Reversible Photochromic Reactions of Bacteriorhodopsin from Halobacterium salinarum at Femto- and Picosecond Times
Abstract
:1. Introduction
2. Results
2.1. Forward Photoreaction
2.2. Reverse Photoreaction
3. Discussion
4. Materials and Methods
4.1. Preparation of BR Samples
4.2. Stationary Spectroscopy
4.3. Femtosecond Transient Absorption Spectroscopy
4.4. Mathematical Analysis of Absorption Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oesterhelt, D.; Stoeckenius, W. Rhodopsin-like Protein from the Purple Membrane of Halobacterium halobium. Nat. New Biol. 1971, 233, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Ernst, O.P.; Lodowski, D.T.; Elstner, M.; Hegemann, P.; Brown, L.S.; Kandori, H. Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chem. Rev. 2014, 114, 126–163. [Google Scholar] [CrossRef] [PubMed]
- Gozem, S.; Luk, H.L.; Schapiro, I.; Olivucci, M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem. Rev. 2017, 117, 13502–13565. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K. Photochemistry of the Retinal Chromophore in Microbial Rhodopsins. J. Phys. Chem. B 2023, 127, 9215–9222. [Google Scholar] [CrossRef]
- Lozier, R.H.; Bogomolni, R.A.; Stoeckenius, W. Bacteriorhodopsin: A Light-Driven Proton Pump in Halobacterium halobium. Biophys. J. 1975, 15, 955–962. [Google Scholar] [CrossRef]
- Lanyi, J.K. Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66, 665–688. [Google Scholar] [CrossRef]
- Balashov, S.P. Protonation Reactions and Their Coupling in Bacteriorhodopsin. Biochim. Biophys. Acta Bioenerg. 2000, 1460, 75–94. [Google Scholar] [CrossRef]
- Balashov, S.P. Photoreactions of the Photointermediates of Bacteriorhodopsin. Isr. J. Chem. 1995, 35, 415–428. [Google Scholar] [CrossRef]
- Hampp, N. Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. Chem. Rev. 2000, 100, 1755–1776. [Google Scholar] [CrossRef]
- Dencher, N.A.; Kohl, K.D.; Heyn, M.P. Photochemical Cycle and Light-Dark Adaptation of Monomeric and Aggregated Bacteriorhodopsin in Various Lipid Environments. Biochemistry 1983, 22, 1323–1334. [Google Scholar] [CrossRef]
- Scherrer, P.; Mathew, M.K.; Sperling, W.; Stoeckenius, W. Retinal Isomer Ratio in Dark-Adapted Purple Membrane and Bacteriorhodopsin Monomers. Biochemistry 1989, 28, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Dobler, J.; Zinth, W.; Kaiser, W.; Oesterhelt, D. Excited-State Reaction Dynamics of Bacteriorhodopsin Studied by Femtosecond Spectroscopy. Chem. Phys. Lett. 1988, 144, 215–220. [Google Scholar] [CrossRef]
- Mathies, R.A.; Brito Cruz, C.H.; Pollard, W.T.; Shank, C.V. Direct Observation of the Femtosecond Excited-State Cis-Trans Isomerization in Bacteriorhodopsin. Science 1988, 240, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Hasson, K.C.; Gai, F.; Anfinrud, P.A. The Photoisomerization of Retinal in Bacteriorhodopsin: Experimental Evidence for a Three-State Model. Proc. Natl. Acad. Sci. USA 1996, 93, 15124–15129. [Google Scholar] [CrossRef] [PubMed]
- Gai, F.; Hasson, K.C.; McDonald, J.C.; Anfinrud, P.A. Chemical Dynamics in Proteins: The Photoisomerization of Retinal in Bacteriorhodopsin. Science 1998, 279, 1886–1891. [Google Scholar] [CrossRef]
- Schmidt, B.; Sobotta, C.; Heinz, B.; Laimgruber, S.; Braun, M.; Gilch, P. Excited-State Dynamics of Bacteriorhodopsin Probed by Broadband Femtosecond Fluorescence Spectroscopy. Biochim. Biophys. Acta Bioenerg. 2005, 1706, 165–173. [Google Scholar] [CrossRef]
