
Citation: Wang, W.; Yu, L. Synthesis of

Indenones via Persulfate Promoted

Radical Alkylation/Cyclization of Biaryl

Ynones with 1,4-Dihydropyridines.

Molecules 2024, 29, 458. https://

doi.org/10.3390/molecules29020458

Academic Editor: Roman Dembinski

Received: 24 December 2023

Revised: 13 January 2024

Accepted: 15 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Synthesis of Indenones via Persulfate Promoted Radical
Alkylation/Cyclization of Biaryl Ynones with 1,4-Dihydropyridines
Wanwan Wang * and Lei Yu

Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China;
yulei2637@163.com
* Correspondence: wanwanw@tzu.edu.cn

Abstract: The oxidative radical cascade cyclization of alkynes has emerged as a versatile strategy for
the efficient construction of diverse structural units and complex molecules in organic chemistry. This
work reports an alkyl radical initiated 5-exo-trig cyclization of biaryl ynones with 1,4-dihydropyridines
to selectively synthesize indenones.
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1. Introduction

Indenones are attracting increasing attention in organic synthesis, as these derivatives
are widely used in biological molecules, pharmaceuticals and functional materials [1–3]. As
a result, considerable effort has been dedicated to developing efficient and novel methods
for accessing functionalized indenones [4,5]. The radical cascade reaction provides an
efficient method for rapidly increasing the complexity of molecules to obtain indenones [4].

Alkynes are a diverse functional group widely present in organics. The radical in-
duced cascade reactions of alkynes are a useful and efficient method for rapidly accessing
complex molecules, and they have therefore attracted considerable attention [6–10]. The
direct difunctionalization of alkyne feedstocks has developed rapidly due to its atom and
step economy. Therefore, numerous methods have been established to synthesize func-
tionalized molecules in recent years. In addition, radical cascade reactions involving the
1,2-difunctionalization of alkyne have become a versatile tool in contemporary organic
chemistry [11–14]. To date, the cyclization of alkynes toward the synthesis of cyclic com-
pounds has been effectively investigated [15–26]. Recently, the radical cascade cyclization
of biaryl ynones has been demonstrated to be a useful approach to construct six-membered
spiro[5,5]trienones [27–42] with the development of different types of radical precursors
(Scheme 1a–c). For example, Chen and Zhou reported an iron-catalyzed cascade silyl radi-
cal addition/6-exo-trig cyclization/dearomatization of biaryl ynones with silane, affording
silylated spiro[5.5]trienones in good yields [35]. In addition, several groups have demon-
strated some elegant examples based on C-, N-, P-, S-, Si-, Se-centered radicals-induced
cascade cyclization of biaryl ynones in the presence of transition-metal catalysts, oxidants
or photocatalysts [27–42]. For example, Duan and Yang reported the preparation of alkyl-
functional spiro[5.5]trienone through alkylative dearomatization and the spirocyclization of
biaryl ynones, respectively [29,33]. Later, Yang’s group further explored this reaction using
4-alkyl-1,4-dihydropyridines (DHPs) as radical precursors under an irradiation of visible
light [32]. Although several groups have applied this radical cascade strategy to prepare
alkyl-functional spiro[5.5]trienone, 5-exo-trig cascade reactions of biaryl ynones and alkyl
radical precursors toward indenones are surprisingly rarely explored due to the chemo-
and regio-selective issues of the highly reactive vinyl radical species [43]. Inspired by these
works, we believe that the control of the selective cyclization sites of the electron-poor
alkylated vinyl radical intermediates is interesting and still in great demand, especially
those triggered by the same alkyl radical precursors. Herein, we would like to report our
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efforts to put this concept into practice, using 4-alkyl-DHPs as alkyl radical precursors in
the presence of Na2S2O8 (Scheme 1d).
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Scheme 1. Previous radical cascade reactions of biaryl ynone (a–c) and our work (d). PMP: 
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2. Results and Discussion

The study commenced with the reaction of biaryl ynone (1a) and 4-cyclohexyl-DHP
(2a) under visible light irradiation conditions. In the presence of Na2S2O8 (2 equiv), the
reaction was performed in acetone at 60 ◦C for 12 h (Table 1, entry 1). The five-membered
indenone was obtained in a yield of 39%, which was a pleasing result. To improve the yield,
we screened different solvents and found that using MeCN or AcOEt instead of acetone
increased the yield (Table 1, entries 2–3). Notably, the reaction efficiency for the generation
of indenone 3a was significantly higher when using MeCN-H2O mixed solvents compared
to single solvents (Table 1, entries 4–7). This may be due to the appropriate solubility
providing necessary medium substances, which assisted the diffusion and interaction of
reactants in the mixed solvents. The effect of different oxidants on this cascade reaction
was also explored. When the oxidant Na2S2O8 was changed to K2S2O8, (NH4)2S2O8,
TBHP or DTBP, the reaction was either inhibited or resulted in lower yields of 3a (Table 1,
entries 8–11). Meanwhile, the yield did not improve significantly when the reaction
temperature was increased or decreased (Table 1, entries 12 and 13). Prolonging the
reaction time did not achieve better results (Table 1, entry 14). No product was detected
when the reaction was performed without the oxidant Na2S2O8 (Table 1, entry 15).

