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Abstract: The molecular mechanism of the reaction between 2-methoxyfuran and ethyl (Z)-3-phenyl-
2-nitroprop-2-enoate was investigated using wb97xd/6-311+G(d,p)(PCM) quantum chemical calcula-
tions. It was found that the most probable reaction mechanism is fundamentally different from what
was previously postulated. In particular, six possible zwitterionic intermediates were detected on the
reaction pathway. Their formation is determined by the nature of local nucleophile/electrophile inter-
actions. Additionally, the channel involving the formation of the exo-nitro Diels–Alder cycloadduct
was completely ruled out. Finally, the electronic nature of the five- and six-membered nitronates as
potential TACs was evaluated.
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1. Introduction

The most universal protocol for the preparation of six-membered carbocyclic molecules
is the [4+2] cycloaddition (42CA) process involving conjugated dienes [1–5] discovered by
Otto Diels and Kurt Alder [6]. It is important to note that analogous processes exist in or-
ganic chemistry, involving heteroanalogs of dienes, such as conjugated nitroalkenes [7–10],
nitrosocompounds [11–13], azoalkenes [14], and others [15–18]. Among a wide range of
42CA-type transformations, reactions involving cyclopentadiene, furan, and thiophene
play a particularly important role. These reactions provide an efficient protocol for the
synthesis of norbornene derivatives, as well as their heterocyclic analogs, which are of
significant practical interest [19–23].

Although the heteroaromatic furan molecule is not formally a conjugated diene,
it exhibits reactivity similar to cyclopentadiene according to the 42CA scheme [24–26].
This type of transformation is particularly accelerated by the significant difference in
the global electrophilicities of the cycloaddition components [27,28]. Some time ago,
Itoh and Kishimoto [29] reported the results of experimental research on the reaction
between 2-methoxyfuran (1) and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate (2). Specifi-
cally, in the post-reaction mixture, the authors detected two major products: 2-metxohy-
5-(2-carboethoxy-2-nitro-1-phenylethyl)-furane (3) and 4,5-cis-3-carboethoxy-4-phenyl-5-
carbomethoxy-isoxazoline 2-oxide (Z-4) (Scheme 1).
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Scheme 1. Experimental results of the reaction between 2-methoxyfuran (1) and ethyl (Z)-3-phenyl-
2-nitroprop-2-enoate (2). 

Based on these observations, the authors proposed two alternative mechanisms for 
the formation of the detected products (Scheme 2). The first approach involves the for-
mation of a Diels–Alder type exo-nitro adduct (DAexo) in the initial reaction stage. In this 
scheme, the DAexo molecular system is treated as a common intermediate for the for-
mation of the target products 3 and Z-4. The alternative approach suggests that a (Z)wit-
terionic adduct is formed in the first reaction stage. This intermediate can then be con-
verted to the detected products via respective rearrangement pathways. 

 
Scheme 2. Postulated mechanisms for the reaction between 2-methoxy (1) and ethyl (Z)-3-phenyl-
2-nitroprop-2-enoate (2). 

Unfortunately, the mechanistic considerations presented should be treated only as 
intuitive propositions rather than definitive explanations. This proposal contains several 
weak points, as follows, and many key issues were not thoroughly analyzed, necessitating 
reexamination and deeper investigation: 
(i) The formation of the detected adducts via an intermediate stage is rather evident. 

The number of possible intermediates is, however, substantially higher. Next, the de-
tected products may form via a common intermediate or through two different types 
of intermediates. Such scenarios have recently been analyzed in reactions between 
conjugated dienes and alkenes [30]. 

(ii) The authors assumed a priori the formation of exo-type Diels–Alder cycloadducts. 
However, many experimental results indicate that in Diels–Alder reactions between 
conjugated dienes and conjugated nitroalkenes, the endo-nitro isomer is always pre-
ferred [31,32]. Unfortunately, the possibility of forming these types of cycloadducts 
was not considered in the mechanistic discussion. 

(iii) Assuming a zwitterionic mechanism for the title reaction, not just one, but six iso-
meric zwitterionic intermediates should be considered [33]. Different zwitterions 
may convert to the same or different final products. Furthermore, the mutual conver-
sion of zwitterions through a rotation of the single bond within >C-C-NO2 moiety is 
feasible and should be considered. 