- McCamant, D.W.; Kukura, P.; Mathies, R.A. Femtosecond Stimulated Raman Study of Excited-State Evolution in Bacteriorhodopsin. J. Phys. Chem. B 2005, 109, 10449–10457. [Google Scholar] [CrossRef]
- Chang, C.F.; Kuramochi, H.; Singh, M.; Abe-Yoshizumi, R.; Tsukuda, T.; Kandori, H.; Tahara, T. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angew. Chemie Int. Ed. 2022, 61, e202111930. [Google Scholar] [CrossRef]
- Wand, A.; Friedman, N.; Sheves, M.; Ruhman, S. Ultrafast Photochemistry of Light-Adapted and Dark-Adapted Bacteriorhodopsin: Effects of the Initial Retinal Configuration. J. Phys. Chem. B 2012, 116, 10444–10452. [Google Scholar] [CrossRef]
- Johnson, P.J.M.; Halpin, A.; Morizumi, T.; Brown, L.S.; Prokhorenko, V.I.; Ernst, O.P.; Dwayne Miller, R.J. The Photocycle and Ultrafast Vibrational Dynamics of Bacteriorhodopsin in Lipid Nanodiscs. Phys. Chem. Chem. Phys. 2014, 16, 21310–21320. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yabushita, A. Sub-5-Fs Real-Time Spectroscopy of Transition States in Bacteriorhodopsin during Retinal Isomerization. Opt. InfoBase Conf. Pap. 2008, 83, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Klessinger, M. Conical Intersections and the Mechanism of Singlet Photoreactions. Angew. Chem. Int. Ed. 1995, 34, 549–551. [Google Scholar] [CrossRef]
- Govindjee, R.; Balashov, S.P.; Ebrey, T.G. Quantum Efficiency of the Photochemical Cycle of Bacteriorhodopsin. Biophys. J. 1990, 58, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.K.; Liang, R.; Liu, F.; Martínez, T.J. First-Principles Characterization of the Elusive i Fluorescent State and the Structural Evolution of Retinal Protonated Schiff Base in Bacteriorhodopsin. J. Am. Chem. Soc. 2019, 141, 18193–18203. [Google Scholar] [CrossRef] [PubMed]
- Sharkov, A.V.; Pakulev, A.V.; Chekalin, S.V.; Matveetz, Y.A. Primary Events in Bacteriorhodopsin Probed by Subpicosecond Spectroscopy. BBA Bioenerg. 1985, 808, 94–102. [Google Scholar] [CrossRef]
- Yabushita, A.; Kobayashi, T. Primary Conformation Change in Bacteriorhodopsin on Photoexcitation. Biophys. J. 2009, 96, 1447–1461. [Google Scholar] [CrossRef]
- Ye, T.; Friedman, N.; Gat, Y.; Atkinson, G.H.; Sheves, M.; Ottolenghi, M.; Ruhman, S. On the Nature of the Primary Light-Induced Events in Bacteriorhodopsin: Ultrafast Spectroscopy of Native and C13=C14 Locked Pigments. J. Phys. Chem. B 1999, 103, 5122–5130. [Google Scholar] [CrossRef]
- Agathangelou, D.; Roy, P.P.; Del Carmen Marín, M.; Ferré, N.; Olivucci, M.; Buckup, T.; Léonard, J.; Haacke, S. Sub-Picosecond C=C Bond Photo-Isomerization: Evidence for the Role of Excited State Mixing. Comptes Rendus Phys. 2021, 22, 111–138. [Google Scholar] [CrossRef]
- Gozem, S.; Johnson, P.J.M.; Halpin, A.; Luk, H.L.; Morizumi, T.; Prokhorenko, V.I.; Ernst, O.P.; Olivucci, M.; Miller, R.J.D. Excited-State Vibronic Dynamics of Bacteriorhodopsin from Two-Dimensional Electronic Photon Echo Spectroscopy and Multiconfigurational Quantum Chemistry. J. Phys. Chem. Lett. 2020, 11, 3889–3896. [Google Scholar] [CrossRef]
- Terentis, A.C.; Ujj, L.; Abramczyk, H.; Atkinson, G.H. Primary Events in the Bacteriorhodopsin Photocycle: Torsional Vibrational Dephasing in the First Excited Electronic State. Chem. Phys. 2005, 313, 51–62. [Google Scholar] [CrossRef]
