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Abstract: This study delved into the influence of ecological and seasonal dynamics on the synthesis
of secondary metabolites in the medicinal halophyte Limonium algarvense Erben, commonly known
as sea lavender, and examined their antioxidant and anti-inflammatory properties. Aerial parts
of sea lavender were systematically collected across winter, spring, summer, and autumn seasons
from distinct geographic locations in southern Portugal, specifically “Ria de Alvor” in Portimão
and “Ria Formosa” in Tavira. The investigation involved determining the total polyphenolic profile
through spectrophotometric methods, establishing the chemical profile via liquid chromatography
electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), and
evaluating in vitro antioxidant properties using radical and metal-based methods, along with assess-
ing anti-inflammatory capacity through a cell model. Results unveiled varying polyphenol levels and
profiles across seasons, with spring and autumn samples exhibiting the highest content, accompanied
by the most notable antioxidant and anti-inflammatory capacities. Geographic location emerged as
an influential factor, particularly distinguishing plants from “Ria de Alvor”. Seasonal fluctuations
were associated with environmental factors, including temperature, which, when excessively high,
can impair plant metabolism, but also with the presence of flowers and seeds in spring and autumn
samples, which also seems to contribute to elevated polyphenol levels and enhanced bioproperties of
these samples. Additionally, genetic factors may be related to differences observed between ecotypes
(geographical location). This study underscores sea lavender’s potential as a natural source of antiox-
idant and anti-inflammatory agents, emphasizing the significance of considering both geographic
location and seasonal dynamics in the assessment of phenolic composition and bioactive properties
in medicinal plant species.

Keywords: halophyte plants; salt tolerant plants; sea lavender; Iberian endemism; antioxidant;
anti-inflammatory; phenolics

1. Introduction

Sea lavenders are a group of halophytic plants belonging to the genus Limonium Mill.
(family Plumbaginaceae), including over 400 species thriving in coastal and saline envi-
ronments worldwide [1]. Limonium plants are mainly perennial or annual herbs, and their
leaves are disposed in rosettes at the base, where distinctive panicle-shaped inflorescences
arise [1,2]. Limonium comprises many ornamental species valued for their vibrant calyces
that persist even after the flowers fade, giving them their common name “statice,” but they
also have a long ethnomedicinal tradition in China, Europe, Latin America, and Arabia for
the treatment of various cardiovascular and inflammatory problems [3,4]. Moreover, stud-
ies have scientifically proven their medicinal value, such as anti-inflammatory, antibacterial,
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antiviral, and anticancer activities, as well as potent free radical scavenging compounds [5],
attributed to highly bioactive polyphenols, ranging from simple molecules like flavonoids
to more complex compounds like tannins, which highlights Limonium species as promising
sources for the development of pharmaceuticals and nutraceuticals. On the Portuguese
coast, there are about 17 Limonium species, including the Iberian endemic species Limo-
nium algarvense Erben, which is scattered amongst the provinces of the Algarve (Portugal),
Huelva and Cadiz (Spain), but is also found in south Morocco [1,6,7]. L. algarvense has
been studied over the last 8 years as a promising and rich source of bioactive phenolic com-
pounds, such as phenolic acids (salicylic, gallic, gentisic and coumaric acids) and flavonoids
(catechins, quercetin, apigenin, luteolin, naringenin and their glycoside derivatives), which
have been related to strong biological effects, mainly antioxidant and anti-inflammatory,
but also anti-melanogenic, neuroprotective and antidiabetic properties [8–12].

Human’s natural metabolism produces harmful free radicals that, when not neutral-
ized by natural antioxidant defense systems, can attack cell macromolecules impairing
normal cellular processes such as enzyme activity, cell division and energy production,
leading to chronic oxidative stress [13]. This state is associated with the development of sev-
eral pathological conditions, including inflammation, metabolic disorders, cancer, diabetes,
neurodegeneration, and cardiovascular problems [14]. Thus, exogenous antioxidants, such
as phenolic compounds, can thus have a role in protecting organisms from the oxidative
damage by scavenging free radicals, reducing molecules, and chelating metals, converting
oxidants into more stable compounds [15]. For that, spectrophotometric methods were
privileged for estimating the antioxidant potential of new products due to their affordability,
simplicity, reproducibility, cost-effectiveness, and rapidness. Despite potential drawbacks
like lack of specificity or differing reactivities, they remain valuable for making relative
comparisons between samples in initial assessments and exploratory research [16]. Also,
chronic inflammation-mediated diseases are one of the most significant threats to human
health, being fatal to 3 out of 5 people worldwide, including cancer, diabetes, cardiovascular
and pulmonary diseases, and obesity [17]. One of the main players of chronic inflammatory
response is nitric oxide (NO) that is mainly generated by activated macrophages [18]. Thus,
natural anti-inflammatory agents can play a role in shielding organisms from inflammatory
damage by reducing macrophages NO production.

The synthesis of bioactive metabolites is triggered by several environmental conditions,
including plant developmental stage, season, stresses, or nutrient availability [19], espe-
cially for halophytes such as sea lavenders that thrive in maritime salt marshes subjected
to extreme abiotic variations [20]. As a consequence, the biological properties conferred
by them can also vary according to these constraints [21]. For these reasons, various Phar-
macopoeias recommend collecting seasons for medicinal plants to obtain the maximum
therapeutic effect. Thus, the optimal season for harvesting medicinal plants from the wild
should be determined to obtain the highest yields of bioactive molecules with medicinal in-
terest [22]. Moreover, this knowledge could also be used to improve the yields of bioactive
metabolites in domesticated plants by selecting and identifying top-producing ecotypes
and defining the best environmental conditions (e.g., temperature, humidity, day length,
UV exposure) for optimized crop productivity. To do this, plants collected in different
geographic locations (different ecotypes) and in different seasons of the year (different
climatic conditions and day lengths) can serve as a model to define the best conditions for
the optimized production of bioactive molecules and biological properties [21,23]. How-
ever, despite Limonium being a medicinal genus, just a few studies have reported the effect
of seasonality on the phytochemical profile and antioxidant properties, including for L.
pruinosum, L. tunetanum, L. delicatulum, and L. reniforme, which showed elevated levels of
phenolics, flavonoids, and tannins and prominent antioxidant activities were detected in
plants harvested during the summer months [24]. In turn, as far as we know, the influence
of geographical location (different ecotypes) on the chemical composition and bioactivities
was never studied in any Limonium species.
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In this context, this work aimed to evaluate the influence of both site and season of
collection of sea lavender plants on its metabolites and biological properties. For that
purpose, biomass was collected from two different locations in southern Portugal, namely
western (Barlavento: “Ria de Alvor”, Portimão [Figure 1a] and eastern (Sotavento: “Ria
Formosa”, Tavira [Figure 1b] lagoons) areas during winter, spring, summer, and autumn.
Aqueous acetone extracts were then prepared from dried biomass and evaluated for their
total contents in phenolics, flavonoids and tannins, and for detailed phytochemical profile
by liquid chromatography electrospray ionization quadrupole time-of-flight mass spec-
trometry (LC-ESI-QTOF-MS/MS). Samples were also appraised for in vitro antioxidant
and anti-inflammatory properties.
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Figure 1. Limonium algarvense (sea lavender) in Southern Portugal: (a) Ria de Alvor Lagoon (spring),
and (b) Ria Formosa lagoon (autumn). Photos by Catarina Guerreiro Pereira.

