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Abstract: Reported herein is a new reaction for glycosylation with thioglycosides in the presence of
iron(III) chloride. Previously, FeCl3 was used for the activation of thioglycosides as a Lewis acid co-
promoter paired with NIS. In the reported process, although 5.0 equiv of FeCl3 are needed to activate
thioglycosides most efficiently, no additives were used, and the reactions with reactive glycosyl
donors smoothly proceeded to completion in 1 h at 0 ◦C. This work showcases a new direction in
developing glycosylation methods using greener and earth-abundant activators.
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1. Introduction

Carbohydrates, the most abundant class of biomolecules, play a significant role in
many fundamental processes such as energy storage, disease progression, and immune
responses to viral and bacterial invasions [1]. Hence, access to these molecules is important
for vaccine and pharmaceutical research and development. While synthetic strategies
for glycosylation have been thoroughly investigated, the need for greener and less toxic
methods is imperative to the advancement of glycochemistry. Among the glycosyl donors
developed for chemical glycosylation, thioglycosides are a popular choice due to their
stability and ability to withstand harsh conditions associated with protecting group ma-
nipulations. The activation of thioglycosides for glycosylation can be achieved by the use
of electrophilic or thiophilic promotors, often under mild reaction conditions [2]. Among
these, organosulfur compounds [3–8]; photo-activators [9–12]; and halogens [13–18] are the
most popular. Activation with metal salts has also shown to be a promising direction in
methodology development [19].

Metal salt activation was introduced by Ferrier [20] who employed mercury(II) salts.
More recently, Pohl et al. demonstrated that stoichiometric amounts of Ph3Bi(OTf)2 were
effective in activating thioglycosides for glycosylation [21,22]. Further studies of metal
salt-promoted glycosylations reported by Sureshan et al. employed donor activation
using AuCl3 in sub-stoichiometric amounts [23]. Activation using Au(III) salts was also
achieved by Zhu et al. through direct coordination of Au(III) on the sulfur atom [24]. These
methodological studies indicated that transition metal activation of thioglycosides can
lead to promising regio- and stereoselectivity and provide good yields. To further the
advancement of transition metals as promotors in thioglycosides, our group previously
reported the use of palladium(II) bromide and copper(II) bromide to activate aryl/alkylthio
glycosides [25,26]. While successful, the need to identify greener, cheaper, and more
accessible transition metal salts capable of activating thioglycosides remains vital to the
expansion of glycochemistry.

Iron(III) chloride, a salt formed with the second most abundant metal on earth, is
naturally abundant, inexpensive, and relatively benign [27]. Ferric chloride has been ap-
plied in the introduction of protecting groups in carbohydrates [28,29]. The application of
FeCl3 in O-glycosylation has also emerged, most commonly for the activation of glycosyl
donors bearing the anomeric acetate group [30–39]. Other applications for the activation of
aryl glycoside [40], pivaloate [41], bromide [42], imidate [43], chloride [44], or propargyl
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glycoside [45] have also been explored. FeCl3 has also been employed as a co-catalyst
for the activation of hemiacetal donors [46] and aryl-thioglycosides in the presence of
N-iodosuccinimide [43,47]. Herein, we report a new protocol for efficient and versatile gly-
cosidation of thioglycosides in the presence of iron(III) chloride without any co-promoters
or additives.

2. Results and Discussion

For the preliminary study, we selected per-O-benzylated (armed) ethylthio galactosyl
donor 1 which was reacted with primary glycosyl acceptor 2 in the presence of molecular
sieves (3 Å) at 0 ◦C. Glycosylation in the presence of catalytic amount of FeCl3 (0.2 equiv) in
DCM was ineffective (entry 1, Table 1). However, when the amount of FeCl3 was increased
to 1.0 equiv, disaccharide 3 was obtained, albeit in low yield: 12% for the reaction in DCM
and 15% for the reaction in MeCN (entries 2 and 3). Interestingly, when the reaction was
carried out in a DCM/MeCN (1/1, v/v) mixture, the yield was doubled in respect to
reactions wherein either solvent was used individually (24%, entry 4).

