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Abstract: Existing formats based on the simplified molecular input line entry system (SMILES)
encoding and molecular graph structure are designed to encode the complete semantic and structural
information of molecules. However, the physicochemical properties of molecules are complex, and
a single encoding of molecular features from SMILES sequences or molecular graph structures
cannot adequately represent molecular information. Aiming to address this problem, this study
proposes a sequence graph cross-attention (SG-ATT) representation architecture for a molecular
property prediction model to efficiently use domain knowledge to enhance molecular graph feature
encoding and combine the features of molecular SMILES sequences. The SG-ATT fuses the two-
dimensional molecular features so that the current model input molecular information contains
molecular structure information and semantic information. The SG-ATT was tested on nine molecular
property prediction tasks. Among them, the biggest SG-ATT model performance improvement was
4.5% on the BACE dataset, and the average model performance improvement was 1.83% on the
full dataset. Additionally, specific model interpretability studies were conducted to showcase the
performance of the SG-ATT model on different datasets. In-depth analysis was provided through
case studies of in vitro validation. Finally, network tools for molecular property prediction were
developed for the use of researchers.

Keywords: molecular graph; knowledge graph; cross-attention; molecular property prediction

1. Introduction

Currently, well-designed molecular representations, such as molecular fingerprints
or molecular descriptors, can achieve good results for specific tasks. However, most
molecular characterizations based on feature engineering are optimized for specific tasks
and lack generality [1–3]. With the development of deep neural networks, various molecular
representation models have freed researchers from complex and time-consuming feature
engineering [4,5]. Molecular characterization learning has also officially entered the era of
deep learning, e.g., in compound property prediction, drug screening of small molecules,
drug interactions, and more foreseeable applications [6–8].

Molecular property prediction methods based on molecular graphs and SMILES
sequence-based molecular properties have rapidly developed [9–11]. To address the prob-
lem of inadequate representation of molecular features in a single dimension [12], Pang
et al. proposed a multidimensional molecular feature encoding model in 2021. They used
the molecular SMILES sequence encoding as input and obtained the 1D and 2D feature
vectors of molecules using the transformer model and message-passing neural networks
(MPNN) model, respectively [13–15]. In addition, basic chemical domain knowledge is an
important prior knowledge in molecular information, and work has been implemented
to utilize domain prior chemical knowledge for multimodal learning [16]. Combining the
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above ideas, Fang et al. proposed the knowledge-enhanced contrastive learning (KCL)
framework to construct a chemical element knowledge graph (CKG) based on the periodic
table of elements to expand the molecular graph by expanding relationships between
elements and their basic chemical properties on the original graph. The expanded molec-
ular graph contains the topology of the molecule and basic chemical domain knowledge
of the element [17]. Hasebe’s work proposes a knowledge-embedded message-passing
neural network [18]. This network can combine molecular properties and knowledge
annotations on molecular graphs as supervision to learn molecular properties and struc-
tures. Incorporating knowledge embedding into the model for multimodal learning of
molecular attributes and manually annotated knowledge makes the graph neural networks
(GNNs) more generalizable and physically consistent. The debut of ChatGPT has attracted
great attention from the natural language processing (NLP) community [19]. Large lan-
guage models have proved their ability to perform various NLP tasks. With the success
of language processing models based on transformer architecture in many fields, related
researchers have also attempted to introduce it and pre-train with fine-tuning models for
molecular characterization [20]. The topological information of the molecule is expressed
by aggregating information according to the presence or absence of edges between atoms
when aggregating information after self-attention has been computed during pre-training.

In current molecular property prediction tasks, molecular representations are usually
represented using only molecular graphs or SMILES sequence encoding. However, neither
type of input can express sufficiently rich molecular semantic and structural information
on its own. Because SMILES sequences alone encode a complex molecular spatial structure
compressed into a single linear sequence, they cannot encode the spatial structure of the
molecule itself. The molecular graph-based approach heavily depends on the amount
of data, and it performs worse than the molecular descriptor-based approach when the
dataset is small. In addition, GNNs are prone to over-smoothing problems, so the number
of GNN layers is usually only two to four, which limits their feature extraction capability.
In addition, the method overemphasizes the importance of GNNs for structure perception
and ignores the generalization of the graph structure.

Obtaining models with sufficient prediction accuracy requires large datasets for pre-
training. It is difficult to achieve training goals using small datasets. One solution is to
use transfer learning, which can improve the prediction accuracy for tasks with small
datasets [21]. However, to apply transfer learning, another dataset with molecular proper-
ties related to the target properties must be available. Therefore, to address the universality
of prediction models across different datasets, multimodal learning using prior knowledge
of physics and chemistry has improved the prediction model performance by incorporating
knowledge into deep learning. For example, existing molecular representation models
usually encode atoms in a molecular graph as individuals who can interact only in the
presence of chemical bonds but do not consider the correlations between atoms, which
qualitatively exist between unconnected atoms in the molecular graph. If a knowledge
graph is constructed based on the relationships between elements using domain knowledge,
then the original molecular graph can be enhanced through knowledge-guided expansion.
This expansion helps establish connections between atoms that share common properties
but are not directly connected via chemical bonds.