(iv) In reactions involving conjugated nitroalkenes, the classical “carbo” Diels–Alder 
scheme can compete with the hetero Diels–Alder reaction, where the nitroalkene acts 
as a heteroanalog of the diene [9,34]. 

Scheme 1. Experimental results of the reaction between 2-methoxyfuran (1) and ethyl (Z)-3-phenyl-2-
nitroprop-2-enoate (2).

Based on these observations, the authors proposed two alternative mechanisms for the
formation of the detected products (Scheme 2). The first approach involves the formation
of a Diels–Alder type exo-nitro adduct (DAexo) in the initial reaction stage. In this scheme,
the DAexo molecular system is treated as a common intermediate for the formation of the
target products 3 and Z-4. The alternative approach suggests that a (Z)witterionic adduct is
formed in the first reaction stage. This intermediate can then be converted to the detected
products via respective rearrangement pathways.
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Scheme 2. Postulated mechanisms for the reaction between 2-methoxy (1) and ethyl (Z)-3-phenyl-2-
nitroprop-2-enoate (2).

Unfortunately, the mechanistic considerations presented should be treated only as
intuitive propositions rather than definitive explanations. This proposal contains several
weak points, as follows, and many key issues were not thoroughly analyzed, necessitating
reexamination and deeper investigation:

(i) The formation of the detected adducts via an intermediate stage is rather evident.
The number of possible intermediates is, however, substantially higher. Next, the
detected products may form via a common intermediate or through two different types
of intermediates. Such scenarios have recently been analyzed in reactions between
conjugated dienes and alkenes [30].

(ii) The authors assumed a priori the formation of exo-type Diels–Alder cycloadducts.
However, many experimental results indicate that in Diels–Alder reactions between
conjugated dienes and conjugated nitroalkenes, the endo-nitro isomer is always
preferred [31,32]. Unfortunately, the possibility of forming these types of cycloadducts
was not considered in the mechanistic discussion.

(iii) Assuming a zwitterionic mechanism for the title reaction, not just one, but six isomeric
zwitterionic intermediates should be considered [33]. Different zwitterions may
convert to the same or different final products. Furthermore, the mutual conversion of
zwitterions through a rotation of the single bond within >C-C-NO2 moiety is feasible
and should be considered.

(iv) In reactions involving conjugated nitroalkenes, the classical “carbo” Diels–Alder
scheme can compete with the hetero Diels–Alder reaction, where the nitroalkene acts
as a heteroanalog of the diene [9,34].
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(v) Assuming the formation of the Diels–Alder product within the initial reaction stage,
a one-step cycloaddition mechanism cannot be assumed a priori. Recently, many
examples of stepwise Diels–Alder reactions have been shown to proceed through the
formation of biradical or zwitterionic intermediates [35].

(vi) Although the stereoconfiguration of 4,5-cis-3-carboethoxy-4-phenyl-5-carbomethoxy-
isoxazoline 2-oxide was fully established on the basis of the RTG experiment, the
stereoconfiguration of the Michael-type adduct (3) remains unclear. In practice, more
than one structure of this type of adduct is possible [32,36].

The authors identified only 77% of the post-reaction mixture, and the composition of
the residue is unknown. This fraction can include product(s) other than those presented in
Scheme 1.

Therefore, in this study, we aimed to address and explain all of the mechanistic
aspects mentioned above. Specifically, we explored all theoretically possible pathways of
the reaction system’s transformation (Scheme 3). For this purpose, we applied Density
Functional Theory (DFT) calculations at the wb97xd/6-311+G(d,p) level of theory.
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2. Results and Discussion
2.1. Electronic Interactions

According to the current understanding [37,38], changes in electron density along
a chemical reaction are responsible for the chemical reactivity of organic molecules. In
practice, for bimolecular organic polar processes, the formation of new bonds is determined
by interactions between the most electrophilically activated reaction center of the first
molecule and the most nucleophilically activated center of the second [39,40]. This approach
has been successfully applied to predict the reactivity of many polar components as well as
the regioselectivity of various organic reactions [41–46].