Table 1. FeCl3 promoted glycosidation of thioglycoside donor 1 with glycosyl acceptor 2.
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2 FeCl3 (1.0 equiv), DCM, 2 h 3, b 12%

3 FeCl3 (1.0 equiv), MeCN, 2 h 3, 15%

4 FeCl3 (1.0 equiv), DCM/MeCN (1/1, v/v), 1 h 3, 24%

5 FeCl3 (2.0 equiv), DCM, 2 h 3, 23%

6 FeCl3 (2.0 equiv), MeCN, 2 h 3, 22%

7 FeCl3 (2.0 equiv), DCM/MeCN (1/1, v/v), 1 h 3, 54%

8 FeCl3 (3.0 equiv), DCM/MeCN (1/1, v/v), 1 h 3, 64%

9 FeCl3 (5.0 equiv), DCM/MeCN (1/1, v/v), 1 h 3, 96%
a NR—no reaction; b in all reactions, compound 3 was obtained as a mixture of anomers.

When the amount of FeCl3 was further increased to 2.0 equiv, disaccharide 3 was
obtained in improved yields, which were practically identical for both individual solvents:
23% for the reaction in DCM and 22% for the reaction in MeCN (entries 5 and 6). Again,
when the reaction was carried out in DCM/MeCN (1/1, v/v) solvent mixture, the yield
for the formation of disaccharide 3 is doubled (54%, entry 7). The reaction was stopped
after 1 h, and prolonged experiments conducted over 16 or 24 h provided identical yields.
Investigations into the effects of temperature did not offer any gains at −30 ◦C, rt, or 40 ◦C,
and was detrimental to yields. Regardless of the reaction solvent, some anomerization of
donor 1 into its α-linked counterpart was observed in the majority of experiments.

With DCM/MeCN as the reaction solvent at 0 ◦C, we performed glycosylation in the
presence of 3.0 equiv FeCl3 to afford disaccharide 3 in an improved yield of 64% in 1 h
(entry 8). When the amount of FeCl3 was increased to 5.0 equiv, the reaction smoothly
proceeded to completion in 1 h, and disaccharide 3 was isolated in a high yield of 96%
(entry 9). We note that although the reaction was performed in the presence of MeCN,
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which is known to be a β-directing solvent, the β-anomer was only slightly favored in this
reaction (α/β = 1/1.5).

With the most favorable reaction conditions established, FeCl3 (5 equiv), DCM/MeCN
(1/1, v/v), and molecular sieves (3 Å) at 0 ◦C (entry 9, Table 1), we proceeded with
investigating other glycosylation reactions using different donor–acceptor combinations.
The outcome of this study is summarized in Table 2. The activation of glycosyl donor 1 for
reactions with secondary glycosyl acceptors 4, 6, and 8 produced respective disaccharides
5, 7, and 9 in good to excellent yields of 73–94% in 1 h (entries 1–3). The highest yield of
94% was obtained for glycosylation of 3-OH glycosyl acceptor 6 (entry 2). We note that
although MeCN is a known β-directing solvent, we observed no stereoselectivity in these
reactions (α/β from 1.6/1 to 1/1.8).

Table 2. Expanding the scope of FeCl3 promoted glycosylation to other donors and acceptors a.

Entry Donor Acceptor Product, Yield, Ratio α/β

1 1
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Glycosidation of galactosyl donor 10 equipped with the super-arming protecting
group pattern, 2-O-benzoyl-3,4,6-tri-O-benzyl, also worked well in reactions with glycosyl
acceptors 2, 4, 6, and 8, and the respective disaccharides 11–14 were obtained in good to
excellent yields of 68–94% (entries 4–7). The highest identical yields of 94% were obtained
for glycosylations of 6-OH and 3-OH glycosyl acceptors 2 and 6 (entries 4 and 6). These
glycosylations were all β-selective due to the neighboring 2-O-benzoyl group participation.

Along similar lines, we investigated per-O-benzylated glucosyl donor 15. These
glycosylations also worked very efficiently with glycosyl acceptors 2, 4, 6, and 8, and the
respective disaccharides 16–19 were obtained in excellent yields of 80–92% (entries 8–11).
We noticed some preference for β-selectivity in this series (α/β = 1/2.6–4.1), probably due
to the effect of MeCN, a known participating solvent.

Glycosidation of glucosyl donor 20 equipped with the super-arming protecting group
pattern, 2-O-benzoyl-3,4,6-tri-O-benzyl, also worked well in reactions with glycosyl accep-
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tors 2, 4, 6, and 8. The respective disaccharides 21–24 were obtained in good to excellent
yields of 71–91% (entries 12–15). The highest yields of 87–91% were obtained for glycosyla-
tions of 6-OH and 2-OH glycosyl acceptors 2 and 4 (entries 12 and 13). These glycosylations
were all β-selective due to the neighboring group participation of 2-O-benzoyl substituent.
Finally, we investigated the less reactive per-O-benzoylated galactosyl donor 25. Disaccha-
ride 26 was obtained in a good yield of 77% with exclusive β-selectivity (entry 16).