Combining these two points, the multidimensional feature encoding that combines 1D
and 2D features complements the structural information of molecules implicitly in SMILES
and reduces the requirement of relevant molecular representation models for GNN to
extract implicit chemical information, which can further improve the accuracy of prediction
tasks. In addition, if domain knowledge is applied to the prediction of molecular attributes,
it is helpful for the model to capture the interaction between atoms and the characteristics
of the molecular substructure.

To solve these problems, multidimensional molecular feature encoding is explored
and combined with a molecular knowledge graph (MKG), and the SG-ATT model is
proposed. Thus, the SG-ATT can learn molecular features from 1D semantic and 2D
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topological structure perspectives. In the process of learning molecular graph features, the
proposed MKG incorporates features at both the atom and functional group levels, thereby
enhancing the representation capability of molecular graphs. After feature encoding, a
cross-attention method is used to extract molecular features adaptively based on different
weighted molecular features, and finally, a composite molecular representation is obtained.

The main contributions of SG-ATT are as follows:

(1) Fusing 1D and 2D molecular features encoding to learn molecular representations
from a multidimensional view.

(2) Considering the generalization ability of the model for small datasets, the molecular
graph is enhanced using MKG guidance, which allows the model to learn richer
molecular information.

(3) Adopting a cross-attention mechanism to improve the learning ability of the represen-
tation of molecular.

2. Results
2.1. Dataset and Setup

To benchmark the SG-ATT model performance, nine widely used molecular property-
related datasets were selected from the MoleculeNet dataset, covering physical chemistry
(ESOL, FreeSolv), Quantum mechanics (QM7), biophysics (BACE, HIV), and physiology
(BBBP, Tox21, ToxCast, SIDER, and ClinTox) [22]. The number of tasks in these datasets is 1
to 617, and the size of the datasets is 642 to 41,127. Table A1 in Appendix C summarizes
the details of the datasets.

2.2. Benchmarking Methods

The SG-ATT model was compared with the following baseline methods to test its
performance on downstream tasks. The graph convolutional network (GCN) and model
Weave are two types of graph convolutional methods [23,24]. The Message-Passing Neural
Network (MPNN) considers the edge features and strengthens the message interactions
between bonds and atoms during message passing [15]. Directed Message Passing Neural
Networks (DMPNNs) and Communicative Message-Passing Neural Networks (CMPNNs)
are improvements to MPNN [25,26]. The Communicative Message Passing Transformer
(CoMPT) considers edge features and enhances the message interaction between bonds
and atoms in the message-passing process [27]. Fusion network of molecular fingerprints
and molecular graphs for molecular property prediction (FP-GNN) [28].

(1) GCN is a convolutional method that focuses on learning the relationship with the
nearest neighbor node [23].

(2) Weave transformed feature vectors using pair features with distant atoms in addition
to atom features focusing only on atoms [24]. MPNN utilizes features from nodes and
edges and then summarizes them into a framework [15].

(3) DMPNN treated the molecular graph as an edge-oriented directed structure, avoiding
information redundancy during iterations [25].

(4) CMPNN improves molecular embedding by enhancing message interaction between
nodes and edges through communication kernel [26].

(5) CoMPT invokes a communicative message-passing paradigm based on Transformer [27].
(6) FP-GNN combines and simultaneously learns information from molecular graphs

and fingerprints for molecular property prediction [28].

2.3. Experimental Setup

Using the Adam optimizer with an initial learning rate of 0.0001 and a batch size set
to 64, these configurations are implemented through PyTorch (version 1.12.0) and the Deep
Graph Library [29,30]. For the graph encoder, the dimension size of the feature vector
is set to 128. In the sequence encoder, the number of attention heads in the transformer
is set to 8, and the final feature length is set to 128. To prevent overfitting, an early
stopping mechanism is employed to ensure SG-ATT runs for a maximum of 100 epochs.
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Hyperparameter selection is performed using a random search approach. Additionally,
for each experimental run, the average of results from 10 random seeds is taken. All code
development is conducted on a GPU (NVIDIA GeForce 3080ti, NVIDIA, Santa Clara, CA,
USA) utilizing an Ubuntu server.

