Ferric Chloride Promoted Glycosidation of Alkyl Thioglycosides
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of Building Blocks
3.3. Synthesis of Disaccharides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demchenko, A.V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Lian, G.; Zhang, X.; Yu, B. Thioglycosides in Carbohydrate research. Carbohydr. Res. 2015, 403, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Fugedi, P.; Garegg, P.J. A novel promoter for the efficient construction of 1,2-trans linkages in glycoside synthesis, using thioglycosides as glycosyl donors. Carbohydr. Res. 1986, 149, c9–c12. [Google Scholar] [CrossRef]
- Dasgupta, F.; Garegg, P.J. Use of sulfenyl halides in carbohydrate reactions. Part I. Alkyl sulfenyl triflate as activator in the thioglycoside-mediated formation of beta-glycosidic linkages during oligosaccharide synthesis. Carbohydr. Res. 1988, 177, C13–C17. [Google Scholar] [CrossRef]
- Crich, D.; Smith, M. S-(4-Methoxyphenyl) benzenethiosulfinate(MPBT)/trifluoromethanesulfonic anhydride (Tf2O): A convenient system for the generation of glycosyl triflates from thioglycosides. Org. Lett. 2000, 2, 4067–4069. [Google Scholar] [CrossRef] [PubMed]
- Crich, D.; Smith, M. 1-Benzenesulfinyl piperidine/trifluoromethanesulfonic anhydride: A potent combination of shelf-stable reagents for the low-temperature conversion of thioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages. J. Am. Chem. Soc. 2001, 123, 9015–9020. [Google Scholar] [CrossRef]
- Codee, J.D.C.; Litjens, R.E.J.N.; Heeten, R.; Overkleeft, H.S.; van Boom, J.H.; van der Marel, G.A. Ph2SO/Tf2O: A powerful promotor system in chemoselective glycosylations using thioglycosides. Org. Lett. 2003, 5, 1519–1522. [Google Scholar] [CrossRef]
- Duron, S.G.; Polat, T.; Wong, C.H. N-(Phenylthio)-ε-caprolactam: A new promoter for the activation of thioglycosides. Org. Lett. 2004, 6, 839–841. [Google Scholar] [CrossRef]
- Mao, R.-Z.; Guo, F.; Xiong, D.-C.; Li, Q.; Duan, J.; Ye, X.-S. Photoinduced C-S Bond Cleavage of Thioglycosides and Glycosylation. Org. Lett. 2015, 17, 5606–5609. [Google Scholar] [CrossRef]
- Wever, W.J.; Cinelli, M.A.; Bowers, A.A. Visible Light Mediated Activation and O-Glycosylation of Thioglycosides. Org. Lett. 2013, 15, 30–33. [Google Scholar] [CrossRef]
- Spell, M.L.; Deveaux, K.; Bresnahan, C.G.; Bernard, B.L.; Sheffield, W.; Kumar, R.; Ragains, J.R. A Visible-Light-Promoted O-Glycosylation with a Thioglycoside Donor. Angew. Chem. Int. Ed. 2016, 55, 6515–6519. [Google Scholar] [CrossRef]
- Mao, R.-Z.; Xiong, D.-C.; Guo, F.; Li, Q.; Duan, J.; Ye, X.-S. Light-driven highly efficient glycosylation reactions. Org. Chem. Front. 2016, 3, 737–743. [Google Scholar] [CrossRef]
- Veeneman, G.H.; van Leeuwen, S.H.; van Boom, J.H. Iodonium ion promoted reactions at the anomeric centre. II. An efficient thioglycoside mediated approach toward the formation of 1,2-trans linked glycosides and glycosidic esters. Tetrahedron Lett. 1990, 31, 1331–1334. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Seitz, S.P.; Papahatjis, D.P. A mild and general method for the synthesis of O-glycosides. J. Am. Chem. Soc. 1983, 105, 2430–2434. [Google Scholar] [CrossRef]