2. Results and Discussion
2.1. Phenolic Composition

In this work, plants collected from different geographic locations (Barlavento: Ria de
Alvor” and Sotavento: Ria Formosa”) and seasons (spring, summer, autumn, and winter)
were evaluated for their total phenolics, flavonoids and tannins contents (Figure 2).

A high TPC was found in all samples (>255 mg GAE/g DW), being significantly
increased during spring in “Ria de Alvor” (340.2 ± 19.4 mg GAE/g DW), in contrast to
plants collected in summer from both locations (A: 266.9 ± 18.5 and B: 268.4 ± 11.4 mg
GAE/g DW). Generally, the accumulation of phenolics was higher in spring and autumn
in “Ria de Alvor” plants, whereas during winter it was lower than in “Ria Formosa”
ones. In turn, summer samples did not exhibit significant differences amongst locations
(p < 0.05). Regarding flavonoid content, there were no significant differences between
seasons and geographical variations (approx. 60 mg QE/g DW), except for plants col-
lected in “Ria Formosa” during the summer that presented reduced levels of flavonoids
(45.2 ± 10.0 mg QE/g DW). Contrarily, the tannin levels showed high seasonal variability
as well as geographical variations. For instance, plants collected during autumn in “Ria
de Alvor” had the highest tannin content (271.3 ± 39.2 mg CE/g DW), followed by sam-
ples collected in spring in the same location (253.8 ± 19.4 mg CE/g DW). When collected
in summer, samples present lower levels of tannins, regardless of geographical location
(A: 132.7 ± 9.9 and B: 125.8 ± 8.5 mg CE/g DW). In addition, the samples from “Ria de
Alvor” had generally higher tannin concentrations than those from “Ria Formosa”, with
the exception of the winter samples, which showed an opposite trend.

The levels of phenolics and tannins in sea lavender are influenced by seasonal and
geographical variations, consistent with the fact that the accumulation of phenolics by
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plants may be affected by different environmental conditions, such as climate and loca-
tion [25]. Therefore, the utmost levels perceived in spring and autumn seasons may be a
result of the plant’s response to the environmental conditions during these seasons, such
as optimal mild temperatures in spring and autumn (24.7–20.0 ◦C), while the extremely
high temperatures during summer can cause increased heat stress that may cause impaired
plant growth, photosynthesis, reproduction, yield and reduced primary and secondary
metabolism [26,27]. Likewise, the cold stress occurring during the winter season is also a
main abiotic stress factor with strong effects on plant growth and development, significantly
impacting the synthesis of plant metabolites [28]. These reasons may justify the lowest
contents of phenolics and tannins in plants collected during summer and winter when
compared to spring and autumn.
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Figure 2. Total polyphenolic contents (mg/g extract, DW) of Limonium algarvense (sea lavender)
extracts prepared from biomass collected in the two locations: (a) Total phenolic content (TPC),
(b) Total flavonoid content (TFC), and (c) Condensed tannins content (CTC). Results represent the
mean ± SD (n = 6). Different letters represent significant differences (p < 0.05).

Moreover, in spring the aerial parts included the mature inflorescences, which also
could influence the variations observed in the present study; as previously described by
Rodrigues et al. [8], the flowers of sea lavender contain the highest levels of phenolics
compared to the other organs. Additionally, in autumn sea lavender plants produce mature
seeds, which may also be associated with highest content in tannins typically found in seeds
coat to reduce their permeability and contribute to keep seed dormancy [29]. While a direct
comparison cannot be made since there are no previous studies on the total polyphenols
of whole aerial parts, when comparing the results obtained in this work with previously
published data on this species, it is possible to observe that flowers had similar levels of
total phenolics (228 mg GAE/g DW), while total flavonoids were superior (236 mg QE/g
DW) and tannins levels were lower (145 mg CE/g DW). The remaining aerial organs (leaves
and peduncles) presented lower contents of phenolics (54–83 mg GAE/g DW), flavonoids
(44–51 mg QE/g DW) and tannins (14–19 mg CE/g DW) [8].

Moreover, there are a few studies on the effect of seasonal effects on the phytochemical
composition of other species of the same genus. For instance, L. reniforme from Iran was
evaluated for phytochemical changes, enzymatic activities, and antioxidant activities along
the different seasons, where phenolics and flavonoids exhibited a significant increase in the
summer compared to other seasons, which were attributed to the activation of physiological
and biochemical processes related to salinity adaptation, such as increased antioxidant
enzymatic activities (peroxidase, catalase, polyphenol oxidase, ascorbate peroxidase) [24].
In turn, in a study focusing on L. delicatulum within Tunisian Sabkha, researchers ex-
plored potential correlations between phenolics and flavonoids accumulation with stress
response mechanisms (ion uptake, activation of antioxidant systems), soil parameters and
climatic data throughout the year. They have found that the accumulation of phenolics
and flavonoids was observed during the dry period (summer), which was correlated to
the activation of plant antioxidant systems to counteract extreme conditions like high
salinity, drought, nutritional deficiency, and high temperatures [30]. Mahmoudi et al. [31]
investigated the effect of seasonality on the phytochemical profile and antioxidant potential
of Tunisian L. pruinosum and L. tunetanum, aiming to establish the optimum harvesting
time. Concomitantly, the shoots harvested during the dry season had a significantly higher
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content of bioactive compounds and, consequently, greater antioxidant activity compared
to those collected during the wet period. Once again, a dry season seems to induce a
stress response in these plants, as evidenced by high levels of oxidative stress markers like
lipid peroxidation, hydrogen peroxide, and electrolyte leakage. In fact, is well known that
phenolic compounds are synthesized in response to abiotic stresses like salinity, drought,
and excessive solar radiation, playing a key role in protecting plant cells from reactive
oxygen species (ROS) by neutralizing their harmful effects and adjusting lipid peroxidation
kinetics. This helps maintain membrane integrity and supports photosynthetic processes
by reducing damage to photosynthetic systems by absorbing UV radiation [32].