With the optimized reaction conditions, we set out to investigate the generality of this
nucleophilic C-centered radical-induced cyclization of biaryl ynones with 4-cyclohexyl-
DHP for the construction of 5-membered indenones (Scheme 2). To begin with, we exam-
ined the scope and limitation of biaryl ynones in this reaction. A variety of monosubstituted
group on Ar ring (1b–1i) reacted well with 4-cyclohexyl-DHP to give the corresponding
indenones 3b–3i in yields ranging from 60% to 85%. For example, halogen substituents
(−F, −Cl and −Br) on the Ar ring were well tolerated, providing opportunities for further
synthetic transformations of products. Moreover, disubstituted phenyl ring 1j–1l also
successfully participated in the reaction, affording the target products (3j–3l) in 63–71%
yields. Next, the reaction scope with different substituents on the Ar1 ring was investigated.
The Ar1 ring without any substitutions was also compatible in the annulation system.
Importantly, no matter whether the Ar1 ring in biaryl ynones was modified with either one
or two groups, all of them could undergo the cascade alkylation reaction, generating the
desired products (3m–3s) in yields ranging from 61% to 76%.
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Table 1. Optimization of the reaction conditions a.
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9 (NH4)2S2O8 MeCN/H2O (3:1) 48
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11 DTBP MeCN/H2O (3:1) 27

12 c Na2S2O8 MeCN/H2O (3:1) 77
13 d Na2S2O8 MeCN/H2O (3:1) 51
14 e Na2S2O8 MeCN/H2O (3:1) 63
15 - MeCN/H2O (3:1) n.d.

a Reaction conditions: (1a, 0.20 mmol), Cy-DHP (2a, 0.40 mmol), Na2S2O8 (2.0 equiv), CH3CN/H2O (3:1, 2 mL),
60 ◦C, 12 h. b Isolated yields. c At 80 ◦C. d At 40 ◦C. e For 24 h. n.d. = not detected. TBHP: tert-butyl hydroperoxide;
DTBP: di-tert-butyl peroxide.
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Scheme 2. Substrate scope. All reactions were performed with 1 (0.20 mmol), R-DHP (2, 0.4 mmol),
Na2S2O8 (2.0 equiv), CH3CN/H2O (3:1, 2 mL), 60 ◦C, 12 h. Yields are given for isolated products.
a R’ = OMe; b R’ = H.
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Next, we moved to assess the generality of the cyclization with different groups on the
Ar2 ring in biaryl ynones as well as various nucleophilic C-centered radical precursors. As
shown in Scheme 3, the reaction tolerated substitution around the Ar2 ring well, including
methyl, halogens, and methoxy. For example, substrate 1v reacted with 4-cyclohexyl-DHP
well to give product 3v in 62% yield. Furthermore, we also tested another 4-alkyl-DHP
in this nucleophilic C-centered radical-induced cyclization. There was good tolerance of
secondary alkyl-substituted DHP. The reaction proceeded smoothly under the standard
conditions when using the bulky DHP as the substrate, yielding the desired product 3z in a
lower yield. Finally, 3a was definitely confirmed by X-ray crystallography (CCDC 2306682).
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Scheme 3. Substrate scope. All reactions were performed with 1 (0.20 mmol), R-DHP (2, 0.4 mmol),
Na2S2O8 (2.0 equiv), CH3CN/H2O (3:1, 2 mL), 60 ◦C, 12 h. Yields are given for isolated products.

Preliminary experiments were conducted to gain insight into this radical cascade
reaction mechanism. The alkylation reaction was almost completely inhibited when the
radical-trapping reagent TEMPO was added (Scheme 4a and Supporting Information
S2). During the process, the alkyl radical intermediate was captured by TEMPO, and its
corresponding adduct is detected by HR-MS analysis. Based on recent studies on S2O8

2−

salt-promoted cascade alkylation [44–46] and the above experimental results, we proposed
a possible mechanism for this alkyl-centered radical-initiated cyclization transformation
of alkynes (Scheme 4b). Initially, S2O8

2− salt oxidized 4-cyclohexyl-DHP to generate
cyclohexyl radical A and cation E, which reacted with sulfate anions to give a pyridine
derivative. For the 5-exo-trig cyclization, the cyclohexyl radical A was trapped by C–C
triple bonds to afford vinyl radical B, which subsequently underwent 5-exo-trig cyclization
to obtain intermediate C. The above-mentioned intermediate C was oxidized by S2O8

2− to
provide carbocation D, which finally lost H+ to produce indenones 3a.

In summary, we report the synthesis of a series of five-membered indenones via the
alkyl-centered radical-induced cyclization of biaryl ynones, using cheap Na2S2O8 as an oxi-
dant. The unfavorable enthalpic and entropic factors and variable chemo-selectivity are the
challenges of this cascade reaction. Key features of this approach include straightforward
and simple operational procedures, good functional group tolerance, excellent chem- and
regioselectivity, and wide substrate scope.
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3. Materials and Methods
3.1. General Information

All reactions were carried out under air atmosphere. 1H NMR and 13C NMR spectra
were measured on a Bruker Avance NMR spectrometer (600 MHz/151 MHz/565 NMR)
in CDCl3 as solvent and recorded in ppm relative to internal tetramethylsilane standard.
1H NMR data are reported as follows: δ, chemical shift; coupling constants (J are given
in Hertz, Hz) and integration. Abbreviations to denote the multiplicity of a particular
signal were s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets) and
m (multiplet).

3.2. Preparation of the Starting Materials

Biaryl ynone (1a) derivatives were prepared according to the reported method [29–32].
The solvents and oxidants including acetone, MeCN, K2S2O8, DTBP, etc. were purchased
from commercial companies such as Energy Chemical (Shanghai), Shanghai Xianding
Biotechnology Co., Ltd., etc. (Shanghai, China); petroleum ether and ethyl acetate were
purchased from Shanghai Titan Technology Co., Ltd. (Shanghai, China). Products were
purified by flash chromatography on 200–300 mesh silica gel.

