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Abstract: Selective supported catalysts have emerged as a promising approach to enhance carrier
separation, particularly in the realm of photocatalytic hydrogen production. Herein, a pioneering
exploration involves the loading of PdS and Pt catalyst onto g-C3N4 nanosheets to construct g-
C3N4@PdS@Pt nanocomposites. The photocatalytic activity of nanocomposites was evaluated under
visible light and full spectrum irradiation. The results show that g-C3N4@PdS@Pt nanocomposites ex-
hibit excellent properties. Under visible light irradiation, these nanocomposites exhibit a remarkable
production rate of 1289 µmol·g−1·h−1, marking a staggering 60-fold increase compared to g-C3N4@Pt
(20.9 µmol·g−1·h−1). Furthermore, when subjected to full spectrum irradiation, the hydrogen pro-
duction efficiency of g-C3N4@PdS@Pt-3 nanocomposites reaches an impressive 11,438 µmol·g−1·h−1,
representing an eightfold enhancement compared to g-C3N4@Pt (1452 µmol·g−1·h−1) under identical
conditions. Detailed investigations into the microstructure and optical properties of g-C3N4@PdS
catalysts were conducted, shedding light on the mechanisms governing photocatalytic hydrogen
production. This study offers valuable insights into the potential of these nanocomposites and their
pivotal role in advancing photocatalysis.
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1. Introduction

Hydrogen (H2) [1], renowned as the lightest gas globally, boasts a high combustion
temperature, yielding water upon combustion [2]. Thus, it stands as a pivotal clean energy
source, offering promise in alleviating the dual pressures of energy scarcity and envi-
ronmental pollution [3]. Diverse methods exist for hydrogen production, encompassing
electric water decomposition [4], metal–acid reactions, thermal compound decomposi-
tion [5], steam reforming of natural gas [6], and the photocatalytic splitting of water [7–9].
While the initial three methods exhibit drawbacks, photocatalytic hydrogen production
via water splitting is heralded as a green and sustainable avenue for solar energy conver-
sion [10–12]. In this process, the development of a highly efficient photocatalyst remains
pivotal for its wider application and industrialization. Semiconductor materials, deemed
ideal photocatalysts, necessitate strong light absorption capabilities, an appropriate band
structure, abundant reactive sites, and efficient carrier separation [13].

Numerous semiconductors, including metal–organic frameworks [14], metal oxide
(TiO2 [15], ZnO [16], CeO2 [17], CuO [18], etc.), carbon-related compounds (GO [19],
C3N4 [20], etc.), and various metal sulfides (CdS [21,22], ZnIn2S4 [23], CuS [24], etc.),
serve as widely employed photocatalysts for hydrogen production. Within this realm, the
graphene-like two-dimensional structure of C3N4 (g-C3N4) stands out as a typical polymer
semiconductor [25]. The C-N atoms in its structure exhibit sp2 hybridization, forming a
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highly delocalized π-conjugated system akin to graphene’s layered structure [26]. Note-
worthy for its excellent chemical and thermal stability, visible light absorption, non-toxicity,
mineral abundance, and simple preparation process, g-C3N4 has garnered increasing atten-
tion in recent years across multiple domains, emerging as a focal point of research [27,28].
However, inherent photogenerated carrier recombination limits the overall photocatalytic
activity of pure g-C3N4, posing a challenge for substantially enhancing its efficiency. Conse-
quently, various strategies have been explored to improve g-C3N4′s photocatalytic efficiency,
including modifications [29–32] and heterojunction construction with other semiconduc-
tors [33–35].