2.4. Experimental Results and Analysis

In this section, we tested whether the proposed SG-ATT model approach outperformed
the benchmark approach. Table 1 provides the following observations. Firstly, SG-ATT
consistently achieved the best performance across all regression datasets, the best results
on three classification datasets, and the second-best result on one dataset. The significant
overall dataset performance demonstrates the effectiveness of SG-ATT in molecular prop-
erty prediction tasks. Furthermore, SG-ATT exhibited a relative improvement of 2.9% over
the state-of-the-art (SOTA) baseline in the small dataset FreeSolv, which comprises only
642 labeled molecules. This result confirms the advantage of SG-ATT in small datasets for
several reasons. Firstly, the model leverages functional group-level knowledge, amplifying
its capacity to capture distinctive features of hydrophilic functional groups such as hy-
droxyl (-OH) and amino (-NH2), as well as hydrophobic functional groups like alkyl (-CH3).
These functional groups often exert a crucial influence on a molecule’s solubility in various
solvents. Secondly, the SG-ATT model seamlessly integrates multidimensional features and
chemical element knowledge, empowering it not only to glean more nuanced molecular
representations from limited datasets but also to enhance its generalization prowess across
a spectrum of datasets.

To further validate the model’s performance, we treated each task on the Tox21,
ToxCast, and SIDER datasets as a separate attribute and then compared ROC-AUC among
tasks within each dataset. Figure 1 illustrates the comparison of ROC-AUC for nine
attribute tasks on each dataset using different models. Our model achieved state-of-the-art
performance in 20 out of the total 27 attribute tasks.
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Table 1. Comparison of data from molecular attribute prediction models.

Metric ROC-AUC RMSE MAE

Dataset BBBP BACE HIV ClinxTox ESOL FreeSolv QM7

Weave [2016] 0.837 0.791 — 0.823 1.158 2.398 —
GCN [2017] 0.877 0.854 0.740 0.807 1.068 2.900 —

MPNN [2017] 0.913 0.815 0.770 0.879 1.167 2.185 111.4
DMPNN [2019] 0.919 0.852 0.771 0.897 0.980 2.177 103.5
CMPNN [2020] 0.927 0.869 0.782 0.902 0.798 0.956 75.1
CoMPT [2021] 0.938 0.871 — 0.934 0.774 1.855 65.3
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Table 1. Cont.

Metric ROC-AUC RMSE MAE

Dataset BBBP BACE HIV ClinxTox ESOL FreeSolv QM7

FP-GNN [2022] 0.916 0.860 0.824 0.840 0.675 0.905 —
SG-ATT 0.943 0.910 0.827 0.920 0.646 0.879 64.1

Bold cells indicate the best results achieved, underlined cells indicate the second-best results achieved, and “—”
indicates that the model did not undergo corresponding experimental testing.

2.5. Ablation Experiments

The ablation study was conducted to verify the importance of multidimensional
features in the SG-ATT model on model performance. The experiments were repeated five
times on each encoder to obtain stable results. Table 2 shows the experimental results of
SG-ATT.

Table 2. Results of SG-ATT ablation experiments.

Metric ROC-AUC RMSE MAE

Dataset BBBP BACE HIV ClinxTox ESOL FreeSolv QM7

SG-ATT 0.943 0.910 0.827 0.920 0.646 0.879 64.1
-w/o Graph 0.883 0.864 0.757 0.853 0.858 1.126 68.7

-w/o Sequnce 0.922 0.879 0.788 0.910 0.692 0.904 67.3

Bold cells indicate the best results achieved.

The bold cells indicate the best results obtained through SG-ATT, and the underlined
cells indicate the second-best results obtained via SG-ATT. w/o Graph indicates the removal
of the graph feature module in the SG-ATT model, and w/o Sequence indicates the removal
of the sequence feature module in the SG-ATT model. The experimental results in Table 2
show that the exclusion of either component (Transformer and AMPNN) can easily degrade
the model performance. Excluding the AMPNN module causes more obvious model
performance degradation, which proves the effectiveness of AMPNN in improving SG-
ATT performance. The SG-ATT experiments obtain the worst results if both components
are simultaneously excluded. The ablation experiments confirm that the SG-ATT model
can learn richer molecular representations and improve the prediction performance of
downstream tasks.

2.6. Exploration of Model Interpretability

Figure 2 depicts the prediction results of the four models on the BBBP test set, with red
dots representing instances predicted with a label of 0 and blue dots representing instances
predicted with a label of 1. When predictions are entirely accurate, there are a total of
42 instances with a label of 0 in the BBBP test set, represented by red dots. However, in
the prediction plot of GCN, only 18 instances are predicted to be 0, whereas in SG-ATT,
30 instances are predicted to be 0. This highlights that the SG-ATT model, through the
fusion of multi-dimensional features and prior knowledge, can capture rich features of
different molecular types. Consequently, compared to other baseline models, the SG-ATT
model yields more accurate prediction results.