3.3. General Procedure for the Synthesis of 3a

A 15 mL pressure tube was charged with biaryl ynone (1a, 0.2 mmol), 4-alkyl Hantzsch
ester (2a, 0.4 mmol), Na2S2O8 (2 equiv, 0.4 mmol) in CH3CN/H2O (2 mL, v/v = 3:1), and a
magnetic stir bar. The reaction mixture was stirred at 60 ◦C for 12 h (TLC tracking detection).
After the reaction was finished, the mixture was diluted with brine and extracted with
EtOAc. The combined organic layers were dried over anhydrous Na2SO4 and concentrated
to yield the crude product, which was further purified by flash chromatography (silica gel,
petroleum ether/ethyl acetate) to give the desired product 3a.
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3.4. Characterization Data of Products

The chemical structural formulae and 1H NMR and 13C NMR spectra of the products
3a–3z can be seen in the Supporting Information S3 and S17.

2-Cyclohexyl-7-(4-methoxyphenyl)-3-phenyl-1H-inden-1-one (3a). The product was
purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1)
to afford 3a as a yellow solid (61 mg, 78% yield), m.p.: 90.5–91.8 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.54–7.47 (m, 4H), 7.47–7.43 (m, 1H), 7.40–7.35 (m, 2H), 7.25 (t, J = 3.8 Hz, 1H),
7.09 (dd, J = 7.9, 0.6 Hz, 1H), 7.01–6.95 (m, 2H), 6.81 (dd, J = 7.2, 0.6 Hz, 1H), 3.86 (s, 3H),
2.44 (tt, J = 12.1, 3.4 Hz, 1H), 1.81 (qd, J = 12.4, 2.9 Hz, 2H), 1.69 (d, J = 12.5 Hz, 2H), 1.59 (d,
J = 10.1 Hz, 1H), 1.54 (s, 2H), 1.22–1.09 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 197.4, 159.6,
153.5, 147.0, 139.9, 139.1, 133.2, 132.6, 131.0, 130.4, 129.7, 128.7, 128.7, 128.0, 125.7, 119.2,
113.3, 55.2, 36.0, 31.0, 26.5, 25.7. HRMS (ESI) calcd for C28H26NaO2 [M + Na]+ 417.1830,
found 417.1818.

2-Cyclohexyl-7-(4-methoxyphenyl)-3-(p-tolyl)-1H-inden-1-one (3b). The product pu-
rified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to
afford 3b as a yellow solid (60 mg, 74% yield), m.p.: 112.6–114.1 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.49 (d, J = 8.7 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.24
(d, J = 7.4 Hz, 1H), 7.08 (d, J = 7.9 Hz, 1H), 6.98 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 7.2 Hz, 1H),
3.88–3.85 (m, 3H), 2.45 (s, 3H), 1.83 (dd, 2H), 1.69 (d, J = 12.7 Hz, 2H), 1.59 (d, J = 10.6 Hz,
1H), 1.53 (s, 1H), 1.26 (d, J = 9.2 Hz, 2H), 1.16 (dd, J = 22.1, 11.0 Hz, 3H). 13C NMR (151 MHz,
CDCl3) δ 197.4, 159.6, 153.7, 147.0, 139.8, 138.9, 138.7, 132.5, 131.0, 130.4, 130.2, 129.7, 129.3,
128.0, 125.8, 119.2, 113.3, 55.2, 36.0, 31.0, 26.6, 25.7, 21.4. HRMS (ESI) calcd for C29H28NaO2
[M + Na]+ 431.1987, found 431.1974.

2-Cyclohexyl-3-(4-ethylphenyl)-7-(4-methoxyphenyl)-1H-inden-1-one (3c). The prod-
uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1)
to afford 3c as a yellow solid (60 mg, 71% yield), m.p.: 97–98 ◦C. 1H NMR (600 MHz, CDCl3)
δ 7.41 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.18 (d, 1H),
7.01 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 7.2 Hz, 1H), 3.79 (s, 3H), 2.68
(q, J = 7.6 Hz, 2H), 2.39 (ddd, J = 12.1, 8.9, 3.4 Hz, 1H), 1.77 (dd, J = 23.5, 11.0 Hz, 2H), 1.63
(d, J = 12.4 Hz, 2H), 1.52 (d, J = 10.9 Hz, 1H), 1.46 (s, 1H), 1.25 (t, J = 7.6 Hz, 3H), 1.16–1.06
(m, 4H). 13C NMR (151 MHz, CDCl3) δ 197.5, 159.6, 153.7, 147.0, 145.0, 139.8, 138.9, 132.5,
131.0, 130.4, 129.7, 128.1, 128.0, 125.9, 121.8, 119.3, 113.3, 55.2, 36.0, 30.9, 28.8, 26.6, 25.7, 15.3.
HRMS (ESI) calcd for C30H30NaO2 [M + Na]+ 445.2143, found 445.2135.

3-(4-(tert-Butyl)phenyl)-2-cyclohexyl-7-(4-methoxyphenyl)-1H-inden-1-one (3d).The
product purified by flash column chromatography on silica gel (petroleum
ether/EtOAc = 20:1) to afford 3d as a yellow solid (62 mg, 69% yield), m.p.: 107.1–108.3 ◦C.
1H NMR (600 MHz, CDCl3) δ 7.45 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 7.26
(d, J = 8.3 Hz, 2H), 7.18 (t, J = 3.8 Hz, 1H), 7.01 (d, J = 7.4 Hz, 1H), 6.91 (d, J = 8.7 Hz, 2H),
6.81 (d, J = 6.7 Hz, 1H), 3.79 (s, 3H), 2.44–2.37 (m, 1H), 1.80 (dd, 2H), 1.63 (d, J = 12.4 Hz, 2H),
1.52 (d, J = 9.8 Hz, 1H), 1.46 (s, 1H), 1.33 (s, 9H), 1.23–1.18 (m, 2H), 1.12–1.08 (m, 2H). 13C
NMR (151 MHz, CDCl3) δ 196.4, 158.5, 152.5, 150.8, 145.9, 138.7, 137.8, 131.4, 129.9, 129.4,
129.0, 128.7, 126.8, 124.9, 124.5, 118.4, 112.3, 54.2, 35.0, 33.8, 30.3, 29.9, 25.5, 24.7. HRMS (ESI)
calcd for C32H34NaO2 [M + Na]+ 473.2457, found 473.2442.

