Antitumor Mechanism and Therapeutic Potential of Cordycepin Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Effects of Cordycepin Derivatives Inhibits the Proliferation on MCF7, HepG2 and SGC-7901
2.3. Compound 4a Induces Apoptosis in MCF7 Cells
2.4. Results of Western Blot Analysis
3. Conclusions
4. Experimental Section
4.1. Chemicals and Reagents
4.2. Synthesis
4.2.1. Synthesis of Compound 2
4.2.2. Synthesis of Compounds 3a–3c (i)
4.2.3. Synthesis of Compound 4a–4c (ii)
4.3. Characterization
4.3.1. 5′-O-(Tert-butyldimethylsilyl)-3′-deoxyadenosine (2)
4.3.2. 5′-O-(Tert-butyldimethylsilyl)-6-thiophenecarboxamide-3′-deoxya-denosine (3a)
4.3.3. 5′-O-(Tert-butyldimethylsilyl)-6-furancarboxamide-3′-deoxyadenosine (3b)
4.3.4. 5′-O-(Tert-butyldimethylsilyl)-6-6-chloroformamide-3′-deoxya-denosine (3c)
4.3.5. 6-Thiophenecarboxamide-3′-deoxyadenosine (4a)
4.3.6. 6-Furancarboxamide-3′-deoxyadenosine (4b)
4.3.7. 6-6-Chloronicotinamide-3′-deoxyadenosine (4c)
4.4. Cell Culture
4.5. Cell Proliferation and Cytotoxicity Assays
4.6. Hoechst 33258 Staining Assay
4.7. Mitochondrial Membrane Potential Assay
4.8. Cell Cycle Detection
4.9. Western Blot Assay
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cunningham, K.; Manson, W.; Spring, F.; Hutchinson, S. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 1950, 166, 949. [Google Scholar]
- Tuli, H.S.; Sandhu, S.S.; Sharma, A. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 2014, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Ye, M.; Zhou, Z.; Sun, W.; Lin, X. The genus Cordyceps: A chemical and pharmacological review. J. Pharm. Pharmacol. 2013, 65, 474–493. [Google Scholar] [PubMed]
- Park, J.M.; Lee, J.S.; Lee, K.R.; Ha, S.J.; Hong, E.K. Cordyceps militaris extract protects human dermal fibroblasts against oxidative stress-induced apoptosis and premature senescence. Nutrients 2014, 6, 3711–3726. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xin, X.; Weng, Y.; Gui, Z. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS ONE 2017, 12, e0186279. [Google Scholar]
- Liu, W.; Zhang, L.; Sun, S.; Tang, L.; He, S.; Chen, A.; Yao, L.; Ren, D. Cordycepin inhibits inflammatory responses through suppression of ERK activation in zebrafish. Dev. Comp. Immunol. 2021, 124, 104178. [Google Scholar]
- Zhang, X.; Huang, W.; Tang, P.; Sun, Y.; Zhang, X.; Qiu, L.; Yu, B.; Zhang, X.; Hong, Y.; He, Y. Anti-inflammatory and neuroprotective effects of natural cordycepin in rotenone-induced PD models through inhibiting Drp1-mediated mitochondrial fission. Neurotoxicology 2021, 84, 1–13. [Google Scholar] [CrossRef]
- Liao, X.; Gao, Y.; Zhao, H.; Zhou, M.; Chen, D.; Tao, L.; Guo, W.; Sun, L.; Gu, C.; Chen, H. Cordycepin reverses cisplatin resistance in non-small cell lung cancer by activating AMPK and inhibiting AKT signaling pathway. Front. Cell Dev. Biol. 2021, 8, 609285. [Google Scholar]
- Mai, N.X.D.; Le, U.-C.N.; Nguyen, L.H.T.; Ta, H.T.K.; Van, N.H.; Le, T.M.; Phan, T.B.; Nguyen, L.T.T.; Tamanoi, F.; Doan, T.L.H. Facile synthesis of biodegradable mesoporous functionalized-organosilica nanoparticles for enhancing the anti-cancer efficiency of cordycepin. Microporous. Mesoporous. Mater. 2021, 315, 110913. [Google Scholar]