Moreover, the deposition of co-catalysts on nanomaterial surfaces has proven pivotal
in facilitating charge separation by swiftly capturing electrons or holes, consequently ele-
vating photocatalytic performance. A gamut of precious metals (such as Pt [36], Pd [37],
Rh [38]), metal oxides (NiO [39], CuO [40]), and metal sulfides (MoS2 [41]) have found
application as co-catalysts, augmenting photocatalytic hydrogen evolution. Notably, pre-
vious studies have highlighted PdS as a promising co-catalyst in composite structures
with dual co-catalysts, as seen in Pt-PdS/Cd0.5Zn0.5S [42], PANI@CdS@PdS [43], and
Pd@CdS@PdS [44]. The incorporation of PdS enhances the ability for charge separation
and promotes excellent photo-stability. Moreover, the introduction of PdS as a co-catalyst
reduces the activation energy and fosters surface oxidation-reduction reactions [45]. Lever-
aging these advantageous characteristics of PdS, we opted to utilize it as a co-catalyst to
enhance the photocatalytic production of H2 in conjunction with g-C3N4. This strategy
of employing PdS as a catalyst to enhance the photocatalytic activity of g-C3N4 for H2
production has not been previously reported.

Thus, this study focuses on synthesizing g-C3N4 nanosheets via secondary pyrolysis
of melamine, introducing PdS as a hole-trapping agent. The concentration of PdS in g-
C3N4 nanosheets was regulated by controlling the Pd and S sources. Comprehensive
investigations into the microstructure, morphology, optical properties, and valence states of
g-C3N4 under varied PdS concentrations were conducted. Subsequently, the photocatalytic
hydrogen production performance of the g-C3N4 nanocomposites under Pt and PdS co-
catalysis was evaluated under visible light and full-spectrum irradiation. Detailed scrutiny
of the photocatalytic mechanism and analysis thereof revealed significant enhancement in
the photocatalytic hydrogen production performance of g-C3N4@PdS@Pt nanocomposites
at an optimal PdS concentration.

2. Results and Discussion

Figure 1 displays the X-ray diffraction patterns (XRD) of both g-C3N4 and g- C3N4@PdS
nanocomposites with adjustable PdS content. Notably, two prominent reflections appear
at 2θ = 27.45, and 12.8◦. The reflection at =27.5◦ aligns with the (002) diffraction peak of
hexagonal phase in JPCDS 87-1526 [46], signifying the distinct interlayer stacking of the
conjugated aromatic groups. Conversely, the faint reflection at =12.8◦ corresponds to the
(100) plane, indicative of the in-plane structure of tri-s-triazine units. Comparatively, no
new diffraction peaks attributable to PdS emerge in the g-C3N4@PdS nanocomposites. This
is mainly due to the low PdS content, and may also be due to the high dispersion of PdS on
the surface of g-C3N4 nanosheets, as reported by reference [47,48]. However, there is a no-
ticeable reduction in the intensities and broadening of the (002) and (100) peaks, evident in
the magnified illustration within Figure 1. This diminished intensity suggests a disruption
in the interlayer structure, potentially attributed to several factors. The first reason is the
ultrasonic stripping process undergone by a g-C3N4 during nanocomposite preparation.
Additionally, the insertion of PdS nanoparticles between g-C3N4 layers contributes to this
alteration. Moreover, as the quantity of PdS increases, the (002) diffraction peak shifts
towards a lower angle, providing further evidence of successful PdS insertion between the
g-C3N4 lamellas.
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Figure 1. XRD pattern of g-C3N4 and g-C3N4@PdS nanocomposites. The illustration is a magnifica-
tion of the (002) diffraction peak.

Figure 2 shows the Fourier Transform Infrared spectroscopy (FTIR) of sample g-
C3N4 and g-C3N4@PdS nanocomposites. It is apparent that the characteristic peaks of the
g-C3N4@PdS nanocomposites remain relatively consistent when compared to the pure
g-C3N4. The characteristic stretching peaks were in three main regions: 809, 1100–1700,
and 3000–3400 cm−1. Specifically, the wide vibration band at 3000–3400 cm−1 signifies the
stretching vibration peak associated with N-H, residual amino groups and O-H adsorbed
on the surface of g-C3N4 [49,50]. And the multiple strong vibration bands within the range
of 1100–1700 cm−1 arise from the unique stretching vibration peak related to the C-N
heterocyclic ring [51]. Additionally, the peak at 809 cm−1 aligns with the characteristic
vibration of the triazine units [52,53]. Furthermore, the figure illustrates that, as the amount
of PdS increases, the vibration mode within the 809 and 3000–3400 cm−1 regions weakens,
suggesting successful insertion of PdS into the g-C3N4 layer. To delve deeper into the
microstructure analysis of g-C3N4@PdS catalysts, we conducted TEM characterization.