The relevant descriptors for the components of the reaction in question are summarized
in Table 1. It was found that the electronic chemical potential (Z)-3-phenyl-2-nitroprop-
2-enoate (2) is −4.51 eV. As a result, the reaction with 2-methoxyfuran (1) should be
determined by the electron density transfer from the furan molecule to the nitroalkene.
Thus, according to Domingo’s terminology [47], this reaction should be classified as a
Forward Electron Density Flux (FEDF) process. Moreover, the global electrophilicity of the
nitroalkene (2.24 eV) is substantially higher than the analogous parameter estimated for
methoxyfuran (0.39 eV). Therefore, the key interatomic interactions must be regarded as
polar in nature.

Table 1. Global electronic properties of 2-methoxyfuran (1) and ethyl (Z)-3-phenyl-2-nitroprop-2-
enoate (2).

µ [eV] η [eV] ω [eV] N [eV]

1 −2.23 6.34 0.39 3.72
2 −4.51 4.53 2.24 2.34

As a consequence, the regio-orientation in the first stage of the reaction is primarily
determined by the interaction between the C5 nucleophilic atom in the furan 1 molecule
and the beta-carbon atom in the nitrovinyl moiety of (2) (Scheme 4). This type of mutual
orientation aligns perfectly with the further exploration of the reaction profiles and is
consistent with the observed regioselectivity of the reaction [29].
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2.2. Energetic Considerations

For all transformations leading to the target products (Diels–Alder adducts, hetero
Diels–Alder products, Michael adducts, and five-membered internal nitronates), the initial
reaction stage always involves the formation of the respective pre-reaction molecular
complex MC (Scheme 3, Table 2). Depending on the mutual orientation of the reactant
molecules, six structures of pre-reaction complexes are possible: MCA, MCB, and MCC
within the endo approach, and MCD, MCE, and MCF within the exo approach, respectively.
The formation of these MCs is associated with a reduction in the enthalpy of the reaction
system by several kcal/mol. However, at the same time, the entropy of the reaction system
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is significantly reduced. Consequently, the Gibbs free energies for the formation of the
respective MCs are positive, which excludes the possibility of MCs existing as relatively
stable intermediates.

Table 2. Kinetic and thermodynamic parameters for key transformations in the reaction between
2-methoxyfuran (1) and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate (2) based on wb97xd/6-311+G(d,p)
(PCM) calculations (∆H, ∆G are in kcal/mol; ∆S are in cal/molK).

Transformation Transition ∆H ∆S ∆G

The formation of
intermediates

1+2 → MCA −7.1 −40.3 4.9
MCA → TSA 14.4 −11.8 18.0

MCA → Iendo1 1.7 −8.3 4.2
1+2 → MCB −4.5 −32.8 5.3
MCB → TSB 16.5 −13.7 20.6

MCB → Iendo2 1.2 −15.2 5.7
1+2 → MCC −5.2 −38.2 6.2
MCC → TSC 17.2 −8.4 19.7

MCC → Iendo3 −0.2 −7.5 2.0
1+2 → MCD −6.6 −39.7 5.3
MCD → TSD 14.9 −9.7 17.8
MCD → Iexo1 4.7 −9.4 7.5
1+2 → MCE −4.4 −36.4 6.4
MCE → TSE 17.3 −8.2 19.7
MCE → Iexo2 −0.7 −11.5 2.7
1+2 → MCF −5.4 −34.6 4.9
MCF → TSF 16.5 −13.0 20.3
MCF → Iexo3 0.2 −15.2 4.7

The rotation around the
nitroethyl moiety within

intermediates

TSrot(Iendo1 → Iendo2) 4.8 −4.5 6.1
Iendo1 → Iendo2 2.1 0.6 1.9

TSrot(Iendo2 → Iendo3) 1.0 −4.9 2.5
Iendo2 → Iendo3 −2.1 2.3 −2.8

TSrot(Iendo3 → Iendo1) 3.5 −7.8 5.8
Iendo3 → Iendo1 0.0 −2.9 0.8
TSrot(Iexo1 →Iexo2) 0.9 −3.8 2.1