- Wen, Z.; Du, X.; Meng, N.; Li, Y.; Mi, R.; Li, X.; Sun, Y.; Ma, S.; Li, S. Tussah silkmoth pupae improve anti-tumor properties of Cordyceps militaris (L.) Link by increasing the levels of major metabolite cordycepin. RSC Adv. 2019, 9, 5480–5491. [Google Scholar] [CrossRef]
- Lee, C.; Huang, K.; Shaw, J.; Chen, J.; Kuo, W.; Shen, G.; Grumezescu, A.M.; Holban, A.M.; Wang, Y.; Wang, J. Trends in the immunomodulatory effects of Cordyceps militaris: Total extracts, polysaccharides and cordycepin. Front. Pharmacol. 2020, 1824, 575704. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Zhang, X.; Zhang, G.; Bao, W.; Zhang, Y.; Zhang, M.; Zhou, X. Cordycepin inhibits airway remodeling in a rat model of chronic asthma. Biomed. Pharmacother. 2017, 88, 335–341. [Google Scholar] [PubMed]
- Han, F.; Dou, M.; Wang, Y.; Xu, C.; Li, Y.; Ding, X.; Xue, W.; Zheng, J.; Tian, P.; Ding, C. Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress. Acta Biochim. Biophys. Sin. 2020, 52, 125–132. [Google Scholar] [CrossRef]
- Jia, Y.; Li, H.; Bao, H.; Zhang, D.; Feng, L.; Xiao, Y.; Zhu, K.; Hou, Y.; Luo, S.; Zhang, Y. Cordycepin (3′-deoxyadenosine) promotes remyelination via suppression of neuroinflammation in a cuprizone-induced mouse model of demyelination. Int. Immunopharmacol. 2019, 75, 105777. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.M.; Hong, S.Y.; Yang, S.H.; Wu, C.C.; Wang, C.Y.; Huang, B.M. Anti-cancer effect of cordycepin on FGF9-induced testicular tumorigenesis. Int. J. Mol. Sci. 2020, 21, 8336. [Google Scholar] [CrossRef] [PubMed]
- Radhi, M.; Ashraf, S.; Lawrence, S.; Tranholm, A.A.; Wellham, P.A.D.; Hafeez, A.; Khamis, A.S.; Thomas, R.; McWilliams, D.; DeMoor, C.H. A systematic review of the biological effects of cordycepin. Molecules 2021, 26, 5886. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Park, S.J.; Park, Y.J. The anticancer properties of cordycepin and their underlying mechanisms. Int. J. Mol. Sci. 2018, 19, 3027. [Google Scholar] [CrossRef]
- Liu, C.; Qi, M.; Li, L.; Yuan, Y.; Wu, X.; Fu, J. Natural cordycepin induces apoptosis and suppresses metastasis in breast cancer cells by inhibiting the Hedgehog pathway. Food Funct. 2020, 11, 2107–2116. [Google Scholar] [CrossRef]
- Lee, H.J.; Burger, P.; Vogel, M.; Friese, K.; Brüning, A. The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Investig. New Drugs 2012, 30, 1917–1925. [Google Scholar]
- Noh, E.M.; Jung, S.H.; Han, J.H.; Chung, E.Y.; Jung, J.Y.; Kim, B.S.; Lee, S.H.; Lee, Y.R.; Kim, J.S. Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int. J. Mol. Med. 2010, 25, 255–260. [Google Scholar]
- Thomadaki, H.; Tsiapalis, C.M.; Scorilas, A. Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol. Chem. 2005. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lim, M.H.; Kim, K.M.; Jeon, B.H.; Song, W.O.; Kim, T.W. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol. Appl. Pharmacol. 2011, 257, 165–173. [Google Scholar] [CrossRef]