- Smitienko, O.A.; Feldman, T.B.; Petrovskaya, L.E.; Nekrasova, O.V.; Yakovleva, M.A.; Shelaev, I.V.; Gostev, F.E.; Cherepanov, D.A.; Kolchugina, I.B.; Dolgikh, D.A.; et al. Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium Sibiricum Rhodopsin and Halobacterium Salinarum Bacteriorhodopsin. J. Phys. Chem. B 2021, 125, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Herbst, J.; Heyne, K.; Diller, R. Femtosecond Infrared Spectroscopy of Bacteriorhodopsin Chromophore Isomerization. Science 2002, 297, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Doig, S.J.; Reid, P.J.; Mathies, R.A. Picosecond Time-Resolved Resonance Raman Spectroscopy of Bacteriorhodopsin′s J, K, and KL Intermediates. J. Phys. Chem. 1991, 95, 6372–6379. [Google Scholar] [CrossRef]
- Kochendoerfer, G.G.; Mathies, R.A. Ultrafast Spectroscopy of Rhodopsins—Photochemistry at Its Best! Isr. J. Chem. 1995, 35, 211–226. [Google Scholar] [CrossRef]
- Diller, R. Primary Reactions in Retinal Proteins. In Ultrashort Laser Pulses in Biology and Medicine; Braun, M., Gilch, P., Zinth, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 243–277. ISBN 978-3-540-73566-3. [Google Scholar]
- Zgrablić, G.; Novello, A.M.; Parmigiani, F. Population Branching in the Conical Intersection of the Retinal Chromophore Revealed by Multipulse Ultrafast Optical Spectroscopy. J. Am. Chem. Soc. 2012, 134, 955–961. [Google Scholar] [CrossRef]
- Arlt, T.; Schmidt, S.; Zinth, W.; Haupts, U.; Oesterhelt, D. The Initial Reaction Dynamics of the Light-Driven Chloride Pump Halorhodopsin. Chem. Phys. Lett. 1995, 241, 559–565. [Google Scholar] [CrossRef]
- Lenz, M.O.; Huber, R.; Schmidt, B.; Gilch, P.; Kalmbach, R.; Engelhard, M.; Wachtveitl, J. First Steps of Retinal Photoisomerization in Proteorhodopsin. Biophys. J. 2006, 91, 255–262. [Google Scholar] [CrossRef]
- Tahara, S.; Takeuchi, S.; Abe-Yoshizumi, R.; Inoue, K.; Ohtani, H.; Kandori, H.; Tahara, T. Origin of the Reactive and Nonreactive Excited States in the Primary Reaction of Rhodopsins: PH Dependence of Femtosecond Absorption of Light-Driven Sodium Ion Pump Rhodopsin KR2. J. Phys. Chem. B 2018, 122, 4784–4792. [Google Scholar] [CrossRef]
- Kusochek, P.A.; Scherbinin, A.V.; Bochenkova, A.V. Insights into the Early-Time Excited-State Dynamics of Structurally Inhomogeneous Rhodopsin KR2. J. Phys. Chem. Lett. 2021, 12, 8664–8671. [Google Scholar] [CrossRef]
- Ostrovsky, M.A.; Weetall, H.H. Octopus Rhodopsin Photoreversibility of a Crude Extract from Whole Retina over Several Weeks′ Duration. Biosens. Bioelectron. 1998, 13, 61–65. [Google Scholar] [CrossRef]
- Suzuki, T.; Callender, R.H. Primary Photochemistry and Photoisomerization of Retinal at 77 Degrees K in Cattle and Squid Rhodopsins. Biophys. J. 1981, 34, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, T.; Wald, G. Pre-Lumirhodopsin and the Bleaching of Visual Pigments. Nature 1963, 197, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Feldman, T.B.; Smitienko, O.A.; Shelaev, I.V.; Gostev, F.E.; Nekrasova, O.V.; Dolgikh, D.A.; Nadtochenko, V.A.; Kirpichnikov, M.P.; Ostrovsky, M.A. Femtosecond Spectroscopic Study of Photochromic Reactions of Bacteriorhodopsin and Visual Rhodopsin. J. Photochem. Photobiol. B Biol. 2016, 164, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Malakar, P.; Gholami, S.; Aarabi, M.; Rivalta, I.; Sheves, M.; Garavelli, M.; Ruhman, S. Retinal Photoisomerization versus Counterion Protonation in Light and Dark-Adapted Bacteriorhodopsin and Its Primary Photoproduct. Nat. Commun. 2024, 15, 2136. [Google Scholar] [CrossRef] [PubMed]