2-Cyclohexyl-3-(4-fluorophenyl)-7-(4-methoxyphenyl)-1H-inden-1-one (3e). The prod-
uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1)
to afford 3e as a yellow solid (49 mg, 60% yield), m.p.: 101.3–102.1 ◦C. 1H NMR
(600 MHz, CDCl3) δ 7.43–7.40 (m, 2H), 7.30–7.28 (m, 2H), 7.20–7.19 (m, 1H), 7.14
(t, J = 8.6 Hz, 2H), 7.03 (d, J = 7.5 Hz, 1H), 6.93–6.90 (m, 2H), 6.71 (d, J = 6.8 Hz, 1H),
3.79 (s, 3H), 2.33 (tt, J = 12.1, 3.4 Hz, 1H), 1.75–1.69 (m, 2H), 1.63 (d, J = 12.4 Hz, 2H), 1.53 (d,
J = 10.3 Hz, 1H), 1.46 (d, J = 13.3 Hz, 2H), 1.13–1.04 (m, 3H). 13C NMR (151 MHz, CDCl3)
δ 197.1, 162.8 (d, J = 248.6 Hz), 159.7, 152.5, 146.9, 140.0, 139.4, 132.6, 131.1, 130.4, 129.9
(d, J = 8.4 Hz), 129.5, 129.1 (d, J = 3.2 Hz), 125.6, 119.0, 115.9 (d, J = 21.4 Hz), 113.3, 55.2, 36.0,
31.0, 26.5, 25.7.
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3-(4-Chlorophenyl)-2-cyclohexyl-7-(4-methoxyphenyl)-1H-inden-1-one (3f). The prod-
uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1)
to afford 3f as a yellow solid (53 mg, 62% yield), m.p.: 97.6–98.5 ◦C. 1H NMR
(600 MHz, CDCl3) δ 7.52–7.47 (m, 4H), 7.32 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 2.5 Hz, 1H), 7.11
(dd, J = 7.9, 0.7 Hz, 1H), 6.98 (d, J = 8.7 Hz, 2H), 6.77 (dd, J = 7.2, 0.6 Hz, 1H), 3.87 (s, 3H),
2.43–2.36 (m, 1H), 1.81–1.75 (m, 2H), 1.70 (d, J = 12.4 Hz, 2H), 1.60 (d, J = 10.0 Hz, 1H),
1.54 (d, 1H), 1.28–1.25 (m, 1H), 1.18–1.11 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 197.0,
159.7, 152.2, 146.7, 140.1, 139.6, 134.7, 132.7, 131.6, 131.2, 130.4, 129.5, 129.0, 125.5, 119.0,
113.3, 55.2, 36.1, 31.0, 26.5, 25.7. HRMS (ESI) calcd for C28H25ClNaO2 [M + Na]+ 451.1441,
found 451.1429.

2-Cyclohexyl-7-(4-methoxyphenyl)-3-(m-tolyl)-1H-inden-1-one (3g). The product puri-
fied by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to afford
3g as a yellow solid (54 mg, 66% yield), m.p.: 121.8–122.8 ◦C. 1H NMR (600 MHz, CDCl3)
δ 7.42 (d, J = 8.7 Hz, 2H), 7.33 (t, J = 7.6 Hz, 1H), 7.19 (dd, J = 8.1, 5.1 Hz, 2H), 7.13–7.09
(m, 2H), 7.02 (d, J = 7.8 Hz, 1H), 6.92 (t, J = 5.8 Hz, 2H), 6.75 (d, J = 7.2 Hz, 1H), 3.79 (s,
3H), 2.40–2.34 (m, 4H), 1.78–1.71 (m, 2H), 1.62 (d, J = 12.4 Hz, 2H), 1.50 (s, 3H), 1.14–1.04
(m, 3H). 13C NMR (151 MHz, CDCl3) δ 197.4, 159.6, 153.7, 147.1, 139.8, 139.0, 138.3, 133.1,
132.5, 131.0, 130.4, 129.7, 129.5, 128.5, 128.5, 125.8, 125.1, 119.3, 113.3, 55.2, 36.0, 31.0, 26.5,
25.7, 21.6. HRMS (ESI) calcd for C29H28NaO2 [M + Na]+ 431.1987, found 431.1977.

3-(3-Bromophenyl)-2-cyclohexyl-7-phenyl-1H-inden-1-one (3h). The product puri-
fied by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to
afford 3h as a yellow oil (53 mg, 60% yield). 1H NMR (600 MHz, CDCl3) δ 7.64–7.57
(m, 1H), 7.55–7.50 (m, 3H), 7.47–7.43 (m, 2H), 7.43–7.38 (m, 2H), 7.31–7.28 (m, 2H), 7.12
(dd, J = 7.8, 0.6 Hz, 1H), 6.82 (dd, J = 7.2, 0.6 Hz, 1H), 2.39 (tt, J = 12.1, 3.4 Hz, 1H), 1.81–1.73
(m, 2H), 1.70 (dd, J = 9.6, 2.3 Hz, 2H), 1.60 (d, J = 7.7 Hz, 1H), 1.54 (d, J = 13.6 Hz, 2H), 1.17
(q, J = 12.2 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 196.8, 151.9, 146.5, 140.4, 139.8, 137.3,
135.3, 132.8, 131.8, 131.2, 130.8, 130.3, 129.0, 128.2, 127.9, 126.7, 125.7, 122.8, 119.4, 36.1, 31.0,
26.5, 25.6. HRMS (ESI) calcd for C27H23BrNaO [M + Na]+ 465.0830, found 465.0819.