However, these findings were the opposite to those obtained in the present study,
where the highest levels of phenolics were obtained in spring and autumn, indicating
that the aforementioned differences may be related to different years of collection, or
to interspecific variations, but appear to be more strongly associated with organ-related
factors, i.e., whole aerial parts versus separate organs, since the presence of flowers and
seeds appears to be definitely linked to the higher concentrations of secondary metabolites
found in these samples, as already reported in previous studies on this species [8,12].

Aiming to putatively identify and quantify the individual phenolic components
present in the extracts, samples were further analyzed by LC-MS/MS, and results are
presented in Table 1 and Figure 3. Around 18% of the tentatively identified compounds
were represented by myricetin glycosides (peaks No. 21–25, 28, 29, 34, 46, 50, 51, i.e.,
10 of 55 detectable peaks). Other compounds included lignans (peaks 35, 36, 39, 43–45, 48,
49), such as the most abundant pinoresinol sulphate and a few minor derivatives, polyol
(inositol) derivative, galactinol, as well as a few other flavonoids, none of which in amounts
comparable to the major myricetin glycosides.
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Figure 3. Two of the major molecules identified in Limonium algarvense (sea lavender) extracts (Table 1;
adapted from PubChem).

It is interesting to note that some compounds were only detected in particular seasons
and locations or had increased or decreased amounts among these variables. For example,
luteolin (52), naringenin (53), and two apigenin derivatives (41, 42) were found in increased
concentrations in the summer samples, whereas a myricetin derivative (50) was detected in
higher amounts during the spring. In turn, prodelphinidinA2 3′-gallate (15) was detected
in higher amounts during autumn and winter, while syringaresinol sulphate (35) and
medioresinol sulphate (36) have lower concentrations during the spring, and quercetin-
O-hexoside isomer (37) is only produce in summer. Concerning the different locations,
myricetin-3-O-rhamnoside (29) and theasinensin B (13) have shown higher abundance in
samples collected in “Ria Formosa”, while galactinol dihydrate (3) was present in a larger
amount in plants from “Ria de Alvor”.
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High-performance liquid chromatography with diode-array detection (HPLC-DAD)
and liquid chromatography tandem high-resolution mass spectrometry (LC-HRMS/MS)
had already identified most of these molecules in the aerial parts (flowers, peduncles, or
leaves) of this species, either collected from the wild or cultivated in a greenhouse [8,10]
(Rodrigues et al., 2019, 2021). Except galactinol (2), galactinol dihydrate (3), myricetin-3-O-
(3-caffeic acid-glucoside) (33), and two lignan glycosides (48, 49) that are here reported for
the first time in sea lavender extracts.

Flavonoids, such as luteolin, naringenin, apigenin, and myricetin and their derivatives,
have a multitude of functions in plants, including regulating plant development, pigmen-
tation, UV protection, defense and signaling between plants and microorganisms [33].
Therefore, their highest occurrence in summer and spring samples may be related to these
roles; for example, apigenin and luteolin glycosides have been strongly correlated with
increasing UV-B levels [34], while other flavonoids can act as major pigments in the flowers
of higher plants, contributing to attract pollinators and seed dispersion [35]. Moreover,
these molecules often provide medicinal properties to the plants, such as antioxidant,
anti-inflammatory and anti-microbial properties, having multiple applications as pharma-
ceutical and cosmetic ingredients, as well as in the food industry as preservatives, pigments,
and antioxidants [35]. Moreover, other major detected compounds, like myricetin glyco-
sides and pinoresinol, are known as antioxidant and anti-inflammatory agents [36,37],
while galactinol, a plant intracellular antioxidant stress defense signal, has been discovered
as a skincare ingredient [38], and lignans, like syringaresinol and medioresinol, related to
defensive mechanisms against external agents, are also reported with physiological proper-
ties such as antioxidant, phytoestrogen, or anticancer [39]. These results shed new light on
the chemical richness of sea lavender and highlights its potential as a source of molecules
suitable for the development of new natural products with potential health benefits.

Additionally, as “Ria Formosa” and “Ria de Alvor” generally share similar climatic
characteristics, as they are both coastal wetland areas in southern Portugal, the differences
found among the locations may be linked to genetic variation factors within different
populations/ecotypes. These genetic variations could contribute to the distinct biochemical
compositions observed, a phenomenon documented in other plant species, such as in the
fruits of different ecotypes of the Tunisian halophyte Eryngium maritimum [40], as well as
common glycophytes like Cichorium spinosum [41], or Trigonella monantha [42]. This suggests
that genetic diversity may play a role in shaping the chemical profiles of L. algarvense in
varied ecological niches. Overall, the variations among the produced compounds may be
linked to different genetics and metabolism patterns, reflecting the plant’s needs throughout
different seasons and ecological challenges.
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Table 1. Liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) analysis with tentative annotation of
major phenolic compounds of Limonium algarvense (sea lavender) collected throughout the year (four seasons) in the two locations (A—“Ria de Alvor”; and B—“Ria
Formosa”; Figure 2).

ID
Rt

(min)

Proposed Ion
Structure
(M-H)−

[M-H]−
[m/z (∆ ppm)]

MS2 Main-Ion
[Relative

Intensity (%)]

Proposed
Compound

Winter Spring Summer Autumn
Ref.

A B A B A B A B

1 0.9 - 272.9472 180.9572 (100) Unknown + + + + + + + + [12]

2 0.9 C12H21O11 341.1087 (+4.5) - Galactinol + + + + + + + + [43]

3 1.0 C12H21O11·
2(H2O)

377.0875,
341.1074 (+4.5)

[M-H-
2(H2O)]−

341.1074 (100),
179.0569 (20) Galactinol dihydrate ++ +++ +++ +++ ++ ++ +++ +++ [44]

4 1.5 C13H9O8 293.0311 (−2.7) 121.0502 (100) Pyrogallol gallate + + +/− +/− +/− +/− +/− +/− [12]

5 2.6 C13H15O10SO3 411.0221 (+4.3)
240.9997 (100),
331.0607 (34)
169.0134 (13)

Glucogallin sulphate + + +/− +/− +/− +/− + + [12]

6 3.4 C15H19O10SO3 439.0535 (+3.8) 241.0115 (100)
198.0794 (41)

Glucosyringic acid
sulphate +/− +/− +/−− +/−− +/− +/− +/− +/− [12]

7 4.7 C15H17O8SO3 405.0480 (+4.2) 240.9830 (80)
341.9238 (31)

Glucosyl coumaric
acid sulphate + + + + + + + + [12]

8 5.1 365.0151
210.9808 (100)
97.0595 (48)

139.1229 (38)
Unknown + + +/− +/− +/− +/− + +

9 6.5 C15H17O8SO3 405.0488 (+2.2)
240.9992 (100)
97.0492 (61)
271.044 (42)

Glucosyl coumaric
acid sulphate isomer + + + + + + + + [12]

10 7.6 259.0275 166.6115 (100) Unknown +/−− +/− +/−− +/−− − +/−− +/−− +/−−

11 8.4 441.1602
174.9519 (100),
381.1242 (72),
276.9178 (67)

Unknown − +/− − +/− − +/− − +/−

12 8.5 463.1427
293.0865 (100),
348.8434 (63),
315.9599 (56)

Unknown +/− − +/− − +/− − +/− −
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Table 1. Cont.