To validate whether the molecular embeddings learned through the SG-ATT model
align with real-world knowledge, experiments were conducted for the blood–brain barrier
permeability task using randomly selected eight molecules with different scaffolds. Dif-
ferent molecules are depicted in Figure 3, where distinct molecular scaffolds exhibit both
similar and dissimilar cases. As shown in Figure 4, the trained model was employed to
obtain embedding vectors for the eight molecules. The cosine similarity between differ-
ent vectors was computed to assess the features learned through the model concerning
molecular characteristics for various scaffolds. The specific SMILES representations for
each molecular graph are provided in Appendix D.
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T-distributed random neighbor embedding (t-SNE) is a machine learning algorithm
used for data dimensionality reduction, visualizing high-dimensional data, and providing
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an intuitive understanding of the data distribution. To further investigate the effectiveness
of SG-ATT in learning molecular features, the dimensionality of the embedding vectors
learned through the SG-ATT model was reduced to 2D using the t-SNE visualization
method. As shown in Figure 5, it can be observed that the molecular embedding vectors
obtained through SG-ATT can clearly distinguish active molecules from inactive ones with
higher classification accuracy. Additionally, the embeddings of different active molecules
exhibit a more clustered pattern. Therefore, SG-ATT can learn differentiated feature repre-
sentations among different active molecules and capture similar features among molecules
of the same class, which is crucial for its outstanding performance in molecular property
prediction tasks.
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2.7. Case Analysis

Chronic hepatitis B caused by hepatitis B virus (HBV) is a kind of serious disease.
HBV inhibitory drugs are developed from a variety of compounds, and to further explore
whether anti-HBV compounds are potentially promising for research, it is necessary to
validate their anti-HBV capacity (IC50) and HepG2 hepatocytotoxicity (CC50). We used
compounds screened with the fields of target name and target tissue from the CHEMBL
database as training data and set the HBV (IC50) concentration and hepatotoxicity con-
centration (CC50) thresholds at 20 µM (the smaller the IC50 value; the more specific the
performance of the antibody) and 100 µM (higher CC50 concentration indicates lower toxic-
ity), respectively, to convert the compound activity data against the target into binary data
for prediction [31]. To validate the reliability of the SG-ATT model, we also used in vitro
validation to test the model on IC50 and CC50 to predict the properties of the compounds.
Throughout the in vitro validation, we tested the activity data of 100 compounds for IC50
and CC50. Table 3 shows the final test results of CC50 and IC50 on CHEMBL data and
in vitro validation data.

Table 3. Test results on CHEMBL screening data and in vitro validation data.

Dataset ROC-AUC

CHEMBLCC50 0.817
in vitro validationCC50 0.704

CHEMBLIC50 0.783
in vitro validationIC50 0.696

We counted the model prediction results and listed the top 10 compounds ranked using
µM prediction size. The first represents the largest µM, and the 10th represents the smallest
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µM. Table 4 shows the IC50 prediction results and in vitro validation results obtained
through the SG-ATT model for compounds with specified thresholds, and Table 5 shows
the CC50 prediction results and in vitro validation results of the model for compounds with
specified thresholds. The tests of IC50 and CC50 for compounds not present in the training
data show that the model can predict different physicochemical properties of compounds
as well as generalizability to different datasets.

Table 4. Top 10 compounds for predicting IC50.

Rank SMILES In Vitro Validation (µM)

1 O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=C(F)
C=CC=C2)=O)=C\C3=CC=CC=C3 >20

2 O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=CC=CC=C2)=O)
=C\C3=CC=CC=C3Br >20

3 O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=CC=CC=C2)=O)
=C\C3=CC=CC=C3Cl >20

4 Br/C(C1=CC=CC=C1)=C(NC(C2=CC=CC=C2)=O)/
C(N[C@H](CO)CC3=CC=CC=C3)=O 3.86

5 Br/C(C1=CC=C(Br)C=C1)=C(NC(C2=CC=CC=C2)=O)/
C(N[C@@H](CC3=CC=CC=C3)CO)=O 4.45

6 O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=CC=CC=C2)
=O)=C\C3=CC=CC(C)=C3 >20

7 O=C(N1CCCCC1)[C@@H](NC(C2=CC=CC=C2)
=O)CC3=CC=CC=C3 >20

8 Br/C(C1=CC=CC=C1OC)=C(NC(C2=CC=C([N+]([O-])
=O)C=C2)=O)/C(N[C@@H](CO)C(C)C)=O 2.06

9 Br/C(C1=CC=CC=C1Cl)=C(NC(C2=CC=CC=C2)=O)/
C(N[C@@H](CC3=CC=CC=C3)CO)=O 1.88

10 O=C1C2=CC(OCCN(CC)CC)=CC=C2N=C
(SCC3=C(OC)C=CC=C3)N1CC4=CC=CS4 1.93

Table 5. Top 10 compounds for predicting CC50.