2-Cyclohexyl-3-(3,4-dimethylphenyl)-7-(4-methoxyphenyl)-1H-inden-1-one (3i). The
product purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1)
to afford 3i as a yellow solid (53 mg, 63% yield), m.p.: 107.6–108.6 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.44 (d, J = 8.7 Hz, 2H), 7.17–7.10 (m, 3H), 7.00 (dd, J = 7.9, 0.6 Hz, 1H), 6.92
(d, J = 8.7 Hz, 3H), 6.41–6.36 (m, 1H), 3.79 (s, 3H), 2.30 (s, 3H), 2.20–2.14 (m, 1H), 2.10 (s,
3H), 1.58 (d, J = 9.2 Hz, 4H), 1.43 (d, J = 12.5 Hz, 2H), 1.27–1.17 (m, 2H), 1.04 (s, 2H). 13C
NMR (151 MHz, CDCl3) δ 197.5, 159.6, 155.1, 147.7, 139.6, 139.4, 137.4, 134.1, 133.4, 132.8,
130.8, 130.4, 129.9, 129.6, 125.9, 125.7, 125.4, 119.2, 113.3, 55.2, 36.0, 30.9, 30.6, 26.5, 26.5, 25.7,
20.4, 17.1. HRMS (ESI) calcd for C30H30NaO2 [M + Na]+ 445.2143, found 445.2131.

2-Cyclohexyl-3-(2,3-dimethylphenyl)-7-(4-methoxyphenyl)-1H-inden-1-one (3j). The
product purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1)
to afford 3j as a yellow solid (50 mg, 58% yield), m.p.: 111.4–112.4 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.44 (d, J = 8.6 Hz, 2H), 7.17–7.11 (m, 3H), 7.01 (d, J = 7.9 Hz, 1H), 6.95–6.88 (m,
3H), 6.39 (d, J = 7.1 Hz, 1H), 3.80 (s, 3H), 2.30 (s, 3H), 2.17 (dd, J = 13.5, 10.1 Hz, 1H), 2.10
(s, 3H), 1.58 (d, J = 9.1 Hz, 3H), 1.43 (d, J = 12.6 Hz, 4H), 1.04 (s, 3H). 13C NMR (151 MHz,
CDCl3) δ 197.5, 159.6, 155.1, 147.7, 139.6, 139.4, 137.4, 134.1, 133.4, 132.8, 130.8, 130.4, 129.9,
129.6, 125.9, 125.7, 125.4, 119.2, 113.3, 55.2, 36.0, 30.9, 30.6, 26.5, 26.5, 25.7, 20.4, 17.1. HRMS
(ESI) calcd for C30H30NaO2 [M + Na]+ 445.2143, found 445.2136.

2-Cyclohexyl-3-(3,5-dimethylphenyl)-7-(4-methoxyphenyl)-1H-inden-1-one (3k). The
product purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1)
to afford 3k as a yellow solid (60 mg, 71% yield), m.p.: 126.3–127.3 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.43–7.39 (m, 2H), 7.18 (t, 1H), 7.01 (d, J = 7.3 Hz, 2H), 6.92–6.89 (m, 4H), 6.75
(d, J = 7.1 Hz, 1H), 3.79 (s, 3H), 2.39–2.36 (m, 1H), 2.33 (s, 6H), 1.79–1.72 (m, 2H), 1.62
(d, J = 12.5 Hz, 2H), 1.52 (d, J = 8.9 Hz, 1H), 1.46 (s, 2H), 1.13–1.05 (m, 3H). 13C NMR
(151 MHz, CDCl3) δ 196.5, 158.5, 152.9, 146.1, 138.7, 137.8, 137.1, 132.0, 131.5, 129.9, 129.3,
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128.7, 124.7, 124.6, 118.3, 112.2, 54.2, 35.0, 29.9, 25.5, 24.7, 20.4. HRMS (ESI) calcd for
C30H30NaO2 [M + Na]+ 445.2143, found 445.2133.

2-Cyclohexyl-3,7-diphenyl-1H-inden-1-one (3l). The product purified by flash column
chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford 3m as a yellow
solid (50 mg, 68% yield), m.p.: 89.2–90.1 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.44 (dd, J = 11.3,
4.4 Hz, 4H), 7.39–7.35 (m, 3H), 7.33–7.30 (m, 3H), 7.19 (t, 1H), 7.02 (dd, J = 7.8, 0.7 Hz, 1H),
6.77 (dd, J = 7.2, 0.6 Hz, 1H), 2.36 (tt, J = 12.1, 7.8, 3.4 Hz, 1H), 1.72 (qd, J = 12.2, 6.0 Hz, 2H),
1.61 (d, J = 12.4 Hz, 2H), 1.48 (t, J = 12.5 Hz, 3H), 1.12–1.04 (m, 3H). 13C NMR (151 MHz,
CDCl3) δ 197.2, 153.7, 147.0, 140.1, 139.2, 137.4, 133.2, 132.6, 131.0, 129.1, 128.8, 128.7, 128.1,
128.0, 127.9, 119.6, 36.0, 31.0, 26.6, 25.7.

2-Cyclohexyl-7-(4-ethoxyphenyl)-3-phenyl-1H-inden-1-one (3m). The product purified
by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to afford
3m as a yellow oil (62 mg, 76% yield). 1H NMR (600 MHz, CDCl3) δ 7.55–7.43 (m, 5H),
7.40–7.35 (m, 2H), 7.25 (t, J = 3.8 Hz, 1H), 7.09 (dd, J = 7.9, 0.7 Hz, 1H), 7.00–6.95 (m, 2H),
6.80 (dd, J = 7.2, 0.7 Hz, 1H), 4.10 (q, J = 7.0 Hz, 2H), 2.44 (tt, J = 12.1, 3.4 Hz, 1H), 1.86–1.77
(m, 2H), 1.69 (d, J = 12.5 Hz, 2H), 1.59 (d, J = 8.9 Hz, 1H), 1.53 (s, 2H), 1.44 (t, J = 7.0 Hz,
3H), 1.20–1.10 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 197.3, 159.1, 153.5, 147.0, 140.0, 139.1,
133.2, 132.6, 131.0, 130.4, 129.6, 129.5, 128.7, 128.6, 128.0, 125.7, 119.2, 113.8, 63.4, 36.0, 31.0,
26.5, 25.7, 14.9. HRMS (ESI) calcd for C29H28NaO2 [M + Na]+ 431.1987, found 431.1971.