- Birge, R.R.; Cooper, T.M.; Lawrence, A.F.; Masthay, M.B.; Vasilakis, C.; Zhang, C.F.; Zidovetzki, R. A Spectroscopic, Photocalorimetric, and Theoretical Investigation of the Quantum Efficiency of the Primary Event in Bacteriorhodopsin. J. Am. Chem. Soc. 1989, 111, 4063–4074. [Google Scholar] [CrossRef]
- Bazhenov, V.; Schmidt, P.; Atkinson, G.H. Nanosecond Photolytic Interruption of Bacteriorhodopsin Photocycle: K-590 → BR-570 Reaction. Biophys. J. 1992, 61, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Ostrovsky, M.A.; Smitienko, O.A.; Bochenkova, A.V.; Feldman, T.B. Similarities and Differences in Photochemistry of Type I and Type II Rhodopsins. Biochemistry 2023, 88, 1528–1543. [Google Scholar] [CrossRef]
- Smitienko, O.; Nadtochenko, V.; Feldman, T.; Balatskaya, M.; Shelaev, I.; Gostev, F.; Sarkisov, O.; Ostrovsky, M. Femtosecond Laser Spectroscopy of the Rhodopsin Photochromic Reaction: A Concept for Ultrafast Optical Molecular Switch Creation (Ultrafast Reversible Photoreaction of Rhodopsin). Molecules 2014, 19, 18351–18366. [Google Scholar] [CrossRef]
- Delaney, J.K.; Schmidt, P.K.; Brack, T.L.; Atkinson, G.H. Photochemistry of K-590 in the Room-Temperature Bacteriorhodppsin Photocycle. J. Phys. Chem. B 2000, 104, 10827–10834. [Google Scholar] [CrossRef]
- Yan, M.; Rothberg, L.; Callender, R. Femtosecond Dynamics of Rhodopsin Photochemistry Probed by a Double Pump Spectroscopic Approach. J. Phys. Chem. B 2001, 105, 856–859. [Google Scholar] [CrossRef]
- Kawanabe, A.; Kandori, H. Photoreactions and Structural Changes of Anabaena Sensory Rhodopsin. Sensors 2009, 9, 9741–9804. [Google Scholar] [CrossRef] [PubMed]
- Bruun, S.; Stoeppler, D.; Keidel, A.; Kuhlmann, U.; Luck, M.; Diehl, A.; Geiger, M.A.; Woodmansee, D.; Trauner, D.; Hegemann, P.; et al. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the All-Trans and 13-Cis Retinal Isomers. Biochemistry 2015, 54, 5389–5400. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Mochizuki, Y.; Kamo, N.; Kobatake, Y. Evidence That the Long-Lifetime Photointermediate of s-Rhodopsin Is a Receptor for Negative Phototaxis in Halobacterium halobium. Biochem. Biophys. Res. Commun. 1985, 127, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, H.; Kobayashi, T.; Tsuda, M. Branching Photocycle of Sensory Rhodopsin in Halobacterium halobium. Biophys. J. 1988, 53, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, M.; Terakita, A. Gq-Coupled Rhodopsin Subfamily Composed of Invertebrate Visual Pigment and Melanopsin. Photochem. Photobiol. 2008, 84, 1024–1030. [Google Scholar] [CrossRef]
- Kryukov, P.G.; Lazarev, Y.A.; Matveets, Y.A.; Terpugov, E.L.; Chekulaeva, L.N.; Sharkov, A. V Picosecond Spectroscopy of Deuterated Bacteriorhodopsin on the Primary Photochemical Event. Stud. Biophys. 1981, 83, 101–108. [Google Scholar]
- Xie, A.H. Quantum Efficiencies of Bacteriorhodopsin Photochemical Reactions. Biophys. J. 1990, 58, 1127–1132. [Google Scholar] [CrossRef]
- Nakayama, T.; Tokunaga, F.; Hirai, M. Picosecond Spectroscopy on Reverse Photoreaction from Batho-Intermediate of Bacteriorhodopsin at 6.5 K. J. Phys. Soc. Jpn. 1984, 53, 2851–2856. [Google Scholar] [CrossRef]