Rank SMILES In Vitro Validation (µM)

1 Br/C(C1=CC=C(O)C=C1)=C(NC(C2=CC=CC=C2)=O)/
C(N[C@H](CO)CC3=CC=CC=C3)=O >100

2 O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=C(F)
C=CC=C2)=O)=C\C3=CC=CC=C3 >100

3 O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC
(C2=CC=CC=C2)=O)=C\C3=CC=CC=C3Cl >100

4 Br/C(C1=CC=CC=C1Br)=C(NC(C2=CC=CC=C2)=O)/
C(N[C@@H](CC3=CC=CC=C3)CO)=O >100

5 O=C(N[C@H](CO)CC1=CC=CC=C1)/
C(NC(C2=CC=CC=C2)=O)=C\C3=CC=CC(C)=C3 >100

6 O=C(N[C@H](CO)CC1=CC=CC=C1)/C
(NC(C2=CC=CC=C2)=O)=C\C3=CC=C(Br)C=C3 72.66

7 Br/C(C1=CC=C(C#N)C=C1)=C(NC(C2=CC=CC=C2)=O)/
C(N[C@@H](CC3=CC=CC=C3)CO)=O >100

8 O=C(N/C(C(N1CCCCC1)=O)=C(Br)/C2=NC=CS2)
C(C=C3)=CC=C3F >100

9 O=C(NC(CO)C(C)C)[C@@H](NC(C1=CC=CC=C1)=O)CC2=CC=C(OCCN(C)C)C=C2 89.10

10 O=C(N[C@H](CC(C)C)CO)/C(NC(C1=CC=C([N+]([O-])=O)
C=C1)=O)=C(Br)\C2=CC=CC=C2OC 86.61

2.8. Web Server Implementation

To facilitate researchers in implementing the proposed SG-ATT model, an easy-to-use
web server was built on http://vectorspaceai.cn/SG-ATT (accessed on 12 June 2023). The
server interface is shown in Figure 6. To obtain the desired results, the user only needs to

http://vectorspaceai.cn/SG-ATT
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upload the SMILES string of the compound of interest and select the desired predicted
molecular properties. Finally, the service returns the molecular graph of the corresponding
compound along with the predicted results of the desired property.
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3. Materials and Methods

Molecular property prediction can be considered as classification tasks and regression
tasks to determine whether a molecule has certain activities. In the SG-ATT approach, a
molecule is represented by a sequence of SMILES, which consists of a series of chemical
atoms and chemical bonds. The sequence of SMILES is denoted as Sl = {s1, s2, · · · si},
where i is the length of Sl .

In this section, the general framework of the SG-ATT model is first introduced; then,
the specific methods of each module are described. The structure of the SG-ATT model
is shown in Figure 7. The input to SG-ATT is a sequence of one-dimensional molecular
SMILES. In part I, the SMILES sequence is converted into a molecular graph using the
RDKit toolkit; then, the original molecular graph is enhanced through MKG and used as the
input to the graph encoder. For the graph encoder, atomic feature vectors of the molecules
are generated by combining feature attention through the atom-aware message-passing
neural network (AMPNN). In part II, the SMILES sequence is directly encoded using the
frequent consecutive subsequence (FCS) algorithm to generate sequence data as input to
the sequence encoder [32]. The sequence encoder utilizes the transformer architecture
to encode the sequence data directly and generate a feature vector that represents the
one-dimensional sequence of molecules. In part III, 2D molecular graph feature vectors and
1D sequence feature vectors are fed into a cross-attention block. The feature mixing part
generates a high-dimensional vector on which a decoder is implemented for downstream
molecular property prediction tasks.
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3.1. Feature Extraction

SMILES is converted to undirected graphs using the RDKit toolkit, denoted as
G = {V, E} [33], where V is a set of n nodes, and E is a series of edges. eij is the edge (i, j),
representing the initial feature. Let h(j) be the node hiding state and h

(
eij
)

be the edge
hiding state. Learning the graph encodes, f = G → R d, which encodes the input graph
into a vector representation with no labels.

The SG-ATT model applies a data-driven sequence pattern mining algorithm called
the FCS algorithm. This algorithm can progressively decompose the SMILES sequence
of a molecule into smaller subsequences. Molecular properties are often determined
using specific substructures, and FCS decomposes molecular SMILES sequences into
medium-sized substructures that are more likely to provide clear indications. The specific
representation is shown in Equation (1):

FCS(sl) = Di =
{

d1, d2 . . . dq
∣∣dk ∈ C

}
(1)

where C is the FCS algorithm vocabulary, s is the molecular SMILES code, and D is the s
FCS subsequence.

3.2. Sequence Encoding: Transformer

The Transformer encoder relies on an attention mechanism to compute contextual
features, which is significantly different from the Recurrent Neural Network and Con-
volutional Neural Networks [34,35]. The Transformer encoder is suitable for encoding
sequential information and has been widely used in NLP. The multiheaded attention mech-
anism enables the Transformer encoder to learn the features of different subsequences
in a sequence. When processing sequence information, the Transformer encoder can as-
sociate different positions of the sequence to obtain embeddings that contain contextual
information.