3. Materials and Methods
3.1. General Methods

The reactions were performed using commercial reagents and the ACS grade solvents
used for reactions were purified and dried in accordance with standard procedures. Column
chromatography was performed on silica gel 60 (70–230 mesh); reactions were monitored
by TLC on Kieselgel 60 F254. The compounds were detected by examination under UV light
and by charring with 10% sulfuric acid in methanol. Solvents were removed under reduced
pressure at <40 ◦C. CH2Cl2 was distilled from CaH2 directly prior to application. Molecular
sieves (3 Å) used for reactions were crushed and activated in vacuo at 390 ◦C for 8 h in the
first instance and then for 2–3 h at 390 ◦C directly prior to application. 1H NMR spectra
were recorded at 400 MHz (Bruker); 13C NMR spectra were recorded at 100 MHz. The
1H NMR chemical shifts are referenced to tetramethyl silane (TMS, δ = 0 ppm) or CDCl3
(CHCl3 δ = 7.26 ppm) for 1H NMR spectra for solutions in CDCl3. The 13C NMR chemical
shifts are referenced to the central signal of CDCl3 (δ = 77.00 ppm) for solutions in CDCl3.
To assist structural assignments, further information was obtained utilizing gCOSY and
gHSQC experiments. Anomeric ratios (if applicable) were determined by comparison of the
integral intensities of relevant signals in 1H NMR spectra (see the Supporting Information).

3.2. Synthesis of Building Blocks

Ethyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-galactopyranoside (1) was synthesized as
reported previously and its analytical data were in accordance with that previously de-
scribed [15,48].

Methyl 2,3,4-tri-O-benzyl-α-D-glucopyranoside (2) was synthesized as reported
previously and its analytical data were in accordance with that previously described [49].

Methyl 3,4,6-tri-O-benzyl-α-D-glucopyranoside (4) was synthesized as reported
previously and its analytical data were in accordance with that previously described [49].

Methyl 2,4,6-tri-O-benzyl-α-D-glucopyranoside (6) was synthesized as reported
previously and its analytical data were in accordance with that previously described [49,50].

Methyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (8) was synthesized as reported
previously and its analytical data were in accordance with that previously described [49].

Ethyl 2-O-benzoyl-3,4,6-tri-O-benzyl-1-thio-β-D-galactopyranoside (10) was synthe-
sized as reported previously and its analytical data were in accordance with that previously
described [51,52].

Ethyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranoside (15) was synthesized as
reported previously and its analytical data were in accordance with that previously de-
scribed [53].

Ethyl 2-O-benzoyl-3,4,6-tri-O-benzyl-1-thio-β-D-glucopyranoside (20) was synthe-
sized as reported previously and its analytical data were in accordance with that previously
described [52,54].

Ethyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-D-galactopyranoside (25) was synthesized
as reported previously and its analytical data were in accordance with that previously
described [55].

3.3. Synthesis of Disaccharides

General procedure for glycosidation. A mixture containing thioglycoside donor
(50 mg, 0.078–0.086 mmol), glycosyl acceptor (0.062–0.071 mmol), and freshly activated
molecular sieves (3 Å, 300 mg) in CH2Cl2/CH3CN (1.0 mL, 1/1, v/v) was stirred under
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argon for 2 h at rt. The reaction mixture was cooled to 0 ◦C, anhydrous ferric chloride
(FeCl3, 0.390–0.430 mmol, 5.0 equiv to donor) was added, and the resulting mixture was
stirred under argon for 1 h at 0 ◦C. After that, sat. aq. NaHCO3 (3 mL) was added and the
resulting mixture was stirred for 10 min. The solids were filtered off through a pad of Celite
and rinsed successively with CH2Cl2. The combined filtrate (~15 mL) was concentrated
under reduced pressure. The residue was diluted with DCM (5 mL) and washed with H2O
(5 mL) and brine (2 × 5 mL). The organic phase was separated, dried with Na2SO4, and
concentrated under reduced pressure. The residue was purified by column chromatography
on silica gel (ethyl acetate-hexane gradient elution or acetone-toluene gradient elution) to
afford a disaccharide derivative in yields listed in tables and below.