- Balashov, S.P.; Imasheva, E.S.; Govindjee, R.; Ebrey, T.G. Quantum Yield Ratio of the Forward and Back Light Reactions of Bacteriorhodopsin T Low Temperature and Photosteady-state Concentration of the Bathoproduct K. Photochem. Photobiol. 1991, 54, 955–961. [Google Scholar] [CrossRef]
- Dioumaev, A.K.; Savransky, V.V.; Tkachenko, N.V.; Chukharev, V.I. Quantum Yield and Extinction Measurements in Strongly Overlapping Reactant and Photoproduct Absorption Bands. II: Bathointermediate Formation in Bacteriorhodopsin Photocycle at Room Temperature. J. Photochem. Photobiol. B Biol. 1989, 3, 397–410. [Google Scholar] [CrossRef]
- Groma, G.I.; Hebling, J.; Ludwig, C.; Kuhl, J. Charge Displacement in Bacteriorhodopsin during the Forward and Reverse BR-K Phototransition. Biophys. J. 1995, 69, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.H.; Blanchard, D.; Lemaire, H.; Brack, T.L.; Hayashi, H. Picosecond Time-Resolved Fluorescence Spectroscopy of K-590 in the Bacteriorhodopsin Photocycle. Biophys. J. 1989, 55, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Kandori, H. Protein-Controlled Ultrafast Photoisomerization in Rhodopsin and Bacteriorhodopsin. In Supramolecular Photochemistry: Controlling Photochemical Processes; Wiley Online Library: New York, NY, USA, 2011; pp. 571–595. [Google Scholar]
- Logunov, S.L.; El-Sayed, M.A.; Song, L.; Lanyi, J.K. Photoisomerization Quantum Yield and Apparent Energy Content of the K Intermediate in the Photocycles of Bacteriorhodopsin, Its Mutants D85N, R82Q, and D212N, and Deionized Blue Bacteriorhodopsin. J. Phys. Chem. 1996, 100, 2391–2398. [Google Scholar] [CrossRef]
- Schuurman, M.S.; Stolow, A. Dynamics at Conical Intersections. Annu. Rev. Phys. Chem. 2018, 69, 427–450. [Google Scholar] [CrossRef]
- Boeije, Y.; Olivucci, M. From a One-Mode to a Multi-Mode Understanding of Conical Intersection Mediated Ultrafast Organic Photochemical Reactions. Chem. Soc. Rev. 2023, 52, 2643–2687. [Google Scholar] [CrossRef]
- Warshel, A.; Chu, Z.T. Nature of the Surface Crossing Process in Bacteriorhodopsin: Computer Simulations of the Quantum Dynamics of the Primary Photochemical Event. J. Phys. Chem. B 2001, 105, 9857–9871. [Google Scholar] [CrossRef]
- Weiss, R.M.; Warshel, A. A New View of the Dynamics of Singlet Cis-Trans Photoisomerization. J. Am. Chem. Soc. 1979, 101, 6131–6133. [Google Scholar] [CrossRef]
- Weingart, O. The Role of HOOP-Modes in the Ultrafast Photo-Isomerization of Retinal Models. Chem. Phys. 2008, 349, 348–355. [Google Scholar] [CrossRef]
- Malhado, J.P.; Spezia, R.; Hynes, J.T. Conical Intersection Structure and Dynamics for a Model Protonated Schiff Base Photoisomerization in Solution. Int. J. Quantum Chem. 2013, 113, 296–305. [Google Scholar] [CrossRef]
- Yarkony, D.R. Conical Intersections: Diabolical and Often Misunderstood. Acc. Chem. Res. 1998, 31, 511–518. [Google Scholar] [CrossRef]
- Cheminal, A.; Léonard, J.; Kim, S.Y.; Jung, K.H.; Kandori, H.; Haacke, S. 100 Fs Photo-Isomerization with Vibrational Coherences but Low Quantum Yield in Anabaena Sensory Rhodopsin. Phys. Chem. Chem. Phys. 2015, 17, 25429–25439. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.C.; Chen, X.R.; Ko, Y.K.; Kobayashi, T.; Yang, C.S.; Yabushita, A. Schiff Base Proton Acceptor Assists Photoisomerization of Retinal Chromophores in Bacteriorhodopsin. Biophys. J. 2017, 112, 2503–2519. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Köhler, T.; Lenz, M.O.; Bamberg, E.; Kalmbach, R.; Engelhard, M.; Wachtveitl, J. PH-Dependent Photoisomerization of Retinal in Proteorhodopsin. Biochemistry 2005, 44, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Lanyi, J.K. Proton Transfer and Energy Coupling in the Bacteriorhodopsin Photocycle. J. Bioenerg. Biomembr. 1992, 24, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Terauchi, M.; Kouyama, T.; Yoshizawa, M.; Taiji, M. Femtosecond Spectroscopy of Acidified and Neutral Bacteriorhodopsin. Laser Appl. Life Sci. 1991, 1403, 407. [Google Scholar] [CrossRef]
