hydrogen storage.
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Figure 9. Optimized structures of twelve hydrogen molecules’ adsorption on Y coated double-sided
graphene with boron doping. Cyan, pink, and dark gray spheres denote Y, boron, and carbon atoms.
Light gray and yellow spheres are hydrogen molecules attaching on the top and opposite sides of
graphene, respectively. Reproduced with permission from reference [140].

7. Hydrogen Storage on Graphene with Vacancy-Doping

Embedding vacancies-dopants in the graphene structure is another strategy to im-
prove the reactivity of graphene for hydrogen storage. Various doped graphene structures
with vacancies have been examined [68,69,93,119,125,143,146–156]. For instance, graphene
with SW defects and doped with Li was investigated using a PBE functional with dispersion
corrections [68]. This structure can adsorb four H2 molecules with an optimal adsorption
energy for hydrogen storage. In another study, hydrogen adsorption on graphene with
double vacancies and doped with Li was investigated using a PBE functional with disper-
sion correction [125]. This system adsorbed three H2 molecules with an adsorption energy
of −0.20 eV/H2. Hydrogen storage using DVG and doped with Ti was studied using the
PBE approximation [146]. An adsorption energy of −0.21 eV/H2 was computed for four
H2 molecules on each side of this structure. Recently, DVG (555–777) doped with a Pd4
cluster was studied using the PBE functional [147]. An adsorption energy of −0.64 eV/H2
was calculated when five H2 molecules were adsorbed on this system. In another study,
hydrogen storage in DVG doped with 12 metals (Ag, Au, Ca, Li, Mg, Pd, Pt, Sc, Sr, Ti, Y,
and Zr) was studied by using the generalized gradient approximation; see Figure 10 [148].
Computations showed that Ca and Sr have the largest capacity and can store up to six
H2 molecules each. More recently, hydrogen storage in graphene structures with double
vacancies (585 and 555–777) doped with Ca was studied using the PBE functional with
dispersion corrections [149]. These structures can store up to six H2 molecules each. Also,
the capacity of DVG doped with Li for hydrogen storage was computed by using the PW
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functional [69]. The storage capacity of this structure was 7.26 wt.% when Li was doped on
both sides of the defective graphene. These investigations show that graphene structures
with vacancy-doping are good candidates for hydrogen storage.
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adsorbed on both sides of the DCV at their maximum H2 capacities. Reproduced with permission
from reference [148].

8. Hydrogen Storage on Graphene with Co-Doping and Vacancies

Adding co-doping and vacancies in the graphene structure is another strategy used
to improve the reactivity of graphene for hydrogen storage. To date, several modified
graphene structures with co-doping and vacancies have been studied for hydrogen stor-
age [105,119,125,126,128,129,152,153,156]. For instance, Li-B co-doped DVG was studied
for hydrogen storage using the PBE functional [125]. This structure can adsorb three H2
molecules with an adsorption energy like that required by the DOE. In another study,
Li-doped pyrrolic N-doped graphene was studied for hydrogen storage employing the
PBE functional and considering the van der Waals corrections [126]. This structure can
adsorb three H2 molecules with an adsorption energy of −0.18 eV/H2. Also, different
porphyrin-doped graphene structures were studied for hydrogen storage using the PBE
functional [105]. It was computed that Sc-, Ti-, and V-porphyrin-doped graphene can
be good candidates for hydrogen storage, since these structures meet the requirements
established by the DOE. Recently, Be-porphyrin-doped graphene structure was computed
for hydrogen storage employing the PW functional [152]. According to the adsorption
energy established by the DOE, a maximum of four H2 molecules can be adsorbed on Be-
porphyrin-doped graphene. These studies show that graphene structures with co-doping
and vacancies are good candidates for hydrogen storage via physisorption.
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9. Conclusions and Future Directions

This review analyzed the advances in the design of novel graphene-based hydrogen
storage materials, highlighting the modifications made to the graphene structure based
on DFT studies to improve its hydrogen storage properties. To date, various modified
graphene structures, such as decorated graphene, doped graphene, graphene with vacan-
cies, graphene with vacancies-doping, as well as decorated-doped graphene, have been
explored to modify the reactivity of pristine graphene. Most of these modified graphene
structures are good candidates for hydrogen storage. From this detailed review, the follow-
ing conclusions and future directions can be suggested:

(a) Graphene structures decorated with single-atoms or atom clusters for hydrogen stor-
age have been examined. The commonly used strategy is to decorate graphene with
single atoms. Therefore, more studies on cluster-decorated graphene for hydrogen
storage are required. Further, since bimetallic and trimetallic systems are known to
have properties very different from those of monometallic systems, it will be inter-
esting to investigate graphene decorated with bimetallic or trimetallic clusters for
hydrogen storage. Most graphene systems decorated with clusters or atoms comply
with the DOE requirement for hydrogen storage via physisorption. Furthermore,
several of the investigated materials, in particular, graphene decorated with Al, Ca,
Li, and Ti, had gravimetric capacities higher than the target set by the DOE.

(b) The use of doped graphene for hydrogen storage has been widely investigated. Sev-
eral strategies, such as single-atom doping, cluster doping, and co-doping, were
implemented. These types of doping substantially modify the reactivity of graphene,
providing promising materials for hydrogen storage. However, theoretical studies on
cluster-doped and co-doped graphene for hydrogen storage are still scarce. Therefore,
it is necessary to conduct more detailed research on cluster-doped and co-doped
graphene for hydrogen storage.

(c) The use of graphene with vacancies, doped-decorated graphene, and graphene with
vacancies-doping are other strategies to modify the reactivity of pristine graphene for
hydrogen storage. The existing studies have shown promising results for hydrogen
storage. However, comprehensive studies on these systems are necessary.

(d) The graphene structures with co-doping and vacancies have been examined for
hydrogen storage. The available studies show that graphene structures with co-
doping and vacancies are good candidates for hydrogen storage. However, more
studies are required on this type of modified graphene.

(e) Future theoretical studies on modified graphene for hydrogen storage must adopt dis-
persion corrections. Many existing studies did not include these corrections, limiting
the quality of the results. Future studies should also report the gravimetric capacity
of the systems as it is an important parameter to determine whether a material is
a good candidate for hydrogen storage. Many existing studies only reported the
adsorption energy of the H2 molecule, which is not enough to identify new materials
for hydrogen storage.

(f) These theoretical results discussed herein should motivate experimental groups to
experimentally validate the theoretical predictions, as many modified graphene sys-
tems are shown to be good candidates for hydrogen storage. The knowledge of these
systems can be systematized, and the systems can be experimentally evaluated for
hydrogen storage.
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