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-galactopyranosyl)-α-
D-glucopyranoside (3) was obtained from thioglycoside 1 and glycosyl acceptor 2 by the
general glycosylation method in 96% yield (α/β = 1/1.5) as a colorless syrup. Analytical
data for 3 were in accordance with that reported previously [56].

Methyl 2-O-(2,3,4,6-tetra-O-benzyl-α/β-D-galactopyranosyl)-3,4,6-tri-O-benzyl-α-
D-glucopyranoside (5) was obtained from thioglycoside 1 and glycosyl acceptor 4 by the
general glycosylation method in 89% yield (α/β = 1.6/1) as a colorless syrup. Analytical
data for 5 were in accordance with that reported previously [57].

Methyl 2,4,6-tri-O-benzyl-3-O-(2,3,4,6-tetra-O-benzyl-α/β-D-galactopyranosyl)-α-
D-glucopyranoside (7) was obtained from thioglycoside 1 and glycosyl acceptor 6 by the
general glycosylation method in 94% yield (α/β = 1/1.4) as a colorless syrup. Analytical
data for 7 were in accordance with that reported previously [58].

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α/β-D-galactopyranosyl)-α-
D-glucopyranoside (9) was obtained from thioglycoside 1 and glycosyl acceptor 8 by the
general glycosylation method in 73% yield (α/β = 1/1.8) as a colorless syrup. Analytical
data for 9 were in accordance with that reported previously [59].

Methyl 6-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-galactopyranosyl)-2,3,4-tri-O-benzyl-
α-D-glucopyranoside (11) was obtained from thioglycoside 10 and glycosyl acceptor 2 by the
general glycosylation method in 94% yield (β only) as a white amorphous solid. Analytical
data for 11 were in accordance with that reported previously [60].

Methyl 2-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-galactopyranosyl)-3,4,6-tri-O-benzyl-
α-D-glucopyranoside (12) was obtained from thioglycoside 10 and glycosyl acceptor 4 by the
general glycosylation method in 77% yield (β only) as a white amorphous solid. Analytical
data for 12 were in accordance with that reported previously [25].

Methyl 3-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-galactopyranosyl)-2,4,6-tri-O-benzyl-
α-D-glucopyranoside (13) was obtained from thioglycoside 10 and glycosyl acceptor 6 by the
general glycosylation method in 94% yield (β only) as a white amorphous solid. Analytical
data for 13 were in accordance with that reported previously [60].

Methyl 4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-galactopyranosyl)-2,3,6-tri-O-benzyl-
α-D-glucopyranoside (14) was obtained from thioglycoside 10 and glycosyl acceptor 8 by the
general glycosylation method in 68% yield (β only) as a white amorphous solid. Analytical
data for 14 were in accordance with that reported previously [60].

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-α-D-
glucopyranoside (16) was obtained from thioglycoside 15 and glycosyl acceptor 2 by the
general glycosylation method in 92% yield (α/β = 1/4.1) as a white amorphous solid.
Analytical data for 16 were in accordance with that reported previously [61].

Methyl 2-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-3,4,6-tri-O-benzyl-α-D-
glucopyranoside (17) was obtained from thioglycoside 15 and glycosyl acceptor 4 by the
general glycosylation method in 89% yield, in which α was obtained in 17.81 mg and β

in 44.68 mg (α/β = 1/2.6) as a white amorphous solid. Analytical data for 17 were in
accordance with that reported previously [62].

Methyl 2,4,6-tri-O-benzyl-3-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-α-D-
glucopyranoside (18) was obtained from thioglycoside 15 and glycosyl acceptor 6 by the
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general glycosylation method in 80% yield (α/β = 1/2.8) as a white amorphous solid.
Analytical data for 18 were in accordance with that reported previously [63].

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-α-D-
glucopyranoside (19) was obtained from thioglycoside 15 and glycosyl acceptor 8 by the
general glycosylation method in 85% yield (α/β = 1/3.6) as a white amorphous solid.
Analytical data for 19 were in accordance with that reported previously [64].

Methyl 6-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-glucopyranosyl)-2,3,4-tri-O-benzyl-α-
D-glucopyranoside (21) was obtained from thioglycoside 20 and glycosyl acceptor 2 by the
general glycosylation method in 87% yield (β only) as a white amorphous solid. Analytical
data for 21 were in accordance with that reported previously [65].

Methyl 2-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-glucopyranosyl)-3,4,6-tri-O-benzyl-α-
D-glucopyranoside (22) was obtained from thioglycoside 20 and glycosyl acceptor 4 by the
general glycosylation method in 91% yield (β only) as a white amorphous solid. Analytical
data for 22 were in accordance with that reported previously [66].