Figure 3 illustrates the transmission electron microscopy (TEM) of both g-C3N4 and
g-C3N4@PdS nanocomposites. The g-C3N4 exhibits a uniform composition with consistent
thickness. Upon the introduction of Pd and S sources, black nanoparticles attached to the
nanosheet layer (Figure 3b). Moreover, as the quantity of Pd and S sources increases, there
is a proportional rise in the number of nanoparticles, notably evident in g-C3N4@PdS-3. The
distribution of these black nanoparticles appears uniform. The size of the nanoparticles is
about 5 nm. Detailed examination via high-resolution TEM (HRTEM, depicted in Figure 3c)
reveals a lattice fringe measuring 0.231 nm, corresponding to the (202) crystal plane of the
PdS. This observation confirms that the attached nanoparticles consist of PdS. Furthermore,
an escalation in the Pd and S sources leads to a higher loading capacity of PdS nanoparticles.
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Figure 4 illustrates the characterization of the typical g-C3N4@PdS-3 nanocomposites
through high-angle annular dark-field STEM imaging and energy dispersive spectroscopy
(EDS) elemental mappings. In the high-angle annular dark-field image, the brightness
levels correspond to the distribution of Pd and S in nanoparticles, and, conversely, reveal the
distribution of C and N. Analysis of each element’s mapping shows a uniform distribution
of C, N, Pd, and S elements within the g-C3N4@PdS-3 nanocomposites. Given the low PdS
dosage, the density of Pd and S on the nanosheet is relatively low.