The FCS-encoded sequence is input to the Transformer encoder for sequence encoding
to generate a feature vector that contains 1D sequence-structure information Ttrans f ormer.
The specific process is shown in Equations (2) and (3).

D = FCS(s) (2)
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and
T1 = Trans f ormer(D). (3)

3.3. Knowledge Graph Enhancement

Previous work has been conducted to construct knowledge graphs (KGs) from public
chemical databases and scientific literature to extract associations between chemicals and
disease or drug pairs [36–38]. Considering previous research, it is known that microscopic
connections exist even between atoms in a molecule that are directly connected through
chemical bonds [17]. Based on this approach, MKG creates triples based on the chemical
elements in the periodic table of the chemical elements and their properties, with each triple
containing five properties: periodicity, metallicity, group, radius, and weight. Moreover,
functional groups in a molecule often play a crucial role in determining its properties.
Recognizing this importance, MKG has incorporated information on commonly found
functional groups in molecules. When it is found that a certain substructure exists in the
molecule, a virtual node connecting the atoms is established among the substructure ac-
cording to the guidance of MKG to capture the information of the substructure. Specifically,
as shown in Figure 8, a connection is established between an atom in a molecule extracted
in the MKG, and a 1-hop neighbor property based on that atom, and a triple is added as an
edge. Since some element attributes are continuous, it is difficult for MKG to model their
associations. Therefore, continuous element attributes are sampled into discrete grouping
labels (e.g., radius group 1 and radius group 2). For example, at the atomic level, a node
“Weight2” and an edge from “Weight2 (divide into the second group based on weight.)”
to “O (oxygen)” are added to the original molecular graph based on the triple (Weight2,
isweightOf, O). Similarly, at the functional group level, two edges from “OH (oxhydryl)”
to “O (oxygen)” and “H (Hydrogenium)” are added, respectively. Each edge between a
property and an atom is oriented from the former to the latter, while the edges between
atoms are bidirectional. Similarly, when a molecular fragment is found in the molecule, a
connection is established in the substructure through the obtained atomic number. Then, an
augmented molecular graph is obtained, which preserves the original molecular structure
and introduces virtual nodes to capture long-distance atomic interactions and molecular
substructure information. The augmented molecular graph G′ considers the microscopic
correlations between atoms, containing richer and more complex information.
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3.4. Molecular Graph Encoding: AMPNN

With the inclusion of domain knowledge extracted from MKG in the augmented
molecular graph, KMPNN is proposed to enhance the feature encoding of the molecular
graph [17]. However, considering the inclusion of different types of molecular information
in the augmented molecular graph, AMPNN extends the feature aggregation method
of KMPNN. After the message-passing process, it assigns different feature aggregation
methods to various types of messages. By employing distinct aggregation methods, the
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model can better capture the features of each message type, enhancing the richness of
information. Figure A1 in Appendix A describes the detailed flow of AMPNN. The key
idea behind AMPNN is to use two types of message-passing channels to encode different
types of neighboring nodes. During the message-passing process, a feature fusion method
based on the attention mechanism is used to better incorporate the correlations between
features into the model. The input to the encoder is an augmented molecular graph
G′ = {V, E}. Let Ni denote the set of neighbors of node i, and Xj is the initial feature of
node j. Then, K rounds of messaging are applied to all nodes. Heterogeneous message
passing is enabled using two Mt functions, where Mt1 is applied to the attributes in the
neighbors, and Mt2 is applied to the neighbors that represent atoms.

In addition, the message-passing process is extended via a self-attentive mechanism,
where the attention coefficients are calculated using Equation (4) and normalized through
the Softmax function to make the coefficients easily comparable among different nodes [39].

αuv =
exp

(
LeakyReLU

(
aT [Whu||Whv]

)
∑K∈Nv exp(LeakyReLU(aT [Whu||Whv])

, (4)

where (·)T denotes the transposition, and || denotes the crosstalk operation. aT is a
parameter vector with a dimension of R2F, where F is the dimension of the node feature
vector and serves as a parameter for the feedforward neural network. Based on this
attention coefficient, we can derive Equation (5):

hi
′ = σ

(
αijW1he(ij)

K−1
)

, (5)

where αij represents the attention coefficient between attributes, and W1 is the weight
matrix for relationships. The message passing function is represented using Equation (6):

Mt1 = hi
′·hi

k−1. (6)

Due to the varying importance of messages passed from different neighboring atoms to
the central atom, neighboring atoms adhere to a common process with distinct parameters,
as depicted in Equations (7)–(9).