- Kouyama, T.; Kinosita, K.; Ikegami, A. Excited-State Dynamics of Bacteriorhodopsin. Biophys. J. 1985, 47, 43–54. [Google Scholar] [CrossRef]
- Song, L.; El-Sayed, M.A.; Lanyi, J.K. Protein Catalysis of the Retinal Subpicosecond Photoisomerization in the Primary Process of Bacteriorhodopsin Photosynthesis. Science 1993, 261, 891–894. [Google Scholar] [CrossRef]
- Scholz, F.; Bamberg, E.; Bamann, C.; Wachtveitl, J. Tuning the Primary Reaction of Channelrhodopsin-2 by Imidazole, PH, and Site-Specific Mutations. Biophys. J. 2012, 102, 2649–2657. [Google Scholar] [CrossRef]
- Luecke, H.; Schobert, B.; Richter, H.T.; Cartailler, J.P.; Lanyi, J.K. Structural Changes in Bacteriorhodopsin during Ion Transport at 2 Angstrom Resolution. Science 1999, 286, 255–260. [Google Scholar] [CrossRef]
- Furutani, Y.; Kandori, H. Hydrogen-Bonding Changes of Internal Water Molecules upon the Actions of Microbial Rhodopsins Studied by FTIR Spectroscopy. Biochim. Biophys. Acta Bioenerg. 2014, 1837, 598–605. [Google Scholar] [CrossRef]
- Schobert, B.; Cupp-Vickery, J.; Hornak, V.; Smith, S.O.; Lanyi, J.K. Crystallographic Structure of the K Intermediate of Bacteriorhodopsin: Conservation of Free Energy after Photoisomerization of the Retinal. J. Mol. Biol. 2002, 321, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Nogly, P.; Weinert, T.; James, D.; Carbajo, S.; Ozerov, D.; Furrer, A.; Gashi, D.; Borin, V.; Skopintsev, P.; Jaeger, K.; et al. Retinal Isomerization in Bacteriorhodopsin Captured by a Femtosecond X-ray Laser. Science 2018, 361, eaat0094. [Google Scholar] [CrossRef] [PubMed]
- Nass Kovacs, G.; Colletier, J.P.; Grünbein, M.L.; Yang, Y.; Stensitzki, T.; Batyuk, A.; Carbajo, S.; Doak, R.B.; Ehrenberg, D.; Foucar, L.; et al. Three-Dimensional View of Ultrafast Dynamics in Photoexcited Bacteriorhodopsin. Nat. Commun. 2019, 10, 3177. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, S.; Niwa, S.; Dao, H.A.; Tanaka, Y.; Takeda, R.; Fukai, S.; Hasegawa, K.; Takeda, K. Detailed Analysis of Distorted Retinal and Its Interaction with Surrounding Residues in the K Intermediate of Bacteriorhodopsin. Commun. Biol. 2023, 6, 190. [Google Scholar] [CrossRef]
- Kiefer, H.V.; Gruber, E.; Langeland, J.; Kusochek, P.A.; Bochenkova, A.V.; Andersen, L.H. Intrinsic Photoisomerization Dynamics of Protonated Schiff-Base Retinal. Nat. Commun. 2019, 10, 1210. [Google Scholar] [CrossRef]
- Shelaev, I.V.; Gostev, F.E.; Mamedov, M.D.; Sarkisov, O.M.; Nadtochenko, V.A.; Shuvalov, V.A.; Semenov, A.Y. Femtosecond Primary Charge Separation in Synechocystis sp. PCC 6803 Photosystem I. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 1410–1420. [Google Scholar] [CrossRef]
- Dobryakov, A.L.; Pérez Lustres, J.L.; Kovalenko, S.A.; Ernsting, N.P. Femtosecond Transient Absorption with Chirped Pump and Supercontinuum Probe: Perturbative Calculation of Transient Spectra with General Lineshape Functions, and Simplifications. Chem. Phys. 2008, 347, 127–138. [Google Scholar] [CrossRef]