To analyze the chemical bond state and molecular structure on the material surface,
both g-C3N4 and the g-C3N4@PdS nanocomposites underwent characterization via X-ray
photoelectron spectra (XPS). All XPS spectra were calibrated by aligning the C=C binding
energy position to 284.5 eV. Figure 5a illustrates the elemental composition of g-C3N4,
revealing the presence of C, N, and O elements exclusively. As the quantity of Pd and S
sources increases, a gradual emergence of weak binding energy associated with Pd and
S elements is observed. Simultaneously, intensity of the Pd and S binding energy peaks
stability intensifies. This phenomenon indicates the successful recombination of Pd and S
within the g-C3N4 layer, signifying a progressive increase in PdS content. The C1s spectra
were analyzed in Figure 5b, revealing four distinctive peaks through Gaussian fitting.
These peaks, situated at approximately ~284.5, 286.3, 287.9, and 293.5 eV, correspond to
graphitic-like carbon species (C=C or C–C), the N≡C-bond between the sp2 C atom and
NH groups in the aromatic ring, sp2 hybridized carbon atoms bonded with N (N–C=N),
and carbon attached to uncondensed-NH2 groups. Similarly, the N1s spectrum in Figure 5c,
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segmented via Gaussian fitting, displayed four peaks at 398.4 (C–N=C), 399 (N–(C)3),
400.4 (C=N–H), and 404.2 eV (π excitation), respectively. The Pd 3d spectrum showcased
peaks at 336.2 and 341.6 eV (Figure 5d), attributed to Pd 3d5/2, and Pd 3d3/2, indicating
the presence of Pd2+. Regarding the S 2p spectrum in Figure 5e, division into two peaks
with binding energies at 161.1 and 162.3 corresponded to S2p3/2 and S2p1/2, respectively,
suggesting the existence of S2− in the nanocomposites. Comparison with g-C3N4 revealed
a downward shift in the binding energy of C, N, Pd, and S with increasing Pd and S
sources. This shift implies an altered internal chemical bond within the nanocomposites
post-formation, suggesting an interface interaction between g-C3N4 and PdS. Furthermore,
the XPS valence band spectra provide insights into the valence band position (EVB, XPS)
of both g-C3N4 and g-C3N4@PdS-3, measuring 1.23 and 0.87 eV, respectively. Utilizing
the formula EVB, NHE = φ + EVB, XPS − 4.44, where φ signifies the work function of the XPS
instrument (φ = 4.258), and EVB, NHE represents the valence band position relative to the
normal hydrogen electrode (NHE), the calculated EVB, NHE are 1.05 and 0.688 eV for g-C3N4
and g-C3N4@PdS-3, respectively. These results collectively confirm that the conduction
band of g-C3N4@PdS heterojunction exists in a more negative position, which inherently
favors a hydrogen evolution reaction.
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To determine the optical band gap of the g-C3N4 and g-C3N4@PdS nanocomposites,
we conducted measurements using the ultraviolet-visible diffuse scattering spectrum,
displayed in Figure 6a. This spectrum exhibits a distinct absorption edge, demonstrating a
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redshift in the absorption edge as the load of PdS nanoparticles increases. This indicates
an enhanced light absorption capability in g-C3N4@PdS nanocomposites, visibly reflected
in their color transformation. As depicted in Figure S1 of the supporting material, the
transition from the whitish-yellow hue of g-C3N4 to brown reinforces the heightened
light absorption capacity of the nanocomposite material. This augmented light absorption
implies a more efficient utilization of light in the generation of photogenerated electrons
and holes during the photocatalytic H2 production process. The band gap of the both
g-C3N4 and g-C3N4@PdS nanocomposites was determined using the Tauc equation [54]:
αhv = A(hv − Eg)1/2, where Eg represents the optical bandgap, α signifies the absorption
coefficient, h and v denote Planck’s constant and incident light frequency, respectively,
while A represents a constant. Figure 6b illustrates the correlation between hv and (αhv)2.
According to the Tauc equation, the optical band gap is identified at the intersection of the
linear segment of the curve with the base line. For g-C3N4, g-C3N4@PdS-1, g-C3N4@PdS-2,
g-C3N4@PdS-3, and g-C3N4@PdS-4, the optical band gaps measure 2.874, 2.869, 2.866, 2.861,
and 2.854 eV, respectively.
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The effectiveness of g-C3N4 nanocomposites in photocatalytic water splitting was
evaluated under varying PdS nanoparticle loads at a temperature of 5 ◦C in the presence of
20 vol % lactic acid. Lactic acid was utilized as a sacrificial agent to capture the holes in the
process. Before evaluating the performance of photocatalytic H2 production, a co-catalyst,
Pt, was applied to the catalyst via photodeposition, where chloroplatinic acid was used as
the Pt source. Figure 7a,b display the corresponding H2 generation rate of the prepared
photocatalyst under visible light (using xenon lamp irradiation with a long pass filter,
λ > 420 nm) and full spectrum (xenon lamp irradiation) over time. The graphs illustrate
a linear increase in H2 production for all photocatalysts with extended exposure to both
light sources. Particularly under visible light, it is evident that the g-C3N4@Pt catalyst
exhibits the lowest H2 production compared to g-C3N4@PdS@Pt nanocomposites. This
lower H2 output is attributed to the rapid recombination of photogenerated carriers in
g-C3N4. Remarkably, the g-C3N4@PdS@Pt-3 nanocomposites exhibit exceptional prop-
erties, generating up to 1289 µmol·g−1·h−1, a staggering 60-times increase compared to
g-C3N4@Pt (20.9 µmol·g−1·h−1). Upon removing the filter, the H2 production efficiency
notably surges under full spectrum irradiation, as depicted in Figure 7b. The H2 produc-
tion rate of g-C3N4@PdS@Pt-3 reaches an impressive 11438 µmol·g−1·h−1, which is eight
times higher than the H2 production efficiency of g-C3N4@Pt (1452 µmol·g−1·h−1) under
identical conditions. This showcases a ninefold improvement over visible light irradiation.
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Figure 7c clearly depicts the trend in H2 production efficiency under the two light sources.
To ascertain the chemical stability of the photocatalyst, the stability of g-C3N4@PdS@Pt
nanocomposites was tested over four cycles under full spectrum irradiation (Figure 7d).
The results indicate that after two cycle tests the photocatalytic H2 production performance
remains largely unchanged. However, during the third cycle, there is a slight decrease
in performance due to the consumption of lactic acid in the reaction solution. Table 1
outlines the comparison between the H2 production efficiency achieved by combining
g-C3N4 with various catalysts and the optimal efficiency observed in this study. Evidently,
the introduction of the PdS and Pt co-catalysts significantly enhances the performance of
photocatalytic H2 production.
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tion of a xenon lamp light source: (a) with long pass filter (λ > 420 nm) and (b) without filter; (c) the
photocatalytic H2 evolution rates of g-C3N4@Pt and g-C3N4@PdS@Pt photocatalysts with various
loading amounts of PdS under visible light and full spectrum irradiation; (d) cycling stability test of
the photocatalytic H2 evolution for g-C3N4@PdS@Pt-3 under full spectrum irradiation.
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Table 1. Comparative survey of photocatalytic H2 evolution performance: g-C3N4@PdS@Pt-3 versus
other reported photocatalysts.