ID
Rt

(min)

Proposed Ion
Structure
(M-H)−

[M-H]−
[m/z (∆ ppm)]

MS2 Main-Ion
[Relative

Intensity (%)]

Proposed
Compound

Winter Spring Summer Autumn
Ref.

A B A B A B A B

13 9.2 C37H29O18 761.1366 (−0.9)
423.0676 (100),
305.0622 (71),
609.1168 (24)

Theasinensin B +/− + +/− + +/− + +/− + [12]

14 9.8 C17H29O10 393.1741 (+6.4)
179.0441 (100),
205.0639 (71),
197.4096 (67)

Hex-3-en-
olxylopyranosyl-

(1-6)-
glucopyranoside

− − − − ++ + − − [10]

15 10.3 C37H27O18 759.1191 (+1.6)

423.0714 (100),
301.0297 (67),
345.0175 (63),
481.0677 (33)

ProdelphinidinA2
3′-gallate + + +/− +/− +/− +/− + + [12]

16 11.3 C21H21O11 449.1062 (+6.1) 287.0521 (100),
269.0352 (92)

Eriodyctiol-O-
glucoside +/−− +/−− +/−− +/−− +/−− +/−− +/−− +/−− [10]

18 12 C22H17O11 457.0758 (+4.0) 305.0611 (100),
169.0127 (64)

Epigallocatechin
gallate + + + + + + + + [10]

19 12.5 385.1116 267.0685 (100) Unknown +/− +/− +/− +/− +/− +/− +/− +/−

20 12.6 431.1909 Unknown +/− − +/− − +/− − +/− −

21 12.9 C28H23O17 631.0941 (−0.1) 479.0799 (100),
316.0175 (55)

Myricetin-3-O-
galloyl-hexoside +++ +++ +++ +++ +++ +++ +++ +++ [10,12]

22 13.5 539.2144

491.1935 (100),
195.0645 (32),
329.1318 (22),
343.1460 (20)

Unknown +/− +/− +/− +/− +/− +/− +/− +/−

23 13.6 C27H29O17 625.1397 (+2.1)
316.0154 (100),
287.0172 (20),
271.01630 (17)

Myricetin-3-O-
rutinoside +/− + + +/− +/− +/− +/− + [12]

24 13.7 C21H19O13 479.0820 (+2.3) 316.0187 (100),
271.0211 (6)

Myricetin-O-
glucoside +++ +++ +++ +++ +++ +++ +++ +++ [10,12]

25 13.9 C21H19O13 479.0823 (+1.7) 316.0181 (100),
271.0204 (5)

Myricetin-O-
glucoside (isomer) ++ ++ ++ ++ ++ ++ ++ ++ [10,12]
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Table 1. Cont.

ID
Rt

(min)

Proposed Ion
Structure
(M-H)−

[M-H]−
[m/z (∆ ppm)]

MS2 Main-Ion
[Relative

Intensity (%)]

Proposed
Compound

Winter Spring Summer Autumn
Ref.

A B A B A B A B

26 14.8 C28H23O16 615.0991 (0)

463.0846 (100),
300.0238 (30),
301.0309 (21),
271.0202 (15)

Quercetin-3-O-
galloyl-hexoside +/− +/− +/− +/− +/− +/− +/− +/− [10,12]

27 15.1 C28H23O16 615.0993 (−0.2)

463.0870 (100),
300.0227 (37),
301.0325 (36),
271.0206 (36)

Quercetin-3-O-
galloyl-hexoside

(isomer)
+ + + + + + + + [10,12]

28 15.3 C20H17O12 449.0707 (+4.2)
316.0186 (100),
317.0227 (34),
271.0192 (9)

Myricetin-3-O-
pentoside +/− +/− +/− +/− +/− +/− +/− +/− [10]

29 15.5 C21H19O12 463.0866 (+3.5)
316.0179 (100),
317.0232 (33),
271.0180 (7)

Myricetin-3-O-
rhamnoside ++ +++ ++ +++ ++ +++ ++ +++ [10,12]

30 15.7 C21H19O12 463.0870 (+2.7)

300.0236 (100),
301.0285 (41),
316.0180 (26),
271.0208 (11)

Quercetin-O-
hexoside + + + + + + + + [10]

31 15.9 C27H33O15 597.1818 (+1.1)

387.1077 (100),
357.0951 (92),
417.1151 (35),
459.1230 (11)

Quercetin-
tetramethyl

ether-
dihydroxyethyl-
fructopyranose

+/− +/− +/− +/− +/− +/− +/− +/− [10]

32 16.1 C21H19O12 463.0866 (+3.5)

300.0216 (100),
301.0305 (52),
316.0177 (28),
271.0192 (7)

Quercetin-O-
hexoside isomer + + + + + + + + [10]

33 16.2 C30H27O17 659.1253 (+0.1)

316.0178 (100),
317.0225 (29),
287.0164 (13),
271.0175 (13)

Myricetin-3-O-(3-
caffeic

acid-glucoside)
+/−− +/−− +/− +/− +/− +/− +/−− +/−−

34 16.4 C18H17O7SO3 425.0530 (+4.2)
300.0608 (100),
315.0797 (48),
345.1509 (26)

3′,4′,5′-
Trimethoxyflavanone

sulphate
+ + + + + + + + [12]
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Table 1. Cont.

ID
Rt

(min)

Proposed Ion
Structure
(M-H)−

[M-H]−
[m/z (∆ ppm)]

MS2 Main-Ion
[Relative

Intensity (%)]

Proposed
Compound

Winter Spring Summer Autumn
Ref.