βij =
exp

(
LeakyReLU

(
bT[Whi

∣∣∣∣Whj
])

∑K∈Ni
exp

(
LeakyReLU

(
bT

[
Whi

∣∣∣∣Whj
]) , (7)

hi
′ = σ

(
βijW2he(ij)

K−1
)

, (8)

and
Mt2 = hi

′·hi
k−1 (9)

where βij represents the attention coefficient between atoms, and W2 is the weight ma-
trix for bonds. During the message-passing process, aggregation collects messages from
neighboring edges, as shown in Equations (10) and (11).

eK−1
ij = Mt

(
he(ij)

K−1·hi
k−1

)
(10)

and
eK

i = Aggregate
(

eK−1
ij

)
, (11)

where aggregation types include summation and averaging. Furthermore, the node’s
hidden state is updated using the GRU function, depicted in Equation (12).

hK(v) = GRU
(

hK−1(euv) , eK
i (v)

)
, (12)
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where GRU is a gated recurrent neural network [40]. After K iterations, a readout operator
(13) is applied to obtain a graph-level representation of the molecule.

Ti
kmpnn = Set2Set

(
hK(v)

∣∣∣v ∈ G′
i

)
, (13)

where Set2Set is specifically designed to operate on sets and is more expressive than simply
summing the final node states [41].

3.5. Cross-Attention Feature Fusion

The first of the feature vectors is passed into the feature blending section, which blends
the features from the 1D sequence feature encoder and 2D graphical feature encoder. This
information is combined through a cross-attention mechanism (14):

Attention(Q, K, V) = So f tmax
(

QKT
√

C/d

)
·V, (14)

where Q is created from the output of the sequence encoder, and K and V are generated
from the output of the graph encoder using the projection functions f = wTx + b (where w
and b are weight and bias, respectively). C and d are the embedding dimensions and the
number of heads, respectively.

When predicting molecular properties, the multidimensional features of molecules
are encoded into a feature decoder. This feature decoder then produces a final predicted
label that indicates the molecular properties. Using a decoder consisting of a three-layer
feedforward neural network, a strong correlation can be established between input features
and output results.

3.6. Loss Function

To build a molecular property prediction model, a two-channel multidimensional
molecular feature encoder is constructed. The transformer is applied to the sequence
feature encoder, and the enhanced graph is input to the graph feature encoder, AMPNN.
The multidimensional feature decoder decodes all embedding vectors from the embedding
space. For the classification task, the output of the decoder is a label of 0 or 1, where 1
indicates that the predicted molecule has a certain activity, and 0 indicates that no predicted
molecule has a certain activity. For the regression task, the output of the decoder is a logistic
value. The SG-ATT model is optimized using the binary cross-entropy loss function; for
the regression task, the RMSE loss function is used, where y denotes the true label and x
denotes the model prediction, as shown in Equations (15) and (16).

Lossclassi f ication = −∑[yln(x) + (1 − y)ln(1 − x)] (15)

and

Lossregression =

√
1
m

m

∑
i=1

(y − x)2. (16)

Backpropagation is propagated from the output layer to the previous layer. With
this end-to-end approach, the model is trained with all trainable parameters. The results
show that end-to-end training can greatly improve the performance of the model because
all trainable parameters accept the gradient of the loss function. In this study, the losses
are propagated through a two-channel multidimensional molecular feature encoder and a
multidimensional feature decoder.

4. Conclusions

Combining MKG-guided molecular graph enhancement, connections are established
between atoms with similar attributes as well as between atoms within the same substruc-
ture. This knowledge-enhanced molecular graph is believed to better learn the information
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transfer between nodes to supplement the shortcomings of insufficient long-distance infor-
mation transmission and tends to overlook substructure features in the molecular graph.
In addition, many existing works focus on the feature learning of molecular substructures,
which are obtained by directly slicing the molecular substructure to replace the original
molecular graph or by fusing the substructure with the original graph for features. We
aim to supplement important substructure information in molecules from a sequence
perspective by slicing the molecular SMILES sequence with the FCS algorithm.

This study introduces the SG-ATT model, a multidimensional molecular feature atten-
tion encoding based on knowledge graphs designed for predicting molecular properties.
By integrating multidimensional features and knowledge graph characteristics, the SG-ATT
model’s ability to capture molecular information in limited datasets has been enhanced,
thereby improving its generalization capabilities across diverse datasets. Additionally, the
incorporation of functional group information allows the SG-ATT model to learn structural
features that have a significant impact on molecular properties, consequently enhancing the
model’s predictive accuracy. Through comparative experiments, visual studies, and case
analyses, we demonstrated the improved performance of the SG-ATT model. However, ex-
isting research does have certain limitations that require attention. On the one hand, current
Molecular Knowledge Graphs (MKGs) primarily integrate atomic and functional group fea-
tures, leaving ample room for further expansion. On the other hand, the one-dimensional
sequence encoding module holds the potential for more significant optimization, such
as incorporating atom distance matrices to reinforce self-attention mechanisms. In our
upcoming work, we are committed to addressing these limitations and refining the model
accordingly.
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Appendix A. Details of AMPNN