Methyl 3-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-α-
D-glucopyranoside (23) was obtained from thioglycoside 20 and glycosyl acceptor 6 by the
general glycosylation method in 80% yield (β only) as a white amorphous solid. Analytical
data for 23 were in accordance with that reported previously [66].

Methyl 4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-glucopyranosyl)-2,3,6-tri-O-benzyl-α-
D-glucopyranoside (24) was obtained from thioglycoside 20 and glycosyl acceptor 8 by the
general glycosylation method in 71% yield (β only) as a white amorphous solid. Analytical
data for 24 were in accordance with that reported previously [66].

Methyl 6-O-(2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl)-2,3,4-tri-O-benzyl-α-D-
glucopyranoside (26) was obtained from thioglycoside 25 and glycosyl acceptor 2 by the
general glycosylation method in 77% yield (β only) as a colorless syrup. Analytical data for
26 were in accordance with that reported previously [67].

4. Conclusions

A new method for the activation of alkyl thioglycosides using inexpensive and abun-
dant FeCl3 has been developed. Upon optimization of the reaction conditions using the
per-O-benzylated galactosyl donor, it was determined that efficient activation could be
achieved using stoichiometric amounts of FeCl3 in a mixture of DCM/MeCN. Extension
of these reaction conditions to armed and superarmed galactosyl and glucosyl donors
with a series of primary and secondary glycosyl acceptors produced disaccharides in good
to excellent yields. Broadening the scope of this method to glycosidation of less reactive
glycosyl donors, investigation of the reaction mechanism, and application to the synthesis
of glycans are currently underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29204845/s1, Figure S1. 1H NMR Spectrum (CDCl3, 400 MHz)
of Compound 3; Figure S2. HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 3; Figure S3;
1H NMR Spectrum (CDCl3, 400 MHz) of Compound 5; Figure S4. HSQC NMR Spectrum (CDCl3,
400 MHz) of Compound 5; Figure S5. 1H NMR Spectrum (CDCl3, 400 MHz) of Compound 7; Figure S6.
HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 7; Figure S7. 1H NMR Spectrum (CDCl3,
400 MHz) of Compound 9; Figure S8. HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 9;
Figure S9. 1H NMR Spectrum (CDCl3, 400 MHz) of Compound 11; Figure S10. HSQC NMR Spectrum
(CDCl3, 400 MHz) of Compound 11; Figure S11. 1H NMR Spectrum (CDCl3, 400 MHz) of Compound
12; Figure S12. HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 12; Figure S13. 1H NMR
Spectrum (CDCl3, 400 MHz) of Compound 13; Figure S14. HSQC NMR Spectrum (CDCl3, 400 MHz)
of Compound 13; Figure S15. 1H NMR Spectrum of (CDCl3, 400 MHz) Compound 14; Figure S16.
HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 14; Figure S17. 1H NMR Spectrum (CDCl3,
400 MHz) of Compound 16; Figure S18. HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound
16; Figure S19. 1H NMR Spectrum (CDCl3, 400 MHz) of Compound 17β; Figure S20. HSQC NMR
Spectrum (CDCl3, 400 MHz) of Compound 17β; Figure S21. 1H NMR Spectrum (CDCl3, 400 MHz) of
Compound 17α; Figure S22. HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 17α; Figure S23.
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1H NMR Spectrum (CDCl3, 400 MHz) of Compound 18; Figure S24. HSQC NMR Spectrum (CDCl3,
400 MHz) of Compound 18; Figure S25. 1H NMR Spectrum (CDCl3, 400 MHz) of Compound 19;
Figure S26. HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 19; Figure S27. 1H NMR
Spectrum (CDCl3, 400 MHz) of Compound 21; Figure S28. HSQC NMR Spectrum (CDCl3, 400 MHz)
of Compound 21; Figure S29. 1H NMR Spectrum (CDCl3, 400 MHz) of Compound 22; Figure S30.
HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 22; Figure S31. 1H NMR Spectrum (CDCl3,
400 MHz) of Compound 23; Figure S32. HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound
23; Figure S33. 1H NMR Spectrum (CDCl3, 400 MHz) of Compound 24; Figure S34. HSQC NMR
Spectrum (CDCl3, 400 MHz) of Compound 24; Figure S35. 1H NMR Spectrum (CDCl3, 400 MHz) of
Compound 26; Figure S36. HSQC NMR Spectrum (CDCl3, 400 MHz) of Compound 26.
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