- Kihlberg, J.O.; Leigh, D.A.; Bundle, D.R. The in situ activation of thioglycosides with bromine: An improved glycosylation method. J. Org. Chem. 1990, 55, 2860–2863. [Google Scholar] [CrossRef]
- Kartha, K.P.M.; Aloui, M.; Field, R.A. Iodine: A versatile reagent in carbohydrate chemistry II. Efficient chemospecific activation of thiomethylglycosides. Tetrahedron Lett. 1996, 37, 5175–5178. [Google Scholar] [CrossRef]
- Burkart, M.D.; Zhang, Z.; Hung, S.-C.; Wong, C.-H. A new method for the synthesis of fluoro-carbohydrates and glycosides using selectfluor. J. Am. Chem. Soc. 1997, 119, 11743–11746. [Google Scholar] [CrossRef]
- Ercegovic, T.; Meijer, A.; Magnusson, G.; Ellervik, U. Iodine monochloride/silver trifluoromethanesulfonate (ICI/AgOTf) as a convenient promoter system for O-glycoside synthesis. Org. Lett. 2001, 3, 913–915. [Google Scholar] [CrossRef]
- Escopy, S.; Demchenko, A.V. Transition-Metal-Mediated Glycosylation with Thioglycosides. Chem. Eur. J. 2022, 28, e202103747. [Google Scholar] [CrossRef]
- Ferrier, R.J.; Hay, R.W.; Vethaviyasar, N. A potentially versatile synthesis of glycosides. Carbohydr. Res. 1973, 27, 55–61. [Google Scholar] [CrossRef]
- Goswami, M.; Ellern, A.; Pohl, N.L. Bismuth(V)-mediated thioglycoside activation. Angew. Chem. Int. Ed. Engl. 2013, 52, 8441–8445. [Google Scholar] [CrossRef]
- Goswami, M.; Ashley, D.C.; Baik, M.H.; Pohl, N.L. Mechanistic Studies of Bismuth(V)-Mediated Thioglycoside Activation Reveal Differential Reactivity of Anomers. J. Org. Chem. 2016, 81, 5949–5962. [Google Scholar] [CrossRef] [PubMed]
- Vibhute, A.M.; Dhaka, A.; Athiyarath, V.; Sureshan, K.M. A versatile glycosylation strategy via Au (III) catalyzed activation of thioglycoside donors. Chem. Sci. 2016, 7, 4259–4263. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Schmidt, R.R. New principles for glycoside-bond formation. Angew. Chem. Int. Ed. 2009, 48, 1900–1934. [Google Scholar] [CrossRef] [PubMed]
- Escopy, S.; Singh, Y.; Demchenko, A.V. Palladium(II)-assisted activation of thioglycosides. Org. Biomol. Chem. 2021, 19, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Pooladian, F.; Escopy, S.; Demchenko, A.V. Activation of thioglycosides with copper(II) bromide. Molecules 2022, 27, 7354. [Google Scholar] [CrossRef]
- Bauer, I.; Knolker, H.J. Iron catalysis in organic synthesis. Chem. Rev. 2015, 115, 3170–3387. [Google Scholar]
- Huang, T.Y.; Zulueta, M.M.; Hung, S.C. Regioselective one-pot protection, protection-glycosylation and protection-glycosylation-glycosylation of carbohydrates: A case study with D-glucose. Org. Biomol. Chem. 2014, 12, 376–382. [Google Scholar] [CrossRef]
- Gouasmat, A.; Lemétais, A.; Solles, J.; Bourdreux, Y.; Beau, J.-M. Catalytic Iron(III) Chloride Mediated Site-Selective Protection of Mono- and Disaccharides and One Trisaccharide. Eur. J. Org. Chem. 2017, 2017, 3355–3361. [Google Scholar] [CrossRef]
- Kiso, M.; Anderson, L. The ferric chloride-catalyzed glycosylation of alcohols by 2-acylamido-2-deoxy-β-D-glucopyranose 1-acetates. Carbohydr. Res. 1979, 72, C12–C14. [Google Scholar] [CrossRef]
- Kiso, M.; Anderson, L. The synthesis of disaccharides by the ferric chloride-catalyzed coupling of 2-acylamido-2-deoxy-β-D-glucopyranose 1-acetates to protected sugar acceptors. Carbohydr. Res. 1979, 72, C15–C17. [Google Scholar] [CrossRef]