Iexo1 → Iexo2 −3.2 0.8 −3.6
TSrot(Iexo2 → Iexo3) 2.1 −4.9 3.6

Iexo2 → Iexo3 −0.1 −2.0 0.5

The formation of hetero
Diels–Alder adducts

Iexo1 → TSG 1.4 −3.7 2.5
Iexo1 → HDAexo −2.8 −3.8 −1.7

Iexo3 → TSG 4.8 −3.0 5.7
Iexo3 → HDAexo 0.5 −3.2 1.5

Iendo1 → TSI 0.7 −4.3 2.0
Iendo1 → HDAendo −8.2 −2.4 −7.5

The formation of
Diels–Alder adducts

Iendo1 → TSJ 9.1 −8.0 11.5
Iendo1 → DAendo −3.1 −7.9 −0.7

Iexo1 → TSK 10.6 −14.0 14.8
Iexo1 → DAexo −3.9 −13.3 0.0

The formation of
Michael adducts

Iexo2 → TSL 32.5 0.5 32.3
Iexo2 → Z-3 −17.3 6.6 −19.3

Iexo3 → TSM 32.6 2.4 31.9
Iexo3 → Z-3 −17.2 8.6 −19.8

Iendo2 → TSN 33.4 1.8 32.9
Iendo2 → E-3 −19.6 1.5 −20.0
Iendo3 → TSO 35.5 −0.4 35.7
Iendo3 → E-3 −16.9 4.8 −18.4

The formation of
nitronate Z-4

Iexo3 → TSP 8.8 0.4 8.7
Iexo3 → Z-4 −26.2 4.7 −27.5
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Further conversion of the pre-reaction complexes is possible via six different tran-
sition states (TSA, TSB, and TSC within the endo approach, and TSD, TSE, and TSF
within the exo approach, cartesian coordinates for transition states can be found in the
supplementary materials), leading to the respective acyclic adducts. These processes are
associated with an increase in the enthalpy of the reaction system by 14.4–17.3 kcal/mol
relative to the corresponding MC. The nature of the localized saddle points was confirmed
by vibrational analysis and intrinsic reaction coordinate (IRC) computations (see Computa-
tional Details section). In all six reaction channels, the IRC trajectories connect the transition
states (TSs) to the valleys of the respective acyclic adducts, which can be considered reac-
tion intermediates (Iendo1, Iendo2, and Iendo3 for paths A, B, and C, respectively; and
Iexo1, Iexo2, and Iexo3 for paths D, E, and F, respectively). It is important to note that all
attempts to locate reaction channels leading directly to the DA or HDA type of adducts
were unsuccessful.

All localized intermediates are labile, allowing free rotation around the C4-C5 single
bond. These processes require only low activation energy (Table 2). It is interesting to
note that, in the case of Iexo1, gradual rotation in the direction that theoretically should
lead to the formation of Iexo3 actually results in the formation of the hetero Diels–Alder
adduct HDAexo (path G in Scheme 3). This process occurs via the transition state TSG and
requires an activation energy of approximately 1.4 kcal/mol. Similarly, the gradual rotation
of Iexo3, following the path that might lead to Iexo1, also results in the formation of the
same HDAexo (path H in Scheme 3). Both processes proceed via the common transition
state TSG.

Alternatively, the other hetero Diels–Alder adduct can be formed based on the endo-
isomeric intermediate. Specifically, Iendo1 can cyclize to form HDAendo. This process
requires a Gibbs free energy of activation of about 2 kcal/mol and proceeds via the TSI
transition state.

A competitive channel for the conversion of intermediates Iexo1 and Iexo1 involves
cyclization reactions leading to the formation of respective nitronorbornene molecular
systems via pathways J and K (yielding products DAendo and DAexo, respectively). From
a kinetic point of view, the formation of the carbocyclic norbornene skeletons is relatively
more challenging than cyclization to the hetero Diels–Alder products. Furthermore, thermo-
dynamic factors exclude the possibility of these norbornenes being stable products. Thus,
it is unlikely that nitronorbornenes are present in the unidentified part of the post-reaction
mixture. It should also be emphasized that both kinetic and thermodynamic factors favor
the formation of DAendo over DAexo.