- Bi, Y.; Li, H.; Yi, D.; Sun, Y.; Bai, Y.; Zhong, S.; Song, Y.; Zhao, G.; Chen, Y. Cordycepin augments the chemosensitivity of human glioma cells to temozolomide by activating AMPK and inhibiting the AKT signaling pathway. Mol. Pharm. 2018, 15, 4912–4925. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Guo, Z.; Meng, Q.; Lu, J.; Wang, N.; Liu, H.; Liang, Q.; Quan, Y.; Wang, D.; Xie, J. Cordycepin affects multiple apoptotic pathways to mediate hepatocellular carcinoma cell death. Anti-Cancer Agents Med. Chem. 2017, 17, 143–149. [Google Scholar]
- Dong, J.; Li, Y.; Xiao, H.; Luo, D.; Zhang, S.; Zhu, C.; Jiang, M.; Cui, M.; Lu, L.; Fan, S. Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. Toxicol. Appl. Pharmacol. 2019, 364, 12–21. [Google Scholar] [CrossRef]
- Alberts, S.R.; Wagman, L.D. Chemotherapy for colorectal cancer liver metastases. Oncologist 2008, 13, 1063–1073. [Google Scholar] [CrossRef]
- Lu, H.; Li, X.; Zhang, J.; Shi, H.; Zhu, X.; He, H. Effects of cordycepin on HepG2 and EA. hy926 cells: Potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma. Oncol. Lett. 2014, 7, 1556–1562. [Google Scholar] [CrossRef]
- Nasser, M.I.; Masood, M.; Wei, W.; Li, X.; Zhou, Y.; Liu, B.; Li, J.; Li, X. Cordycepin induces apoptosis in SGC-7901 cells through mitochondrial extrinsic phosphorylation of PI3K/Akt by generating ROS. Int. J. Oncol. 2017, 50, 911–919. [Google Scholar] [CrossRef]
- Wei, C.; Khan, M.A.; Du, J.; Cheng, J.; Tania, M.; Leung, E.L.H.; Fu, J. Cordycepin inhibits triple-negative breast cancer cell migration and invasion by regulating EMT-TFs SLUG, TWIST1, SNAIL1, and ZEB1. Front. Oncol. 2022, 12, 898583. [Google Scholar] [CrossRef]
Compounds | R1 | R2 | IC50 [a] (μM) | ||
---|---|---|---|---|---|
MCF7 | HepG2 | SGC-7901 | |||
Cordycepin | -OH | -H | 46.85 ± 1.62 | 51.84 ± 1.36 | 51.27 ± 3.77 |
3a | -OTBDMS | 114.08 ± 2.03 ** | 133.75 ± 5.12 ** | 102.03 ± 1.08 * | |
3b | -OTBDMS | 98.03 ± 0.04 ** | 60.43 ± 1.15 ** | 41.74 ± 2.36 ** | |
3c | -OTBDMS | 45.79 ± 1.01 ** | 87.01 ± 0.04 ** | 82.61 ± 1.48 ** | |
4a | -OH | 27.57 ± 0.52 *** | 68.79 ± 3.34 ** | 38.93 ± 0.06 * | |
4b | -OH | 40.94 ± 1.67 ** | 33.37 ± 0.08 ** | 86.31 ± 2.35 ** | |
4c | -OH | 45.26 ± 0.58 ** | 48.39 ± 0.79 ** | 80.39 ± 1.05 ** | |
10-hydroxycamptothecin (HCPT) [b] | 7.56 ± 0.05 *** | 6.56 ± 0.45 ** | 7.96 ± 0.65 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Zhao, L.; Shen, G.; Yu, D.; Yuan, T.; Zhang, Y.; Yang, B. Antitumor Mechanism and Therapeutic Potential of Cordycepin Derivatives. Molecules 2024, 29, 483. https://doi.org/10.3390/molecules29020483
Cui L, Zhao L, Shen G, Yu D, Yuan T, Zhang Y, Yang B. Antitumor Mechanism and Therapeutic Potential of Cordycepin Derivatives. Molecules. 2024; 29(2):483. https://doi.org/10.3390/molecules29020483
Chicago/Turabian StyleCui, Linlin, Li Zhao, Guanghuan Shen, Dahai Yu, Tian Yuan, Yingyu Zhang, and Bo Yang. 2024. "Antitumor Mechanism and Therapeutic Potential of Cordycepin Derivatives" Molecules 29, no. 2: 483. https://doi.org/10.3390/molecules29020483
APA StyleCui, L., Zhao, L., Shen, G., Yu, D., Yuan, T., Zhang, Y., & Yang, B. (2024). Antitumor Mechanism and Therapeutic Potential of Cordycepin Derivatives. Molecules, 29(2), 483. https://doi.org/10.3390/molecules29020483