- Kiso, M.; Nishiguchi, H.; Hasegawa, A. Application of ferric chloride-catalyzed glycosylation to a synthesis of glycolipids. Carbohydr. Res. 1980, 81, C13–C15. [Google Scholar] [CrossRef]
- Dasgupta, F.; Garegg, P.J. Synthesis of ethyl and phenyl 1-thio-1,2-trans-D-glycopyranosides from the corresponding per-O-acetylated glycopyranoses having a 1,2-trans-configuration using anhydrous ferric chloride as a promoter. Acta Chem. Scand. 1989, 43, 471–475. [Google Scholar] [CrossRef]
- Lerner, L.M. Ferric chloride-molecular sieve-catalyzed formation of a nonreducing disaccharide derivative. Carbohydr. Res. 1990, 207, 138–141. [Google Scholar] [CrossRef]
- Chatterjee, S.K.; Nuhn, P. Stereoselective α-glycosidation using FeCl3 as a Lewis acid catalyst. Chem. Commun. 1998, 1729–1730. [Google Scholar] [CrossRef]
- Seibel, J.; Hillringhaus, L.; Moraru, R. Microwave-assisted glycosylation for the synthesis of glycopeptides. Carbohydr. Res. 2005, 340, 507–511. [Google Scholar] [CrossRef]
- Wei, G.; Lv, X.; Du, Y. FeCl3-catalyzed alpha-glycosidation of glycosamine pentaacetates. Carbohydr. Res. 2008, 343, 3096–3099. [Google Scholar] [CrossRef]
- Narayanaperumal, S.; César da Silva, R.; Monteiro, J.L.; Corrêa, A.G.; Paixão, M.W. Iron(III) Chloride Catalyzed Glycosylation of Peracylated Sugars with Allyl/Alkynyl Alcohols. J. Braz. Chem. Soc. 2012, 23, 1982–1988. [Google Scholar] [CrossRef]
- Marzag, H.; Robert, G.; Dufies, M.; Bougrin, K.; Auberger, P.; Benhida, R. FeCl3-promoted and ultrasound-assisted synthesis of resveratrol O-derived glycoside analogs. Ultrason. Sonochem. 2015, 22, 15–21. [Google Scholar] [CrossRef]
- Laursen, J.B.; Petersen, L.; Jensen, K.J. Intramolecular glycosylation under neutral conditions for synthesis of 1,4-linked disaccharides. Org. Lett. 2001, 3, 687–690. [Google Scholar] [CrossRef]
- Rasmussen, M.R.; Marqvorsen, M.H.; Kristensen, S.K.; Jensen, H.H. A protocol for metal triflate catalyzed direct glycosylations with GalNAc 1-OPiv donors. J. Org. Chem. 2014, 79, 11011–11019. [Google Scholar] [CrossRef]
- Shetye, G.S.; Singh, N.; Jia, C.; Nguyen, C.D.; Wang, G.; Luk, Y.Y. Specific maltose derivatives modulate the swarming motility of nonswarming mutant and inhibit bacterial adhesion and biofilm formation by Pseudomonas aeruginosa. ChemBioChem 2014, 15, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.M.; Basu, N.; Ghosh, R. Iron(III) chloride modulated selective 1,2-trans glycosylation based on glycosyl trichloroacetimidate donors and its application in orthogonal glycosylation. RSC Adv. 2016, 6, 105589–105606. [Google Scholar] [CrossRef]
- Geringer, S.A.; Demchenko, A.V. Iron(III) chloride-catalyzed activation of glycosyl chlorides. Org. Biomol. Chem. 2018, 16, 9133–9137. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Wu, Y.; Liu, A.; Qiu, S.; Zhang, W.; Wang, Z.; Zhang, J. Substoichiometric FeCl3 Activation of Propargyl Glycosides for the Synthesis of Disaccharides and Glycoconjugates. Synlett 2018, 29, 668–672. [Google Scholar]
- Mukaiyama, T.; Matsubara, K.; Hora, M. An efficient glycosylation reaction of 1-hydroxy sugars with various nucleophiles using a catalytic amount of activator and haxamethyldisiloxane. Synthesis 1994, 1994, 1368–1373. [Google Scholar] [CrossRef]