The next possible transformation of the intermediates involves the formation of
Michael-type adducts (paths L, M, N, and O). In the reaction system considered, two
isomeric forms of this skeleton are possible: Z-3 and E-3 (Scheme 3). As previously men-
tioned, the isomerism of the obtained Michael adduct has not been definitely assigned.
From a kinetic perspective, both transformations require relatively high Giggs free energies
of activation. However, it should be emphasized that Itoh and Kishimoto [29] conducted
the synthesis under thermodynamic control. We found that, from a thermodynamic stand-
point, adducts Z-3 and E-3 are more stable than the Diels–Alder and/or hetero Diels–Alder
adducts. This observation correlates well with the experimental results, as these products
were identified in the post-reaction mixture rather than the Diels–Alder and/or hetero
Diels–Alder adducts.

The final reaction pathway considered is the formation of the nitronate Z-4. This is
possible only through the rearrangement of the intermediate Iexo3 and actually requires a
Gibbs free energy of activation of about 9 kcal/mol. Notably, the Z-4 product is the most
thermodynamically stable of all of the theoretically possible reaction products. Conse-
quently, under thermodynamic control, Z-4 should be identified as the major product in
the post-reaction mixture. This conclusion aligns perfectly with the experimental results
reported by Itoh and Kishimoto [29].
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2.3. Critical Structures

First, we analyzed the nature of the pre-reaction molecular complexes MCs (Figure 1).
In these types of complexes, the substructures of the reactants adopt orientations that
determine their subsequent conversion to the respective intermediate I. Thus, these local-
ized structures should be considered as orientation complexes. It should be noted that
within the framework of MCs, no new sigma bonds are formed. The distances between the
substructures exceed the typical range for sigma bonds in transition states [7,43,48–50]. Ad-
ditionally, the geometries of the substructures are nearly identical to those of the individual
reactants. At this stage, the substructures are stabilized by electrostatic interactions, but no
significant electron density transfer occurs between them (GEDT = 0.00e). Similar types
of pre-reaction molecular complexes have been recently observed in other bimolecular
organic reactions [41,51–54].
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Figure 1. Views of key structures for the formation of zwitterionic intermediates via the endo-attack
of 2-methoxyfuran (1) on the ethyl (Z)-3-phenyl-2-nitroprop-2-enoate (2) molecule according to
wb97xd/6-311+G(d,p) (PCM) calculations.

As the reaction coordinate progresses, the gradual reduction in the distances between
the substructures leads to the formation of the respective transition states (TSA, TSB, and
TSC for the endo approach, and TSD, TSE, and TSF for the exo approach). In particular,
the C5-C6 distance (Figure 2) decreases most rapidly, reaching approximately 2–2.1 Å. This
observation aligns with the local nucleophile/electrophile interactions discussed earlier. In
all TSs, electron density transfer between substructures is observed (GEDT = 0.20e, 0.33e,
0.35e, 0.20e, 0.48, and 0.48e for TSA, TSB, TSC, TSD, TSE, and TSF, respectively). This
confirms, without any doubts, the polar nature of the process.
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Figure 2. Views of key structures for the formation of zwitterionic intermediates via the exo-attack
of 2-methoxyfuran (1) on the ethyl (Z)-3-phenyl-2-nitroprop-2-enoate (2) molecule according to
wb97xd/6-311+G(d,p) (PCM) calculations.

The direct products of the transformation of the mentioned TSs are respective acyclic
intermediates (Iendo1, Iendo2, and Iendo3 for paths A, B, and C; and Iexo1, Iexo2, and
Iexo3 for paths D, E, and F). Their nature was explored on the basis of an ELF study of the
model molecule Iendo1.