Catalyst Synthesis Method Dosage (mg) Type of Light Source Sacrificial
Reagent

H2 Evolution
Rate

(µmol·g−1·h−1)
Refs.

Au@g-C3N4
Solution–

precipitation method 20 365 nm wavelength
light excitation

10%
Triethanolamine 530 [55]

Au@g-C3N4
Facile deposition–

precipitation method 20
125W medium

pressure visible-light
Hg Lamp

10%
Triethanolamine 177.4 [56]

Pt@g-C3N4 Photodeposition of Pt 8 300 W xenon Lamp 8 mL of TEOA
solution 4210.8 [57]

Pd-NVs-C3N4
Photoreduction

method 100 300 W xenon Lamp 20 vol% methanol 287.9 [58]

graphdiyne/g-C3N4 Calcination method 50 300 W xenon Lamp
(λ > 420 nm)

15%
Triethanolamine 39.6 [59]

MoS2@g-C3N4

Probe
sonication-assisted
liquid exfoliation

method

50 300 W xenon Lamp
(λ > 420 nm)

0.1M
Triethanolamine 1155 [60]

g-C3N4@PdS@Pt-3 Precipitation method 30

300 W Xe arc Lamp
(λ > 420 nm) 20% lactic acid

aqueous solution
1289 This

work
300 W Xe arc Lamp 11,438

The apparent quantum efficiency (AQE) was calculated using the following equation:

AQYs(%) =
2 × NH2

Np
× 100% =

2 × NH2
I×A×λ

h×c

× 100% (1)

where Np, I, A, h, c, and λ represent the number of incident photons, the illumination
intensity, the irradiation area of the incident light, Planck’s constant, the speed of light,
and the wavelength of the incident light, respectively. Here, the monochromatic light was
achieved by implementing a band-pass filter in the xenon light source outlet. According to
Formula 1, the AQY of g-C3N4@PdS@Pt-3 catalyst at 365, 380, 400, 420, 450, and 500 nm
were calculated and are depicted in Figure 8. As illustrated in Figure 8, the quantities
of H2 produced at different wavelengths correlate with the light absorption, showcasing
a decrease in AQE as the wavelengths increase. Notably, the highest AQE, recorded at
365 nm, stands at an impressive 25.2%.