- Mukherjee, M.M.; Ghosh, R. Synthetic Routes toward Acidic Pentasaccharide Related to the O-Antigen of E. coli 120 Using One-Pot Sequential Glycosylation Reactions. J. Org. Chem. 2017, 82, 5751–5760. [Google Scholar] [CrossRef]
- Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, P.H. An Empirical Understanding of the Glycosylation Reaction. J. Am. Chem. Soc. 2018, 140, 11942–11953. [Google Scholar] [CrossRef]
- Ranade, S.C.; Kaeothip, S.; Demchenko, A.V. Glycosyl alkoxythioimidates as complementary building blocks for chemical glycosylation. Org. Lett. 2010, 12, 5628–5631. [Google Scholar] [CrossRef]
- Shrestha, G.; Kashiwagi, G.A.; Stine, K.J.; Demchenko, A.V. Streamlined access to carbohydrate building blocks: Methyl 2,4,6-tri-O-benzyl-alpha-d-glucopyranoside. Carbohydr. Res. 2022, 511, 108482. [Google Scholar] [CrossRef]
- Grube, M.; Lee, B.-Y.; Garg, M.; Michel, D.; Vilotijević, I.; Malik, A.; Seeberger, P.H.; Varón Silva, D. Synthesis of Galactosylated Glycosylphosphatidylinositol Derivatives from Trypanosoma brucei. Chem. Eur. J. 2018, 24, 3271–3282. [Google Scholar] [CrossRef]
- Forsythe, N.P.; Mize, E.R.; Kashiwagi, G.A.; Demchenko, A.V. Expedient synthesis of superarmed glycosyl donors via oxidative thioglycosidation of glycals. Synthesis 2024, 56, 1147–1156. [Google Scholar] [PubMed]
- Andersson, F.; Fugedi, P.; Garegg, P.J.; Nashed, M. Synthesis of 1,2-cis-linked glycosides using dimethyl(methylthio)sulfonium triflate as promoter and thioglycosides as glycosyl donors. Tetrahedron Lett. 1986, 27, 3919–3922. [Google Scholar] [CrossRef]
- Ekelof, K.; Oscarson, S. Synthesis of oligosaccharide structures from the lipopolysaccharide of Moraxella catarrhalis. J. Org. Chem. 1996, 61, 7711–7718. [Google Scholar] [CrossRef] [PubMed]
- Sail, D.; Kovac, P. Benzoylated ethyl 1-thioglycosides: Direct preparation from per-O-benzoylated sugars. Carbohydr. Res. 2012, 357, 47–52. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Chen, Y.N.; Duron, S.G.; Gin, D.Y. Sulfide-mediated dehydrative glycosylation. J. Am. Chem. Soc. 2001, 123, 8766–8772. [Google Scholar] [CrossRef]
- Premathilake, H.D.; Demchenko, A.V. 2-Allylphenyl glycosides as complementary building blocks for oligosaccharide and glycoconjugate synthesis. Beilstein J. Org. Chem. 2012, 8, 597–605. [Google Scholar] [CrossRef]
- Kobashi, Y.; Mukaiyama, T. Glycosyl phosphonium halide as a reactive intermediate in highly α−selective glycosylation. Bull. Chem. Soc. Jpn. 2005, 78, 910–916. [Google Scholar] [CrossRef]
- Wegmann, B.; Schmidt, R.R. Glycosylimidates. 27. The application of the trichloroacetimidate method to the synthesis of α-D-glucopyranosides and α-D-galactopyranosides. J. Carbohydr. Chem. 1987, 6, 357–375. [Google Scholar] [CrossRef]
- Mukaiyama, T.; Takeuchi, K.; Jona, H.; Maeshima, H.; Saitoh, T. A catalytic and stereoselective glycosylation with β-glycosyl fluorides. Helv. Chim. Acta 2000, 83, 1901–1918. [Google Scholar] [CrossRef]
- Nigudkar, S.S.; Parameswar, A.R.; Pornsuriyasak, P.; Stine, K.J.; Demchenko, A.V. O-Benzoxazolyl imidates as versatile glycosyl donors for chemical glycosylation. Org. Biomol. Chem. 2013, 11, 4068–4076. [Google Scholar] [CrossRef]