A B A B A B A B

35 16.6 C22H25O8SO3 497.1116 (+1.4)

417.1541 (100),
402.1316 (44),
418.1583 (24),
387.1017 (18)
181.0492 (16)

Syringaresinol
sulphate ++ ++ + + ++ ++ ++ ++ [12]

36 16.6 C21H23O7SO3 467.1001 (+3.5)

387.1383 (100),
372.1181 (73),
181.0508 (30),
357.0943 (23)

Medioresinol
sulphate + + +/− +/− + + + + [12]

37 16.8 C21H19O12 463.0868 (+3.1) 301.0292 (100),
300.0206 (44)

Quercetin-O-
hexoside isomer − − − − + +/− − − [12]

38 17.3 583.1482

309.0322 (91),
322.8592 (86),
291.0268 (77),
65.7793 (77)

Unknown +/− +/− +/− +/− +/− +/− +/− +/−

39 17.7 C20H21O6SO3 437.0905 (+1.6)

357.1322 (100),
342.1076 (53),
422.0608 (10),
151.0454 (3)

Pinoresinol sulphate +++ +++ +++ +++ +++ +++ +++ +++ [10,12]

40 17.9 C21H19O11 447.0921 (+2.6)
300.0229 (100),
301.0306 (66),
271.0188 (12)

Quercetin-3-O-
rhamnoside + + + + + + + + [10]

41 18.1 C21H19O10 431.0966 (+4.1) 268.0334 (100),
269.0405 (40)

Apigenin-O-
glucoside − − − − ++ + +/− +/− [10]

42 18.4 C21H17O11 445.0755 (+4.8) 269.0404 (100) Apigenin-O-
glucuronide − − − − +++ ++ + + [10,12]

43 18.6 C27H35O12 551.2130 (+0.6) 357.1265 (100) Pinoresinol
derivative +/− +/− +/− +/− − − +/−− +/−− [12]

44 18.9 C20H21O6SO3 437.0897 (+3.3) 357.1283 (100),
342.1063 (92)

Pinoresinol sulphate
isomer + + + + + + + + [10,12]
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Table 1. Cont.

ID
Rt

(min)

Proposed Ion
Structure
(M-H)−

[M-H]−
[m/z (∆ ppm)]

MS2 Main-Ion
[Relative

Intensity (%)]

Proposed
Compound

Winter Spring Summer Autumn
Ref.

A B A B A B A B

45 19.7 C27H35O12 551.2137 (−0.5)

357.1226 (100),
165.0621 (95),
195.0632 (92),
438.8498 (38),
505.2076 (34)

Pinoresinol
derivative + + + + + + + + [12]

46 19.9 C28H23O16 615.0992 (−0.1)
317.0261 (100),
287.0180 (3),
463.0856 (3)

Myricetin-O-
(galloyl)-

deoxyhexose
+/− + + + + + + + [10]

47 20 C21H19O10 431.0973 (+2.5) 284.0341 (100),
255.0201 (32)

Luteolin-7-O-
rhamnoside +/− +/− +/− +/− + +/− +/− +/− [10]

48 20.5 C27H33O12 549.1978 (−0.1)
355.1193 (100),
521.2029 (84),
193.0412 (73)

Lignan glycoside + + + + +/− +/− + +/− [45,46]

49 21 C26H31O10 503.1924 (−0.3)
335.4861 (100),
306.8672 (80),
426.7623 (65)

Lignan glycoside +/− +/− +/− +/− +/−− +/−− +/− +/− [47]

50 22.3 C25H23O13 531.1122 (+4.2)

316.0170 (100),
317.0207 (29),
271.0193 (6),
287.0174 (5)

Myricetin derivative +/−− +/− + + +/− +/− − −

51 22.5 C26H27O14 563.1421 (−2.6) 316.0197 (100),
317.0233 (24) Myricetin derivative +/−− +/− +/−− +/− +/−− +/− +/−− +/−−

52 22.9 C15H9O6 285.0381 (+8.2)
124.1813 (91),
180.9969 (91),
216.9228 (74)

Luteolin − − − − +/− − − − [12]

53 25.4 C15H11O5 271.0590 (+8.0) 85.0673 (100),
150.5868 (35) Naringenin − − − − + + +/−− +/− [10,12]

54 26.2 C18H31O5 327.2161 (+5.0) 283.2492 (100) Trihydroxy-10,15-
octadecadienoic acid +/− +/− +/− +/− + +/− +/− +/− [10,12]

55 28.2 C18H33O5 329.2313 (+6.3) - Trihydroxy-10-
octadecenoic acid +/− +/− +/− +/− +/− +/− +/− +/− [10,12]

Retention times, MS data, and ion formula suggestion of the constituents present in the extracts of L. algarvense. For distinguishing amongst trace, very low, low, medium, or high
abundance the symbols +/−−, +/−, +, ++ and +++ were used, respectively.
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2.2. Antioxidant Properties

Similarly to the phenolic composition, the antioxidant capacity of the plants can be
affected by different environmental conditions, and, in this context, sea lavender extracts
were evaluated for their radical-scavenging activity towards DPPH, ABTS and NO, ferric
reducing capacity and copper and iron chelating activities (Table 2).

Table 2. Antioxidant activity (EC50 values, µg/mL) of Limonium algarvense (sea lavender) extracts
prepared from biomass collected from two locations, in different seasons (Figure 2): radical scavenging
on DPPH•, ABTS•+, and NO radicals, ferric reducing antioxidant power (FRAP) and metal-chelating
activities on copper (CCA) and iron (ICA).

Location/Standards Season DPPH• ABTS•+ NO FRAP CCA ICA

(A) Ria de Alvor

Winter 125 ± 6 c 26.9 ± 3.7 a 498 ± 38 e 298 ± 23 de 272 ± 15 d Na
Spring 45.6 ± 5.6 a 73.7 ± 4.8 b 315 ± 22 d 333 ± 35 e 176 ± 7 ab Na

Summer 88.3 ± 8.1 b 91.1 ± 5.0 bc 703 ± 48 f 240 ± 2. c 338 ± 10 e Na
Autumn 44.5 ± 4.1 a 118 ± 4 d 424 ± 72 e 61.3 ± 1.1 a 184 ± 8 b Na

(B) Ria Formosa

Winter 92.8 ± 12.0 bc 19.6 ± 4.0 a 68.0 ± 2.7 a 173 ± 14 b 231 ± 11 c Na
Spring 62.7 ± 7.5 ab 75.1 ± 4.7 b 114 ± 10 ab 273 ± 22 cd 185 ± 4 b Na

Summer 85.2 ± 2.4 b 103 ± 2 cd 270 ± 7 cd 298 ± 11 de 355 ± 14 e Na
Autumn 65.6 ± 3.3 ab 72.1 ± 7.6 b 179 ± 12 bc 63.3 ± 2.8 a 193 ± 7 b Na

Positive controls
BHA 604 ± 31 d 330 ± 23 e 156 ± 7 b

EDTA 156 ± 3 a 28.4 ± 0.3
Ascorbic acid 1713 ± 18 g

Na: non-active (activity lower than 50% up to 1000 µg/mL). Data represent the mean ± standard deview (SD)
of at least three experiments performed in triplicate (n = 9). For each assay (column), different letters represent
significant differences (p < 0.05).