In particular, the ELF topological analysis of Iendo1 revealed two irreducible [55]
monosynaptic valence basins (Figure 3) at the C-4 carbon atom (Figure 4), one with a
population of 0.57e and the other with 0.49e (Figure 4). The C-4 carbon atom also has
a charge of −0.11 (Scheme 5), while the other reaction center, C-2, is strongly positively
charged (0.84e) (Scheme 5). Although the valence basins and the slightly negative charge at
C-4 might suggest a carbene-type intermediate [56], the total population of both V(C-4),
approximately 1e, is insufficient to confirm a carbene structure. Combined with the highly
positive charge at C-2, this suggests that the intermediate is a zwitterion. The influence
of a strongly electron-withdrawing (EW) nitro-group on the C-4 atom might explain the
slightly negative charge at the C-4 atom. The V(N,C-4) population is 3.06e, which indicates
a strongly overpopulated single bond, reinforcing the influence of the EW nitro-group on
the C-4 atom charge.
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A separate group of detected transition states are structures associated with cyclization
processes. Two types of these TSs are possible in the context of this reaction. The first
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group involves TSs leading to the formation of nitronorbornene skeletons (TSJ and TSK
for the endo and exo approaches, respectively). In these TSs, a new C1-C6 single bond forms
(C1–C6—Figure 5). The second group involves TSs leading to the formation of 1,2-oxazine
N-oxide structures (TSJ and TSK for endo and exo approaches, respectively), where a new
C3-O7 single bond is formed (Figure 6).
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For comparison, the transition states leading from respective intermediates to Michael-
type products (TSL and TSN, Figure 7) exhibit characteristics of transition states typical of
[1.3]-sigmatropic hydrogen shifts [57–59]. In these structures, the H8 hydrogen atom loses
its sigma bond with the C4 carbon atom, while a new C6-H8 sigma bond is formed.
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formed in the reaction between 2-methoxyfuran (1) and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate (2)
according to wb97xd/6-311+G(d,p) (PCM) calculations.

The final type of transition state in the context of this transformation is TSP. This
structure was identified on the pathway leading to the five-membered nitronate Z-4. In
this transition state, the C4-O9 bond is broken, while a new C4-C7 single bond is formed
(Figure 8). Formally, this transition state can be treated as typical for intramolecular
substitution at an sp3 carbon atom [60].
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2-methoxyfuran (1) and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate (2) according to wb97xd/6-311+G(d,p)
(PCM) calculations.

The enthalpy profiles realized in the practice paths leading to the adducts 3 and 4 are
presented in Figure 9.
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Figure 9. Enthalpy profiles for the formation of the Z-3, E-3, and Z-4 adducts in the reaction between
2-methoxyfuran (1) and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate (2) according to wb97xd/6-311+G(d,p)
(PCM) calculations.

Finally, we also sought to explore the electronic nature of the localized six- and five-
membered nitronates, as these compounds should be considered as potential three-atom
components in [3+2] cycloaddition processes [61–63]. The five-membered nitronate Z-4
features two nonreducible monosynaptic valence basins V(C), with populations of 0.37e
and 0.22e, respectively (Figure 10). The charge on the C atom is negligible (Scheme 6).
The disynaptic valence basin V(N,O) can be assigned as an underpopulated double bond,
with a population of 3.60e (Figure 11). The N atom has a charge of 0.41e, while the O
atom is negatively charged (−0.43e). The N–O bond is a slightly underpopulated single
bond, and the O atom has a reducible monosynaptic basin with a total population of 5.76e,
corresponding to three slightly underpopulated lone pairs. Based on the aforementioned
computational results, the nitronate Z-4 can be considered a predominantly zwitterionic
type (zw-type) TAC [64].
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Figure 10. Topology of Z-4 (left) and HDAexo (right) ELF, rendered at an isovalue of 0.8. Core basins
are shown in magenta, protonated basins in cyan, disynaptic basins in green, and monosynaptic
basins in red. Parts of the function, significant for intermediate type identification, are depicted as
solid, while the rest are translucent.
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and HDAexo (right).

An analogous analysis of the six-membered nitronate HDAexo reveals comparable
results. The C atom has a negligible charge and a monosynaptic valence basin V(C), with
a population of 0.36e. The C-N bonding basin has a population of 3.88e, indicating an
underpopulated double bond. The N atom has a charge of 0.40e, while the oxygen atom
is negatively charged (−0.44e). The V(N,O) disynaptic basin has a population of 1.64e,
consistent with a slightly underpopulated single bond. These results allow us to classify
the six-membered nitronate as a zw-type TAC as well [64].