- Ito, Y.; Ogawa, T.; Numata, M.; Sugimoto, M. Benzeneselenenyl triflate as an activator of thioglycosides for glycosylation reactions. Carbohydr. Res. 1990, 202, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Chiba, H.; Funasaka, S.; Mukaiyama, T. Catalytic and stereoselective glycosylation with glucosyl thioformimidates. Bull. Chem. Soc. Jpn. 2003, 76, 1629–1644. [Google Scholar] [CrossRef]
- Pougny, J.R.; Nassr, M.A.M.; Naulet, N.; Sinay, P. A novel glucosidation reaction. Application to the synthesis of α-linked disaccharides. Nouveau J. Chem. 1978, 2, 389–395. [Google Scholar]
- Shi, L.; Kim, Y.-J.; Gin, D.Y. C2-Acyloxyglycosylation with Glycal Donors. J. Am. Chem. Soc. 2001, 123, 6939–6940. [Google Scholar] [CrossRef]
- Mydock, L.K.; Demchenko, A.V. Superarming the S-benzoxazolyl glycosyl donors by simple 2-O-benzoyl-3,4,6-tri-O-benzyl protection. Org. Lett. 2008, 10, 2103–2106. [Google Scholar] [CrossRef]
- Codee, J.D.C.; Van den Bos, L.J.; Litjens, R.E.J.N.; Overkleeft, H.S.; Van Boeckel, C.A.A.; Van Boom, J.H.; Van der Marel, G.A. Chemoselective glycosylations using sulfonium triflate activator systems. Tetrahedron 2004, 60, 1057–1064. [Google Scholar] [CrossRef]
Entry | Conditions | Yield |
1 | FeCl3 (0.2 equiv), DCM, 2 h | NR a |
2 | FeCl3 (1.0 equiv), DCM, 2 h | 3, b 12% |
3 | FeCl3 (1.0 equiv), MeCN, 2 h | 3, 15% |
4 | FeCl3 (1.0 equiv), DCM/MeCN (1/1, v/v), 1 h | 3, 24% |
5 | FeCl3 (2.0 equiv), DCM, 2 h | 3, 23% |
6 | FeCl3 (2.0 equiv), MeCN, 2 h | 3, 22% |
7 | FeCl3 (2.0 equiv), DCM/MeCN (1/1, v/v), 1 h | 3, 54% |
8 | FeCl3 (3.0 equiv), DCM/MeCN (1/1, v/v), 1 h | 3, 64% |
9 | FeCl3 (5.0 equiv), DCM/MeCN (1/1, v/v), 1 h | 3, 96% |
Entry | Donor | Acceptor | Product, Yield, Ratio α/β |
---|---|---|---|
1 | 1 | 4 | 5, 89%, α/β = 1.6/1 |
2 | 1 | 6 | 7, 94%, α/β = 1/1.4 |
3 | 1 | 8 | 9, 73%, α/β = 1/1.8 |
4 | 10 | 2 | 11, 94%, β only |
5 | 10 | 4 | 12, 77% β only |
6 | 10 | 6 | 13, 94%, β only |
7 | 10 | 8 | 14, 68%, β only |
8 | 15 | 2 | 16, 92%, α/β = 1/4.1 |
9 | 15 | 4 | 17, 89%, α/β = 1/2.6 |
10 | 15 | 6 | 18, 80%, α/β = 1/2.8 |
11 | 15 | 8 | 19, 85%, α/β = 1/3.6 |
12 | 20 | 2 | 21, 87%, β only |
13 | 20 | 4 | 22, 91%, β only |
14 | 20 | 6 | 23, 80%, β only |
15 | 20 | 8 | 24, 71%, β only |
16 | 25 | 2 | 26, 77%, β only |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridgway, L.M.; Das, A.; Shadrick, M.L.; Demchenko, A.V. Ferric Chloride Promoted Glycosidation of Alkyl Thioglycosides. Molecules 2024, 29, 4845. https://doi.org/10.3390/molecules29204845
Ridgway LM, Das A, Shadrick ML, Demchenko AV. Ferric Chloride Promoted Glycosidation of Alkyl Thioglycosides. Molecules. 2024; 29(20):4845. https://doi.org/10.3390/molecules29204845
Chicago/Turabian StyleRidgway, Lacie M., Anupama Das, Melanie L. Shadrick, and Alexei V. Demchenko. 2024. "Ferric Chloride Promoted Glycosidation of Alkyl Thioglycosides" Molecules 29, no. 20: 4845. https://doi.org/10.3390/molecules29204845
APA StyleRidgway, L. M., Das, A., Shadrick, M. L., & Demchenko, A. V. (2024). Ferric Chloride Promoted Glycosidation of Alkyl Thioglycosides. Molecules, 29(20), 4845. https://doi.org/10.3390/molecules29204845