Similarly to the phenolic composition, the spring and autumn samples from “Ria de
Alvor” (A) were the most active towards DPPH• (EC50 = 44.5–45.6 µg/mL) and in chelating
copper (EC50 = 176–184 µg/mL), closely followed by plants from “Ria Formosa” (B) col-
lected in the same seasons (DPPH: EC50 = 62.7–65.6 µg/mL; CCA: EC50 = 185–193 µg/mL).
In contrast, the samples collected during winter were the most active on ABTS•+ (A:
EC50 = 26.9 µg/mL; B: EC50 = 19.6 µg/mL), as well as towards NO• (B: EC50 = 68.0 µg/mL).
Regarding the ferric reducing capacity, autumn samples presented the lowest EC50 values,
similar in both locations (EC50 = 61.3–63.3 µg/mL). None of the samples were able to chelate
iron up to the concentration of 1000 µg/mL. These dissimilarities highlight the importance
of using different in vitro methods for a more reliable assessment of the antioxidant activity
of a sample.

Rodrigues et al. [8] reported an EC50 value of 90 µg/mL towards DPPH• for a
methanol extract of flowers of the same species collected in June in Ria de Alvor, which is
slightly higher than those obtained in this study for the spring samples (45.6–62.7 µg/mL).
Likewise, the obtained EC50 values for ABTS•+ (270 µg/mL) were also higher in com-
parison to our results for all samples (26.9–118 µg/mL). In relation to copper chelating
potential, the activity of methanol extracts from flowers (EC50 = 290 µg/mL mg/mL) was
a little higher than that obtained in this work for the spring season (EC50 = 176 µg/mL).
Nevertheless, the same flower and leaf samples presented much lower EC50 values on
FRAP (10 and 18 µg/mL, respectively) when compared to the plants collected in summer
or spring in the present study (EC50 = 240–333 µg/mL). Although methanol extracts from
different organs of the sea lavender have already been tested previously [8], this is the first
time that extracts of this species have demonstrated the ability to scavenge the NO radical.
In addition, like for the total polyphenol content, and contrasting with what was observed
in this study, the DPPH• scavenging activity of L. reniforme, L. delicatulum, L. pruinosum, and
L. tunetanum samples was higher during the dry (summer) season, related to stress-induced
activation of physiological and biochemical processes, such as increased antioxidant enzy-
matic defense systems [24–26]. This discrepancy underscores the complexity of seasonal



Molecules 2024, 29, 481 14 of 21

influences on antioxidant activities within the Limonium genus, and as discussed above,
the different patterns are possibly associated with variations in environmental conditions,
species genetic variability, and the inclusion of different plant organs. Having in mind
that a correlation between phenolic compounds and antioxidant activity has already been
broadly explored in the literature, the generally superior antioxidant activity noted in
spring and autumn samples is probably correlated to the increased phenolic and tannin
content found during these seasons.

2.3. Anti-Inflammatory Properties

In this work, RAW 264.7 macrophages were stimulated with LPS to increase NO
production, simulating an inflammatory response, and the ability of sea lavender extracts
to reduce NO production was evaluated at a concentration of 25 µg/mL, as it was the only
one that did not present significant toxicity in RAW 264.7 macrophages (>80% cell viability
(Figure 4).
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Figure 4. Anti-inflammatory activity (% NO decrease) of Limonium algarvense (sea lavender) ex-
tracts (25 µg/mL) prepared from biomass collected in the different locations and seasons. L-Name
(200 µg/mL) was used as positive control (NO decrease: 73.4 ± 4.3% abc). Results represent the
mean ± deviation (SD) (n = 9). Different letters (a–d) represent significant differences (p < 0.05).

As already seen for the antioxidant activity (DPPH• and CCA), the spring and autumn
samples from “Ria de Alvor” (A) were the most effective in reducing NO production
(approx. 83%), along with the plants from “Ria Formosa” (B) collected during spring
(approx. 80%). The winter samples showed an opposite trend, presenting the lowest NO
decrease (approx. 58–60%). Additionally, the samples collected in “Ria de Alvor” are
generally more active than those from “Ria Formosa”, except for winter.

Infusions and decoctions of composite samples containing sea lavender flowers col-
lected in June from different sites (Ludo, Vilamoura and Castro Marim) have already
demonstrated the ability to reduce NO production in LPS-stimulated macrophages, with
EC50 values ranging between 46.3 and 48.5 µg/mL [9], but in the present work we ob-
served a higher NO decrease at a lower concentration. This difference can be related to
different plant organs, extraction solvents and methodologies, seasonal and/or year of
collection [48]. Once again, it is possible to perceive that the anti-inflammatory activity
fluctuates according to the content of total phenols and tannins. For instance, samples
richer in phenolics and tannins (spring and autumn) had higher activity, while less active
samples (winter and summer) presented lower amounts of phenols and tannins, indicating
a possible correlation. Unfortunately, there were no previous studies in Limonium species



Molecules 2024, 29, 481 15 of 21

on the seasonal or geographical dynamics of anti-inflammatory activities, while contrary
to this study, no seasonal influence was observed for the anti-inflammatory properties of
other halophyte species, Cladium mariscus from “Ria Formosa” [49].

2.4. Principal Component Analysis (PCA)

To evaluate the effect of different seasons (winter, spring, summer, and autumn) and
the influence of the site of collection (“Ria de Alvor” and “Ria Formosa”) in the biological
properties and chemical composition of sea lavender, a biplot PCA was constructed with
the sample scores and the variable loadings based on all parameters studied, namely
antioxidant (DPPH•, ABTS•+, NO•, FRAP, CCA), anti-inflammatory activity, polyphenolic
contents (TPC, TFC, CTC), geographical location (“Ria de Alvor” and “Ria Formosa”), and
seasons (winter, spring, summer, and autumn) (Figure 5).
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Figure 5. Principal Component Analysis (PCA) of the antioxidant (DPPH, ABTS, NO, FRAP, CCA),
anti-inflammatory (RAW) and polyphenolic contents (TPC, TFC, CTC) of the extracts prepared from
biomass collected from different locations and seasons. (A) “Ria de Alvor”, (B) “Ria Formosa”; Wt:
winter, Sp: spring, Sm: summer, Au: autumn.