- Dobryakov, A.L.; Kovalenko, S.A.; Weigel, A.; Ṕrez-Lustres, J.L.; Lange, J.; Müller, A.; Ernsting, N.P. Femtosecond Pump/Supercontinuum-Probe Spectroscopy: Optimized Setup and Signal Analysis for Single-Shot Spectral Referencing. Rev. Sci. Instrum. 2010, 81, 113106. [Google Scholar] [CrossRef]
- Cherepanov, D.A.; Neverov, K.V.; Obukhov, Y.N.; Maleeva, Y.V.; Gostev, F.E.; Shelaev, I.V.; Aybush, A.V.; Kritsky, M.S.; Nadtochenko, V.A. Femtosecond Dynamics of Excited States of Chlorophyll Tetramer in Water-Soluble Chlorophyll-Binding Protein BoWSCP. Biochemistry 2023, 88, 1580–1595. [Google Scholar] [CrossRef]
- van Stokkum, I.H.M.; Larsen, D.S.; van Grondelle, R. Global and Target Analysis of Time-Resolved Spectra. Biochim. Biophys. Acta Bioenerg. 2004, 1657, 82–104. [Google Scholar] [CrossRef]
- Beechen, J.M.; Ameloot, M. Global and Target Analysis of Complex Decay Phenomena. Instrum. Sci. Technol. 1985, 14, 379–402. [Google Scholar] [CrossRef]
- Provencher, S.W. An Eigenfunction Expansion Method for the Analysis of Exponential Decay Curves. J. Chem. Phys. 1976, 64, 2772–2777. [Google Scholar] [CrossRef]
- Shinkarev, V. Functional Modeling of Electron Transfer in Photosynthetic Reaction Centers. In Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase; Springer: Dordrecht, The Netherlands, 2006; pp. 611–637. [Google Scholar] [CrossRef]
- Cherepanov, D.A.; Semenov, A.Y.; Mamedov, M.D.; Aybush, A.V.; Gostev, F.E.; Shelaev, I.V.; Shuvalov, V.A.; Nadtochenko, V.A. Current State of the Primary Charge Separation Mechanism in Photosystem I of Cyanobacteria. Biophys. Rev. 2022, 14, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Saito, T.; Ohtani, H. Real-Time Spectroscopy of Transition States in Bacteriorhodopsin during Retinal Isomerization. Nature 2001, 414, 531–534. [Google Scholar] [CrossRef]
BR568 → K590 | τ0, ps | τ1, ps | τ2, ps | |
0.08 | 0.52 | 3.5 | ||
ESA1I(474 nm), % | ||||
91 | 9 | |||
K590 → BR568 | τ1′, ps | τ2′, ps | τ3′, ps | |
0.19 | 1.1 | 16 | ||
ESA1K*(460 nm), % | ||||
20 | 60 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smitienko, O.; Feldman, T.; Shelaev, I.; Gostev, F.; Aybush, A.; Cherepanov, D.; Nadtochenko, V.; Ostrovsky, M. Reversible Photochromic Reactions of Bacteriorhodopsin from Halobacterium salinarum at Femto- and Picosecond Times. Molecules 2024, 29, 4847. https://doi.org/10.3390/molecules29204847
Smitienko O, Feldman T, Shelaev I, Gostev F, Aybush A, Cherepanov D, Nadtochenko V, Ostrovsky M. Reversible Photochromic Reactions of Bacteriorhodopsin from Halobacterium salinarum at Femto- and Picosecond Times. Molecules. 2024; 29(20):4847. https://doi.org/10.3390/molecules29204847
Chicago/Turabian StyleSmitienko, Olga, Tatyana Feldman, Ivan Shelaev, Fedor Gostev, Arseniy Aybush, Dmitry Cherepanov, Victor Nadtochenko, and Mikhail Ostrovsky. 2024. "Reversible Photochromic Reactions of Bacteriorhodopsin from Halobacterium salinarum at Femto- and Picosecond Times" Molecules 29, no. 20: 4847. https://doi.org/10.3390/molecules29204847
APA StyleSmitienko, O., Feldman, T., Shelaev, I., Gostev, F., Aybush, A., Cherepanov, D., Nadtochenko, V., & Ostrovsky, M. (2024). Reversible Photochromic Reactions of Bacteriorhodopsin from Halobacterium salinarum at Femto- and Picosecond Times. Molecules, 29(20), 4847. https://doi.org/10.3390/molecules29204847