7-(3-Chlorophenyl)-2-cyclohexyl-3-phenyl-1H-inden-1-one (3n). The product purified
by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to afford 3n
as a yellow oil (49 mg, 61% yield). 1H NMR (600 MHz, CDCl3) δ 7.52 (t, J = 7.4 Hz, 2H),
7.46 (d, J = 11.0 Hz, 2H), 7.42 (dd, J = 5.0, 2.0 Hz, 1H), 7.40–7.34 (m, 4H), 7.28 (t, J = 7.6 Hz,
1H), 7.06 (d, J = 7.8 Hz, 1H), 6.87 (d, J = 7.2 Hz, 1H), 2.48–2.41 (m, 1H), 1.84–1.74 (m, 2H),
1.70 (d, J = 12.1 Hz, 2H), 1.59 (d, J = 9.8 Hz, 1H), 1.54 (s, 2H), 1.21–1.10 (m, 3H). 13C NMR
(151 MHz, CDCl3) δ 197.0, 153.8, 147.0, 139.3, 139.2, 138.4, 133.8, 133.0, 132.8, 130.6, 129.0,
128.9, 128.8, 128.7, 128.1, 128.0, 127.5, 126.1, 120.0, 36.0, 31.0, 26.5, 25.7. HRMS (ESI) calcd
for C27H23ClNaO [M + Na]+ 421.1335, found 421.1324.

7-(3-Chloro-4-methoxyphenyl)-2-cyclohexyl-3-phenyl-1H-inden-1-one (3o). The product
purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1)
to afford 3o as a yellow solid (53 mg, 62% yield), m.p.: 99.5–100.7 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.54–7.50 (m, 3H), 7.48–7.45 (m, 2H), 7.40–7.37 (m, 2H), 7.26 (d, J = 2.5 Hz, 1H),
7.06 (d, J = 7.4 Hz, 1H), 7.01 (d, J = 8.5 Hz, 1H), 6.85–6.82 (m, 1H), 3.96 (s, 3H), 2.44
(tt, J = 12.1, 3.4 Hz, 1H), 1.83–1.76 (m, 2H), 1.70 (d, J = 12.5 Hz, 2H), 1.55 (d, J = 13.4 Hz,
2H), 1.23–1.12 (m, 4H). 13C NMR (151 MHz, CDCl3) δ 197.2, 154.9, 153.7, 147.1, 139.2, 138.4,
133.1, 132.7, 130.7, 130.6, 130.6, 128.9, 128.8, 128.7, 128.0, 125.9, 121.9, 119.7, 111.2, 56.1, 36.0,
31.0, 26.5, 25.7. HRMS (ESI) calcd for C28H25ClNaO2 [M + Na]+ 451.1441, found 451.1436.

2-Cyclohexyl-7-(4-methoxy-2-methylphenyl)-3-phenyl-1H-inden-1-one (3p). The prod-
uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1)
to afford 3p as a yellow solid (60 mg, 73% yield), m.p.: 82.4–83.4 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.52 (dd, J = 9.3, 5.5 Hz, 2H), 7.48–7.44 (m, 1H), 7.41–7.39 (m, 2H), 7.24 (d,
J = 7.5 Hz, 1H), 7.11 (d, J = 8.3 Hz, 1H), 6.98–6.95 (m, 1H), 6.87–6.83 (m, 2H), 6.80 (dd, J = 8.3,
2.6 Hz, 1H), 3.84 (s, 3H), 2.42 (tt, J = 12.1, 3.4 Hz, 1H), 2.16 (s, 3H), 1.81–1.76 (m, 2H), 1.68
(d, J = 9.5 Hz, 2H), 1.53 (s, 2H), 1.25 (s, 2H), 1.14 (d, J = 9.9 Hz, 2H). 13C NMR (151 MHz,
CDCl3) δ 197.5, 159.1, 153.7, 146.3, 139.1, 138.9, 137.2, 133.2, 132.3, 131.5, 130.3, 130.0, 128.7,
128.6, 128.0, 127.1, 119.3, 115.2, 110.8, 55.1, 35.9, 30.9, 26.5, 25.7, 20.4. HRMS (ESI) calcd for
C29H28NaO2 [M + Na]+ 431.1987, found 431.1975.

2-Cyclohexyl-7-(4-methoxy-3-methylphenyl)-3-phenyl-1H-inden-1-one (3q). The prod-
uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1)
to afford 3q as a yellow solid (57 mg, 70% yield), m.p.: 101.5–102.5 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.52 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.42–7.35 (m, 3H), 7.29 (s, 1H), 7.24
(t, J = 7.6 Hz, 1H), 7.09 (d, J = 7.9 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 7.2 Hz, 1H),
3.89 (s, 3H), 2.44 (tt, J = 12.1, 3.5 Hz, 1H), 2.29 (d, J = 5.3 Hz, 3H), 1.84–1.76 (m, 2H), 1.69
(d, J = 12.1 Hz, 2H), 1.60 (s, 1H), 1.54 (d, J = 13.4 Hz, 2H), 1.20–1.12 (m, 3H). 13C NMR
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(151 MHz, CDCl3) δ 197.3, 157.8, 153.4, 147.0, 140.2, 139.1, 133.3, 132.5, 131.2, 131.1, 129.2,
128.7, 128.6, 128.1, 128.0, 126.0, 125.7, 119.1, 109.1, 55.3, 36.0, 31.0, 26.6, 25.7, 16.3. HRMS
(ESI) calcd for C29H28NaO2 [M + Na]+ 431.1987, found 431.1975.