The separation characteristics of carriers within the samples are investigated using PL
and TRPL measurements. Figure 9a illustrates the PL spectrum at a 250 nm excitation wave-
length, highlighting a primary blue luminescence peak at ≈480 nm, which originates from
the transition between lone pair states in the valence band and the π* antibonding states in
the conduction band [61], indicating charge recombination. In the figure, the bare g-C3N4
display the most pronounced PL peak, while the PL intensities noticeably decrease upon
the integration of PdS. Notably, the g-C3N4@PdS-3 hybrid exhibits the lowest PL intensity
among all the nanocomposites, consistent with the comparison of photocatalytic activities.
This analysis indicates that the g-C3N4@PdS nanocomposites effectively mitigate the charge
recombination in g-C3N4. Furthermore, the TRPL experiments were conducted on both
bare g-C3N4 and g-C3N4@PdS-3 samples to delve deeper into the charge transmission
process, as depicted in Figure 9b. The TRPL curves were fitted using a multiexponential
function, and the resulting parameters are summarized in Table 2. Decay lifetimes were
calculated according to Equation (2):

τ =
A1 · τ2

1 + A2 · τ2
2

A1 · τ1 + A2 · τ2
(2)
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where, τ1, τ2 represent the short carrier lifetime attributed to quasi-free excitons
and the long component due to localized exciton recombination, respectively. A1 and
A2 correspond to the percentages of the short and long component in the total lifetime.
Significantly, the bare g-C3N4 (5.7917) exhibits a longer average decay lifetime compared to
g-C3N4@PdS-3 (7.8609 ns). The brief fluorescence lifetime hints at the possibility of extra
non-radiative attenuation pathways being activated within the g-C3N4@PdS sample. These
pathways could effectively impede the recombination of photogenerated carriers. The
outcomes mentioned above demonstrate that the heterojunction created by embedding PdS
nanoparticles onto g-C3N4 nanosheets actively facilitates the parting of electron-hole pairs,
consequently enhancing the photocatalytic efficiency.
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Furthermore, this study delved into the interfacial charge transfer and separation
capacities of both pure g-C3N4 and g-C3N4@PdS nanocomposites through analyses us-
ing transient photocurrent and electrochemical impedance spectroscopy. As depicted in
Figure 10a, the g-C3N4@PdS-3 nanocomposites demonstrated a notably heightened pho-
tocurrent response compared to the pristine g-C3N4, indicating significantly enhanced
charge separation capabilities. Additionally, electrochemical impedance spectroscopy (EIS)
can also be used to assess electron mobility at the electrode interface, which usually reflects
the charge transfer ability of the photocatalyst. The ESI Nyquist diagram in Figure 10b
vividly illustrates that the arc radius of the g-C3N4@PdS-3 nanocomposites is markedly
smaller than that of the pure g-C3N4, signifying swifter charge transfer kinetics and lower
charge transfer resistance in the former. In addition, Figure 11 provides a comparison of
the overpotential of g-C3N4 and g-C3N4@PdS through linear scanning voltammetry (LSV)
measurements. At the reference current density of 10 mAcm−2, g-C3N4@PdS-3 exhibits a
lower overpotential (−0.87V) compared to g-C3N4(−1.03V), suggesting that the presence of
PdS loaded onto g-C3N4 is more favorable for facilitating H2 production than g-C3N4 alone.
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It has been reported that PdS is an n-type semiconductor with a band gap of 1.6 eV. Its
valence and conduction band positions are situated at 1.1 eV and −0.5 eV, respectively [62,63].
Drawing upon the preceding analyses, Figure 12 outlines a reasonable charge transfer
behavior and proposes a mechanism for photocatalytic hydrogen production reaction
in g-C3N4@PdS@Pt nanocomposites. Initially, the attachment of PdS uniformly onto g-
C3N3 nanosheets widens the light absorption spectrum of nanocomposites. Therefore, the
inclusion of PdS augments the production of photogenerated charge carriers. Additionally,
the uniform distribution of PdS enhances the availability of active sites. Upon exposure
to light, incident light energizes valence band electrons into the conduction band while
generating holes in the valence band. Subsequently, electrons within the conduction band
of g-C3N4 swiftly migrate to the conduction band of PdS, where they are captured by Pt,
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catalyzing a reduction reaction upon interaction with absorbed hydrated protons at the Pt
site, thereby liberating hydrogen. Simultaneously, the holes present in the valence band
are continually consumed with the electron donor, lactic acid in the solution. Hence, the
existence of PdS enhances the quantity of photoinduced carriers and effectively facilitates
their separation.
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3. Experimental
3.1. Materials

Melamine (99%), sodium chloropalladate (Na2PdCl4, 99.99%), sodium sulfide (Na2S,
99%), ethanolamine (99%), lactic acid (20%), chloroplatinic acid hexahydrate (AR, Pt > 37.5%),
and sodium sulfate (AR, 99%) were purchased from Aladdin Reagent Co., Ltd. (Shanghai,
China) and employed directly without additional purification. Deionized water with
18 MΩ cm was used in our experiment.