The PCA described 75.87% of the total variation in the dataset. According to the results
obtained in the biplot, there is a clear separation between samples from summer and winter
from both locations, whereas plants collected during spring and autumn showed higher
similarities according to the site of collection. For winter, samples from “Ria de Alvor” (A)
showed high proximity to the DPPH• scavenging activity, while those from “Ria Formosa”
(B) are distanced from all variables, pointing to a negative relation between this site/season
and the studied variables. For summer, samples from both locations are in great proximity
to FRAP, CCA, and NO• antioxidant activities, implying a stronger influence of these
antioxidant parameters in this season. In turn, spring and autumn samples collected in “Ria
de Alvor” (A) are closely related to improved anti-inflammatory activity, while samples
from “Ria Formosa” (B) seem to have greater influence from polyphenolic groups. Overall,
plants from “Ria de Alvor” seem to gather the best conditions for the optimized production
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of bioactive molecules, coupled with environmental conditions during spring and autumn
that appear to induce the highest biological properties of those samples.

3. Materials and Methods
3.1. Sample Collection and Processing

The sampling approach involved collecting 10 specimens distributed along a 4 m
transect of the saltmarsh, covering the range from the lowest marsh area, where initial
specimens were located, to the highest marsh zone where they were no longer present.
The whole aerial parts (comprising leaves, peduncles, flowers and seeds, when present;
voucher code XBH01, XtremeBio lab. Herbarium, Faro, Portugal) from the 10 specimens
were pooled together to form a composite sample. The collection timepoints were winter
(January, 0 days), spring (May, 98 days), summer (July, 84 days), and autumn (November,
96 days) of 2020 (Table 3), in 2 distinct locations in southern Portugal (Figure 2): (A)
Western area: Barlavento, Ria de Alvor Lagoon, Portimão (37◦07′33.9′′ N 8◦35′52.8′′ W),
and (B) Eastern area: Sotavento, Ria Formosa Lagoon, Tavira (37◦07′52.1′′ N 7◦36′38.5′′ W).
The locations selected (Figure 6) are in two lagoons with different characteristics and of
considerably different sizes (site A, Ria de Alvor: ~15 km2, small shallow estuary [50]; site
B, Ria Formosa: ~100 km2, multi-inlet barrier system [51], roughly 70 km apart. Samples
were oven-dried at 40 ◦C in forced convection for 3 days, powdered, and stored at −20 ◦C
until needed.

Table 3. Meteorological values of mean temperatures (minimum and maximum) and total precipita-
tion registered in the collection months (source: IPMA [52]).

Season Month X Min. Temp. X Max. Temp. Total Precipitation

Winter January 8.9 ◦C 16.6 ◦C 29.6 mm
Spring May 17.0 ◦C 24.7 ◦C 37.5 mm

Summer July 21.6 ◦C 30.3 ◦C 0.0 mm
Autumn November 13.7 ◦C 20.0 ◦C 155.8 mm

X min. temp.: mean of the minimum temperature; X max. temp.: mean of the maximum temperature.
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Figure 6. Locations of Limonium algarvense (sea lavender) harvesting in southern Portugal:
(A) Barlavento: Ria de Alvor Lagoon, Portimão, (B) Sotavento: Ria Formosa Lagoon, Tavira. Adapted
from Instituto Geográfico Português®2024.

3.2. Extracts Preparation

Dry biomass samples were extracted with 80% aqueous acetone (1:40, w/v) after
stirring for 24 h, at room temperature (RT, approx. 20 ◦C). Extracts were filtered (paper
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Whatman nº4), solvent evaporated under reduced pressure (at 40 ◦C in rotary evaporator
R-210, Buchi Labortechnik AG, Flawil, Switzerland), redissolved at 25 mg/mL in dimethyl
sulfoxide (DMSO), and stored at −20 ◦C until needed.

3.3. Phytochemical Profiling
3.3.1. Contents in Total Phenolic (TPC), Flavonoid, and Condensed Tannins (CTC)

The extracts’ contents in different phenolic groups were assessed by colorimetric
assays, as fully described in Rodrigues et al. [8] and Oliveira et al. [49]. Briefly, the total
phenolic content (TPC) was determined using the Folin–Ciocalteu reagent and absorbance
measured at 725 nm (Biochrom EZ Read 400, Santa Clara, CA, USA) [8,49]; gallic acid was
used as standard for the calibration curve (y = 1.294x + 0.038; R2 = 0.999), with results
expressed as gallic acid equivalents (GAE). The total flavonoid content (TFC) was evalu-
ated by the aluminum chloride (AlCl3) assay and absorbance measured at 415 nm [8,49].
Quercetin was the standard used (y = 2.148x + 0.056; R2 = 1.00), and results were expressed
as quercetin equivalents (QE). The condensed tannin content (CTC) was assessed by the 4-
dimethylaminocinnamaldehyde (DMACA) method, measuring absorbance at 640 nm [8,49].
The standard used was catechin (y = 0.361x + 0.037; R2 = 0.997), and results were expressed
as catechin equivalents (CE). Results are presented as milligrams of standard equivalents
per gram of extract dry weight (DW).

3.3.2. Analysis by Liquid Chromatography Electrospray Ionization Quadrupole
Time-of-Flight Mass Spectrometry (LC-ESI-QTOF-MS/MS)

Extracts at a concentration of 25 mg/mL in dimethyl sulfoxide (DMSO) were taken
from the refrigerator and brought to RT. Then, 100 µL of each extract was taken and
added to 900 µL methanol and 300 µL water. All extracts were filtered (0.22 µm) prior
to analysis. Analyzes were executed in triplicate for three independent samples. Liquid
chromatography—electrospray ionization-quadrupole time-of-flight (LC-ESI-QTOF) MS
analysis was performed on a chromatographic system Thermo Dionex Ultimate 3000 RS
(Thermo Fischer Scientific, Waltham, MA, USA), coupled to a QTOF mass spectrometer
Bruker Compact (Bruker, Billerica, MA, USA). Separations were carried out on a column
Kinetex C18 2.6 µm (150 mm × 2.1 mm), (Phenomenex, Torrance, CA, USA), maintained at
30 ◦C. Mobile phase A (H2O:HCOOH, 100:0.1, v/v) and B (acetonitrile:HCOOH, 100:0.1,
v/v) were used in the following gradient program: 0–30 min 5–40% B, 30–32 min 40–95% B,
32–34 min 95% B followed by column equilibration with 5% B for 2 min between injections.
The flow rate was 0.3 mL/min. AnalysisSpectra were acquired over a mass range from
m/z 50 to 2000 (5-Hz) in negative-ion mode. ESI-MS conditions were as follows: splitless,
nebulizer pressure 30 psi; dry gas flow 8 L/min; dry temperature 250 ◦C; and capillary
voltage 4.5 kV. Mass spectra were recorded using scan range (m/z) 50–2200. The collision
energy was set automatically from 10 to 95 eV, depending on the m/z of the fragmented
ion. Processing of spectra was performed using the Bruker Data Analysis 4.3 software.