7-(4-Chloro-3-methylphenyl)-2-cyclohexyl-3-phenyl-1H-inden-1-one (3r). The product
purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to
afford 3r as a yellow oil (50 mg, 61% yield). 1H NMR (600 MHz, CDCl3) δ 7.51 (t, J = 7.4 Hz,
2H), 7.46 (d, J = 7.3 Hz, 1H), 7.39–7.33 (m, 2H), 7.25–7.23 (m, 2H), 7.11–7.04 (m, 3H), 6.81 (d,
J = 7.2 Hz, 1H), 2.47–2.41 (m, 1H), 2.38 (s, 3H), 1.78 (dt, J = 22.0, 7.7 Hz, 2H), 1.70–1.68 (m,
2H), 1.59–1.53 (m, 3H), 1.20–1.13 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 197.0, 153.5, 146.9,
140.4, 139.1, 137.5, 137.2, 133.3, 132.4, 131.1, 129.7, 128.7, 128.6, 128.0, 126.8, 126.0, 119.4, 35.9,
31.0, 26.6, 25.7, 21.4.

2-Cyclohexyl-7-(2,5-dimethylphenyl)-3-phenyl-1H-inden-1-one (3s). The product pu-
rified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to
afford 3s as a yellow oil (53 mg, 68% yield). 1H NMR (600 MHz, CDCl3) δ 7.52 (t, J = 7.4 Hz,
2H), 7.48–7.44 (m, 1H), 7.42–7.38 (m, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H),
7.11 (dd, J = 7.7, 1.2 Hz, 1H), 6.98–6.94 (m, 2H), 6.86 (dd, J = 7.3, 0.7 Hz, 1H), 2.42 (tt,
J = 12.1, 3.4 Hz, 1H), 2.34 (s, 3H), 2.11 (s, 3H), 1.82–1.74 (m, 2H), 1.68 (s, 2H), 1.56 (s, 1H),
1.51 (d, J = 11.5 Hz, 2H), 1.18–1.09 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 197.3, 153.7, 146.2,
139.2, 139.0, 137.8, 134.7, 133.2, 132.6, 132.4, 131.0, 129.5, 129.3, 128.7, 128.6, 128.6, 128.0,
127.0, 119.4, 35.9, 30.9, 30.9, 26.5, 25.7, 21.0, 19.5. HRMS (ESI) calcd for C29H28NaO [M + Na]+

415.2038, found 415.2025.
2-Cyclohexyl-7-(4-methoxyphenyl)-5-methyl-3-phenyl-1H-inden-1-one (3t). The prod-

uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1)
to afford 3t as a yellow solid (61 mg, 75% yield), m.p.: 118.3–119.7 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.52 (dd, J = 10.2, 4.6 Hz, 2H), 7.50–7.45 (m, 3H), 7.39–7.36 (m, 2H), 6.98 (dd, 2H),
6.89 (s, 1H), 6.61 (s, 1H), 3.86 (s, 3H), 2.42 (tt, J = 12.1, 3.3 Hz, 1H), 2.29 (s, 3H), 1.83–1.76
(m, 2H), 1.69 (d, J = 12.5 Hz, 2H), 1.56–1.52 (m, 2H), 1.24–1.07 (m, 4H). 13C NMR (151 MHz,
CDCl3) δ 197.0, 159.6, 153.1, 147.6, 143.4, 139.9, 139.6, 133.4, 130.9, 130.3, 129.8, 128.6, 128.6,
128.1, 123.4, 120.6, 113.3, 55.2, 36.0, 31.0, 26.6, 25.7, 21.8. HRMS (ESI) calcd for C29H28NaO2
[M + Na]+ 431.1987, found 431.1976.

2-Cyclohexyl-5-fluoro-7-(4-methoxyphenyl)-3-phenyl-1H-inden-1-one (3u). The prod-
uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1)
to afford 3u as a yellow solid (58 mg, 70% yield), m.p.: 119.0–120.1 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.53 (t, J = 7.4 Hz, 2H), 7.50–7.44 (m, 3H), 7.36 (dd, J = 5.1, 3.2 Hz, 2H), 7.01–6.96
(m, 2H), 6.75 (dd, J = 10.0, 2.2 Hz, 1H), 6.53 (dd, J = 8.1, 2.2 Hz, 1H), 3.86 (s, 3H), 2.45 (tt,
J = 12.1, 3.4 Hz, 1H), 1.84–1.75 (m, 2H), 1.70 (d, J = 12.3 Hz, 2H), 1.59 (d, J = 10.1 Hz, 1H),
1.54 (s, 2H), 1.19–1.10 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 195.6, 165.5 (d, J = 254.3 Hz),
160.0, 151.6, 150.7 (d, J = 9.4 Hz), 142.3, 142.2, 140.7, 132.6, 130.3, 128.9, 128.8, 128.6, 128.0,
121.7, 115.7 (d, J = 22.5 Hz), 113.4, 108.1 (d, J = 25.3 Hz), 55.3, 36.1, 31.0, 26.5, 25.7. HRMS
(ESI) calcd for C28H25FNaO2 [M + Na]+ 435.1736, found 435.1736.