3. Computational Details

The computational study was performed using the wb97xd/6-311+G(d,p) level of
theory with the Gaussian package as the software [65]. The PlGrid infrastructure at the
national computing center “Cyfronet” was utilized. A similar computational level and
methodology have already been successfully applied to explore the mechanistic aspects
of various cycloaddition processes, including Diels–Alder reactions, hydrogen shifts, and
sigmatropic rearrangements. All localized stationary points were verified through a full
vibrational analysis. We found that starting molecules, intermediates, and products had
positive Hessian matrices, while all optimized transition states (TSs) exhibited only one
negative eigenvalue in their Hessian matrices.

Next, intrinsic reaction coordinate (IRC) calculations were performed for all opti-
mized transition states. The obtained IRC trajectories confirmed, without doubt, the
postulated nature of the TSs and their role within the energy profile. The presence of
solvent (dichloromethane) in the reaction environment was included using the IEFPCM
(Integral Equation Formalism Polarizable Continuum Model) algorithm [66]. Calculations
of all critical structures were performed at a temperature of T = 298 K and a pressure of
p = 1 atm. The results of calculations are summarized in Table 2.
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The global electron density transfer (GEDT) [67] within critical structures was esti-
mated using the following formula:

GEDT = −ΣqA

where qA is the net charge, and the sum is taken over all of the atoms of nitroalkene.
The global and local electronic properties of the reactants were estimated using equa-

tions recommended by Parr and Domingo [40,68,69]. In particular, the electronic chemical
potentials (µ) and chemical hardness (η) were evaluated in terms of the one-electron ener-
gies of the frontier molecular orbitals (HOMO and LUMO) using the following equations:

µ ≈ (EHOMO + ELUMO)/2 η ≈ ELUMO − EHOMO

The values of µ and η were then used to calculate the global electrophilicity index (ω)
using the following formula:

ω = µ2/2η

Global nucleophilicity (N) [70] was expressed using the following equation:

N = EHOMO − EHOMO(tetracyanoethene)

The local electrophilicity (ωk) at atom k was calculated by projecting the index ω onto
any reaction center k in the molecule using Parr functions P+

k [71]:

ωk = P+
k·ω

The local nucleophilicity (Nk) condensed to atom k was calculated using global nucle-
ophilicity N and Parr functions P−

k [71] according to the following formula:

Nk = P−
k·N

The results are summarized in Table 1.

4. Conclusions

Our WB97XD/6-311+G(d,p) (PCM) calculations clearly indicate that a fundamental
revision of the view on the molecular mechanism of the reaction between 2-methoxyfuran
and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate is necessary. The first stage of the title transfor-
mation involves the formation of pre-reaction complexes. These initially formed complexes
can further convert into respective zwitterions, a process driven by the nucleophilic attack
of the nucleophilically activated 5-position of the furan on the electrophilically activated
2-position of the nitrovinyl moiety. It is important to emphasize that the zwitterionic nature
of the optimized intermediates was confirmed by an ELF analysis of the electronic structure.

The final composition of the post-reaction mixture can vary depending on whether
the reaction is under kinetic or thermodynamic control. In the thermodynamic scenario
(as described in the experimental study of this reaction), the zwitterion is converted to the
five-membered nitronate via intramolecular substitution at the sp3 carbon atom. Thus, the
molecular mechanism and the reaction course of the addition of 2-methoxyfuran to ethyl
(Z)-3-phenyl-2-nitroprop-2-enoate are completely different from those of typical processes
with the participation of furan analogs and electrophilic alkenes. According to ELF and
Natural Population Analyses (NPA), the nitronates Z-4 and HDAexo are polar in nature
and can be classified as zwitterionic-type TACs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29204876/s1, cartesian coordinates for transition states.
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61. Jasiński, R. Synthesis of 1,2-oxazine N-oxides via noncatalyzed hetero Diels-Alder reactions of nitroalkenes (microreview). Chem.
Heterocycl. Compd. 2024, 60, 121–123. [CrossRef]
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