3.4. Biological Properties

The biological activities of the samples were assessed at a concentration of 1 mg/mL,
at five different concentrations (serial dilution from 10 to 0.01 mg/mL) and results were
calculated as percentage (%) of activity relative to a negative control (samples’ solvent),
except for the FRAP (ferric reducing antioxidant power) assay that was relative to the
positive control. Whenever possible, the half maximal effective concentrations (EC50 values,
mg/mL) were calculated.

3.4.1. In Vitro Antioxidant Activity

The radical scavenging activity (RSA) was assessed against the radicals DPPH•
(1,1-diphenyl-2picrylhydrazyl), ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid)), and NO• (nitric oxide), as detailed previously [8,49]. Generally, in 96-well flat-
bottom microtitration plates, the samples were combined with radical solutions (DPPH•:
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120 µM; ABTS•+: 7.4 mM; NO•: 10 mM) and left to incubate in darkness at room tem-
perature for 30, 6 and 90 min, respectively. Butylated hydroxyanisole (BHA) was used as
positive control for the DPPH• and ABTS•+, and ascorbic acid for the NO•. Absorbance
measurements were taken at 517 nm for DPPH•, 734 nm for ABTS•+ and 546 for NO•.

The extracts’ ability to reduce Fe3+ was evaluated following the method outlined by
Rodrigues et al. [8]. In 96-well plates, the samples were mixed with distilled water and
1% potassium ferricyanide, followed by incubation at 50 ◦C for 20 min. Subsequently, 10%
trichloroacetic acid and 0.1% ferric chloride solution were added. An increase in absorbance
at 700 nm indicated higher reducing activity, and the results were expressed as a percentage
of inhibition relative to the positive control at a concentration of 1 mg/mL. BHA was used
as a positive control for the FRAP assay.

Copper (CCA) and iron chelating activity (ICA), along with the positive control
(EDTA), were evaluated in 96-well microplates following the procedures described by
Rodrigues et al. [8]. For CCA, samples were combined with 50 mM Na acetate buffer
(pH 6), 4 mM pyrocatechol violet, and a 50 µg/mL CuSO4 solution. For ICA, samples
were mixed with distilled water and a 0.1 mg/mL FeCl2 solution. After 30 min, a 40 mM
ferrozine solution was added, and the change in absorbance was measured at 632 nm for
CCA and 562 nm for ICA, respectively.

3.4.2. In Vitro Anti-Inflammatory Activity

The anti-inflammatory capacity of the extracts was evaluated stimulating RAW
264.7 macrophages to produce nitric oxide (NO) by means of lipopolysaccharide (LPS),
following Rodrigues et al. [9]. The macrophage RAW 264.7 cell line was bought to CLS
Cell Lines Service GmbH (Cytion catalog number 400319, Eppelheim, Germany). Cells
were maintained in RPMI medium (supplementation: 10% heat-inactivated fetal bovine
serum, 1% 2 mM L-glutamine, and 1% 50 U/mL penicillin/50 µg/mL streptomycin), at
37 ◦C in humidified atmosphere 5% CO2. Firstly, the MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) method to assess cellular viability was employed to
determine the concentration of the extracts that was non-cytotoxic to the cells. Cells were
seeded at 10 × 103 cells/well and left incubating for 24 h with extracts at 100, 50 and
25 µg/mL (diluted in culture medium). Cells incubated in culture medium with DMSO (in
the same proportion as in the extracts) were used as a negative control.

Once established, the concentration of the extracts that allowed more than 80% of
cell viability (extracts at 25 µg/mL), extracts were incubated for 24 h with cells seeded
at 2.5 × 105 cells/well (medium serum- and phenol-free) and LPS (at 25 µg/mL). Cells
incubated in culture medium with DMSO (same proportion as in the extracts) and LPS-
stimulated were used as negative controls. Following the Griess method, using sodium
nitrite as the standard in the calibration curve, the NO production was determined. Results
were expressed as % of NO decrease relative to the control.

3.5. Statistical Analysis

Experiments were performed in triplicate and results were expressed as mean ± stan-
dard deviation (SD). To curve fit data and obtain EC50 values, GraphPad Prism 8.4.3 for
Mac (GraphPad Software, Sand Diego, CA, USA) was used. Statistical differences (p < 0.05)
were analyzed with XLSTAT trial version (Addinsoft 2023, New York, NY, USA) by one-way
analysis of variance (ANOVA) and the post hoc Tukey multiple comparison test (assuming
parametricity of the data). For the Principal Component Analysis, XLSTAT trial version
(Addinsoft 2023, New York, NY, USA) was also employed.

4. Conclusions

The investigation into the ecological and seasonal dynamics of Limonium algarvense
Erben, commonly known as sea lavender, revealed significant influences on the synthesis
of secondary metabolites and its biological properties. The biomass collected from distinct
geographic locations, specifically “Ria de Alvor” in Portimão and “Ria Formosa” in Tavira,
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displayed notable variations in total phenolics and condensed tannins. Samples from
“Ria de Alvor” during spring and autumn exhibited the highest content, accompanied
by enhanced antioxidant and anti-inflammatory activities. Certain compounds exhibited
season-specific and location-dependent variations. For example, during the summer, in-
creased concentrations of luteolin, naringenin, and two apigenin derivatives were observed,
whereas a myricetin derivative was more prevalent in the spring. Additionally, myricetin-
3-O-rhamnoside and theasinensin B were more abundant in samples from “Ria Formosa”,
while galactinol dihydrate was found in larger quantities in plants from “Ria de Alvor”.
Seasonal changes were linked to environmental elements, notably temperature, whose
excessive elevation can negatively impact plant metabolism. Furthermore, the presence of
flowers and seeds in samples collected during spring and autumn appears to play a role in
increasing the levels of polyphenols, consequently enhancing the biological properties of
these samples. Additionally, differences observed among ecotypes (geographical locations)
may be attributed to genetic factors. Overall, sea lavender plants from “Ria de Alvor”
demonstrated favorable conditions for producing bioactive molecules, particularly during
spring and autumn, correlating with the highest biological properties observed in these
samples. These findings contribute valuable insights into the phytochemical changes and
biological activities of L. algarvense, suggesting its potential as a source for natural products
with health benefits.
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