5-Chloro-2-cyclohexyl-7-(4-methoxyphenyl)-3-phenyl-1H-inden-1-one (3v). The prod-
uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 30:1)
to afford 3v as a yellow solid (53 mg, 62% yield), m.p.: 93.5–94.3 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.54 (dd, J = 10.2, 4.6 Hz, 2H), 7.49–7.46 (m, 3H), 7.36 (dd, J = 5.2, 3.2 Hz, 2H), 7.10
(d, J = 1.7 Hz, 1H), 7.00–6.96 (m, 2H), 6.77 (d, J = 1.7 Hz, 1H), 3.87 (s, 3H), 2.44 (tt, J = 12.1,
3.4 Hz, 1H), 1.83–1.75 (m, 2H), 1.70 (d, J = 12.2 Hz, 2H), 1.54 (d, J = 13.4 Hz, 2H), 1.23–1.09
(m, 4H). 13C NMR (151 MHz, CDCl3) δ 195.9, 160.0, 152.5, 149.2, 141.1, 140.5, 138.6, 132.6,
130.4, 130.0, 129.0, 128.8, 128.4, 128.0, 123.9, 119.8, 113.4, 55.3, 36.1, 30.9, 26.5, 25.7. HRMS
(ESI) calcd for C28H25ClNaO2 [M + Na]+ 451.1441, found 451.1426.

2-Cyclohexyl-4-methoxy-7-(4-methoxyphenyl)-3-phenyl-1H-inden-1-one (3w). The prod-
uct purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 50:1)
to afford 3w as a yellow oil (62 mg, 73% yield). 1H NMR (600 MHz, CDCl3) δ 7.44–7.40 (m,
4H), 7.39–7.35 (m, 1H), 7.32–7.29 (m, 2H), 7.05 (d, J = 8.6 Hz, 1H), 6.98–6.95 (m, 2H), 6.90 (d,
J = 8.6 Hz, 1H), 3.86 (s, 3H), 3.49 (s, 3H), 2.25 (tt, J = 12.2, 3.5 Hz, 1H), 1.76–1.72 (m, 2H), 1.64
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(d, J = 12.9 Hz, 2H), 1.53 (s, 1H), 1.49–1.45 (m, 2H), 1.15–1.03 (m, 3H). 13C NMR (151 MHz,
CDCl3) δ 197.3, 159.3, 154.6, 152.3, 138.7, 135.8, 133.4, 133.0, 131.4, 130.3, 129.7, 129.4, 128.2,
127.8, 127.7, 127.5, 127.2, 119.5, 113.3, 55.9, 55.2, 35.7, 30.9, 26.5, 25.7. HRMS (ESI) calcd for
C29H28NaO3 [M + Na]+ 447.1936, found 447.1960.

2-Isopropyl-7-(4-methoxyphenyl)-3-phenyl-1H-inden-1-one (3x). The product purified
by flash column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to afford 3x
as a yellow solid (42 mg, 59% yield), m.p.: 90.8–91.7 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.51
(t, J = 8.2 Hz, 4H), 7.45 (t, J = 7.4 Hz, 1H), 7.41–7.37 (m, 2H), 7.26 (d, J = 8.0 Hz, 1H), 7.10 (d,
J = 7.3 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 6.6 Hz, 1H), 3.87 (s, 3H), 2.81 (dt, J = 13.9,
7.0 Hz, 1H), 1.20 (d, J = 7.0 Hz, 6H). 13C NMR (151 MHz, CDCl3) δ 197.2, 159.7, 153.2, 147.0,
139.9, 139.8, 133.1, 132.6, 131.0, 130.4, 129.6, 128.7, 128.6, 128.0, 125.8, 119.3, 113.3, 55.2, 25.5,
21.4. HRMS (ESI) calcd for C25H22NaO2 [M + Na]+ 377.1517, found 377.1505.

2-(Pentan-2-yl)-3,7-diphenyl-1H-inden-1-one (3y). The product purified by flash col-
umn chromatography on silica gel (petroleum ether/EtOAc = 50:1) to afford 3y as a yellow
oil (50 mg, 71% yield). 1H NMR (600 MHz, CDCl3) δ 7.48–7.41 (m, 4H), 7.39–7.36 (m, 2H),
7.34–7.29 (m, 3H), 7.19 (dd, J = 17.2, 9.7 Hz, 2H), 7.07–7.02 (m, 1H), 6.76 (dd, J = 7.2, 0.5
Hz, 1H), 2.59–2.53 (m, 1H), 1.68–1.58 (m, 1H), 1.38–1.32 (m, 1H), 1.13–1.08 (m, 5H), 0.67
(t, J = 7.3 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 197.1, 154.3, 147.0, 140.1, 139.0, 137.4, 133.1,
132.7, 131.0, 129.1, 128.7, 128.7, 128.1, 128.0, 127.9, 126.0, 119.5, 37.2, 30.6, 21.3, 19.8, 13.9.

2-(Pentan-3-yl)-3,7-diphenyl-1H-inden-1-one (3z). The product purified by flash col-
umn chromatography on silica gel (petroleum ether/EtOAc = 50:1) to afford 3z as a yellow
oil (46 mg, 65% yield). 1H NMR (600 MHz, CDCl3) δ 7.48–7.45 (m, 2H), 7.42 (t, J = 7.4 Hz,
2H), 7.37 (t, J = 7.1 Hz, 3H), 7.33 (d, J = 7.3 Hz, 1H), 7.31–7.28 (m, 2H), 7.20 (t, J = 7.6 Hz, 1H),
7.07–7.02 (m, 1H), 6.72 (d, J = 7.2 Hz, 1H), 2.27–2.20 (m, 1H), 1.69–1.59 (m, 2H), 1.48–1.42
(m, 2H), 0.72 (t, J = 7.5 Hz, 6H). 13C NMR (151 MHz, CDCl3) 197.2, 156.3, 147.2, 140.1, 137.3,
137.2, 133.2, 132.7, 131.1, 129.1, 128.6, 128.6, 128.1, 128.0, 127.9, 125.9, 119.5, 40.2, 26.6, 12.8.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/molecules29020458/s1. The supporting information in-
clude general considerations, radical trapping experiment, characterization data of products, and 1H
NMR and 13C NMR spectra of the products.
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