KMPNN builds upon MPNN by considering the establishment of transmission chan-
nels for different types of messages, utilizing two distinct message-passing channels.
AMPNN, based on KMPNN, considers the creation of distinct message aggregation meth-
ods for the transmission of different message types, enabling a more diverse aggregation
of various message types. Figure A1 illustrates the architecture of AMPNN. It represents
different types of nodes in the molecular graph, including atoms and attributes, through
heterogeneous message passing. During the message delivery process, nodes of the same
type share message parameters, and different parameters are used to calculate attention
coefficients between atoms and attributes, as well as between atoms and other atoms.

https://github.com/NTU-MedAI/SG-ATT
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Additionally, in the message aggregation stage, different types of messages are assigned
different feature aggregation methods.
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Appendix B. Details of GRU and Transformer

The Gated Recurrent Unit (GRU) is proposed to address the problems of long-term
memory and gradient in backpropagation. The GRU combines the current input xt with the
hidden state ht−1, passed from the previous node (this hidden state contains the relevant
information of the previous node), and the GRU produces the output yt of the currently
hidden node and the hidden state ht passed to the next node.

The encoder of the Transformer encodes an input sequence of symbol representations
x = (x1, . . ., xn) to a sequence of continuous representations z = (z1, . . ., zn). Given z, the
decoder then generates an output sequence y = (y1, . . ., yn) of symbols one element at a time.
At each step, the model is auto-regressive, consuming the previously generated symbols
as additional input when generating the next. An attention function can be described as
mapping a query and a set of key-value pairs to an output, where the query, keys, values,
and output are all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed using a compatibility function of the query
with the corresponding key. The Transformer follows this overall architecture using stacked
self-attention and pointwise, fully connected layers for both the encoder and decoder.

Appendix C. Details of Dataset

Appendix C.1. Dataset Description

Table A1 summarizes the information on the benchmark datasets, including the task
type, dataset size, and split type. Detailed information for each dataset is shown below.
These datasets play a significant role in the fields of chemistry and pharmaceutical research,
holding practical value for tasks such as developing predictive models and conducting
drug design.

The BACE dataset consists of drug molecules with diverse structural characteristics,
serving as a platform for predicting bioactivity against beta-secretase [42].

The HIV dataset includes compounds along with their viral inhibition activities,
providing crucial insights for antiretroviral drug research [43].

The BBBP dataset evaluates blood–brain barrier permeability prediction using molec-
ular features, aiding in an understanding molecule–brain interactions [44].
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Table A1. Dataset information.

Type Category Dataset Tasks Compounds Split

Classification

Biophysics BACE 1 1513 Scaffold
HIV 1 41,127 Scaffold

Physiology

SIDER 27 1427 Random
ClinTox 2 1478 Random

BBBP 1 2039 Scaffold
Tox21 12 7831 Random

ToxCast 617 8575 Random

Regression
Physical chemistry FreeSolv 1 642 Random

ESOL 1 1128 Random

Quantum mechanics QM7 1 7160 Random

The ClinTox dataset encompasses drug compounds and associated toxicity labels,
offering valuable insights into drug safety assessment [45].

The Tox21 dataset provides molecular features and covers diverse toxicity activity
labels, facilitating toxicity prediction tasks [46].

The ToxCast dataset features various toxicity activity data, offering a comprehensive
resource for predictive toxicology [47].

The SIDER dataset includes molecular structures and drug side effect labels, facilitating
the analysis of drug safety profiles [48].

The ESOL dataset focuses on predicting the solubility of different molecules, contribut-
ing to drug formulation studies [49].

The FreeSolv dataset involves predicting the free energy changes of diverse molecular
complexes, a valuable resource for free energy calculations of solvation [50].

QM7: This is a dataset designed for quantum chemistry calculations aimed at studying
the electronic structures of small organic molecules and predicting the quantum mechanical
properties of molecules [51].

Appendix C.2. Dataset Splitting

As shown in Table A1, molecular skeleton-based splitting and random splitting were
applied to all tasks for all datasets [52]. Molecular skeleton-based splitting splits molecules
with different 2D structural frameworks into different subsets. This is a more challenging
but practical setup because the test molecules may have different structures from the
training set. All datasets were divided into training, validation, and test sets at a ratio of
8:1:1. In addition, scaffold splitting was performed for the BACE, BBBP, and HIV datasets,
and random splitting was used for the remaining datasets.

Appendix D. Specific SMILES for Each Molecular Graph

Table A2 lists the specific SMILES representations corresponding to each molecule.

Table A2. Specific SMILES.

Name SMILES

SMILES.1 CC(=O)Nc1ccccc1
SMILES.2 O=C(C)Nc1ccccc1C
SMILES.3 CCC(C)=O
SMILES.4 CC(C)CO
SMILES.5 Cc1ccccc1C
SMILES.6 Cc1ccccc1
SMILES.7 CCOCC(=O)Nc1ccccc1C
SMILES.8 O=C(C)OC(=O)c1ccccc1C
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