3.2. Synthesis of g-C3N4@PdS Nanocomposites

The synthesis process of g-C3N4@PdS nanocomposites is presented in Scheme 1.
Briefly, g-C3N4 nanosheets were synthesized via a double pyrolysis process of melamine,
as detailed in our previously published literature [20]. Its color is milky yellow, as shown
in Scheme 1. Subsequently, 400 mg of g-C3N4 underwent ultrasonic dispersion in 50 mL
of ethanolamine for 2 h. Concurrently, a solution containing 0.01 mmol of Na2PdCl4
dissolved in 10 mL of deionized water was vigorously stirred to achieve uniformity. This
solution was gradually added drop by drop to the ultrasonically dispersed g-C3N4 solution.
Following 2 h of stirring, 0.6 × 10−3 M Na2S was incrementally introduced into the
solution. The resultant mixture was thoroughly stirred for 12 h, washed successively with
ethanol and deionized water, and then freeze-dried, resulting in the sample denoted as
g-C3N4@PdS-1. To find the optimal PdS load, a series of nanocomposites were synthesized.
As the quantity of the Pd source was incrementally altered to 0.02, 0.03, and 0.04 mmol
(with the corresponding S source being adjusted to 1.2 × 10−3 M, 2.4 × 10−3 M, and
3.6 × 10−3 M, respectively), the synthesized samples were sequentially designated as
g-C3N4@PdS-2, g-C3N4@PdS-3, and g-C3N4@PdS-4. Scheme 1 depicts the color of g-
C3N4@PdS nanocomposites, exhibiting a light brown hue. This coloration signifies an
enhancement in the nanocomposites’ capability to absorb visible light.
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Scheme 1. Schematic depiction of the synthesis process for g-C3N4@PdS nanocomposites.

3.3. Characterization

XRD analysis was performed using a Bruker D8 Advance instrument (Bruker, Saar-
brucken, Germany) to assess the evolution of the crystal structure following the incorpora-
tion of PdS. Morphologies and microstructural investigations were conducted using Talos
F200X G2 TEM JEOL (Thermo Scientific, Waltham, MA, USA, FEI company, Hillsboro,
OR, USA), and HRTEM (Thermo Scientific, Waltham, MA, USA, FEI company, Hillsboro,
OR, USA) operated at an accelerated voltage of 200 KV. Additionally, super-X model EDS
accompanied TEM analysis to investigate the element distribution. For TEM analysis, a
1 mg catalyst dispersed in ethanol underwent ultrasonication for 10 min, was deposited
onto a copper grid, naturally dried, and then examined. The functional group characteris-
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tics of the synthesized materials were analyzed via FTIR, Thermo Scientific Nicolet iS20
(Thermo Scientific, Waltham, MA, USA). Furthermore, changes in the valence state and
band structure of the elements in the nanocomposite were explored using XPS via a PHI
5000 Versaprobe III (Spectra Research Corporation, Mississauga, ON, USA) spectroscopy
instrument, utilizing monochromatic Al Kα radiation. Ultraviolet-visible diffuse reflectance
spectra were acquired using a Hitachi UH4150 (Hitachi High-Tech Corporation, Tokyo,
Japan) equipped with an integrating sphere. Steady-state PL was investigated using the
Hitachi F7000 spectrofluorometer (Hitachi High-Tech Corporation, Tokyo, Japan), employ-
ing an excitation wavelength of 250 nm. Evaluation of photocurrent performance, EIS and
LSV were conducted using a three-electrode electrochemical workstation (CHI660E, Chen
Hua, Shanghai, China). The reference electrode used was Ag/AgCl, while the counter
electrode utilized a Pt plate. To prepare the working electrode, 5 mg of the catalyst was
ultrasonically dispersed in 1 mL of ethanol along with 20 µL of nafion solution, forming a
uniform solution. This catalyst-containing solution was subsequently deposited onto the
FTO glass and dried to form the working electrode. The electrolyte employed was a 0.5 M
aqueous solution of Na2SO4. A bias voltage of 0.3 V was added to the photocurrent test.
The potential of the electrode of EIS test voltage was 0.24 V.

3.4. Evaluation of Photocatalytic H2 Production Activity

The procedure for measuring photocatalytic H2 production involved using a reaction
flask filled with 30 mg of the photocatalyst alongside a 20% lactic acid aqueous solution
(10 mL) serving as a sacrificial agent. This was combined with 100 mL of deionized water
and a 3% wt Pt, employed as a co-catalyst, with chloroplatinic acid as the Pt source. The
mixture was subjected to ultrasonic dispersion for 30 min to ensure the formation of
a uniformly dispersed suspension. This suspension was then transferred into a quartz
reactor connected to an on-line trace gas analysis system (Labsolar-6A, Beijing Perfectlight,
Beijing, China). A constant temperature water-cooling system was used to maintain
the reaction solution at 5 ◦C. To guarantee the complete elimination of air, the system
and the reactor were evacuated several times. After the vacuum extraction, the reactor
underwent a 30 min exposure to a 300 W xenon arc light source to facilitate the reduction
of Pt. Subsequently, Pt was loaded onto the g-C3N4 and g-C3N4@PdS nanocomposites.
The resulting photodeposited nanocomposites were sequentially labeled as g-C3N4@Pt,
g-C3N4@PdS@Pt-1, g-C3N4@PdS@Pt-2, g-C3N4@PdS@Pt-3, and g-C3N4@PdS@Pt-4. After
light deposition, the system was vacuumed again in preparation for photocatalytic H2
production experiments. The photocatalytic H2 production experiments commenced with
the reactor being irradiated under visible light (using xenon lamp irradiation with a long
pass cut-off filter, λ > 420 nm) and full spectrum (xenon lamp irradiation). Following
irradiation, the concentration of photocatalytically produced H2 was assessed using an
online gas chromatograph (Fuli instruments, Zhejiang, China, GC9720PLUS) equipped
with a thermal conductive detector.

4. Conclusions

In this paper, a g-C3N4@PdS nanocomposite with varying concentration of PdS was
prepared via a straightforward method. Comprehensive investigations into the microstruc-
ture, morphology, band structure, element distribution, and optical properties of these
catalysts were conducted. XPS analysis unambiguously confirmed the successful loading
of PdS onto the g-C3N4 layer, while TEM imaging revealed the uniform distribution of
PdS nanoparticles on the g-C3N4 layer. The crystal structure of the resultant g-C3N4@PdS
nanocomposite remained largely unchanged, attributed to the low PdS content. The study
extensively evaluated the photocatalytic performance of these nanocomposites under both
visible light and full spectrum irradiation. Encouragingly, the g-C3N4@PdS composites
exhibited significantly enhanced photocatalytic hydrogen production. Notably, the hydro-
gen production rate of g-C3N4@PdS@Pt-3 nanocomposites surpassed that of g-C3N4@Pt by
60-times under visible light and 8-times under full spectrum irradiation. Characterization
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through various methods including photocurrent response curve, EIS, LVS, PL, and TRPL
decay curves unveiled that the structure of the composite facilitated an accelerated transfer
of photogenerated carriers, thereby augmenting the photocatalytic hydrogen production
rate. The incorporation of PdS enhances light absorption and enhances the efficiency of
carrier transfer, thereby contributing to the improved performance of the g-C3N4@PdS@Pt
nanocomposite.
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