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Abstract: Thiazolidinediones (TZDs) including rosiglitazone and pioglitazone function as peroxisome
proliferator-activated receptor gamma (PPARγ) full agonists, which have been known as a class to be
among the most effective drugs for the treatment of type 2 diabetes mellitus (T2DM). However, side
effects of TZDs such as fluid retention and weight gain are associated with their full agonistic activities
toward PPARγ induced by the AF-2 helix-involved “locked” mechanism. Thereby, this study aimed
to obtain novel PPARγ partial agonists without direct interaction with the AF-2 helix. Through
performing virtual screening of the Targetmol L6000 Natural Product Library and utilizing molecular
dynamics (MD) simulation, as well as molecular mechanics Poisson–Boltzmann surface area (MM-
PBSA) analysis, four compounds including tubuloside b, podophyllotoxone, endomorphin 1 and
paliperidone were identified as potential PPARγ partial agonists. An in vitro TR-FRET competitive
binding assay showed podophyllotoxone displayed the optimal binding affinity toward PPARγ
among the screened compounds, exhibiting IC50 and ki values of 27.43 µM and 9.86 µM, respectively.
Further cell-based transcription assays were conducted and demonstrated podophyllotoxone’s weak
agonistic activity against PPARγ compared to that of the PPARγ full agonist rosiglitazone. These
results collectively demonstrated that podophyllotoxone could serve as a PPARγ partial agonist and
might provide a novel candidate for the treatment of various diseases such as T2DM.

Keywords: PPARγ partial agonists; virtual screening; natural product library; TR-FRET competitive
binding assay; podophyllotoxone

1. Introduction

The prevalence of type 2 diabetes (T2D), a metabolic disorder, is projected to escalate
into a significant global public health concern within the next three decades. There were
an estimated 529 million people living with diabetes in 2021 (96% were T2D), and that
number will reach 1.31 billion by 2050 [1]. The occurrence of type 2 diabetes is attributed
to reduced sensitivity of insulin-sensitive tissues towards insulin, resulting in diminished
glucose uptake (GU) and subsequent hyperglycemia [2]. PPARγ has been extensively
studied for its ability to mediate adipocyte differentiation in response to energy surplus and
effectively regulate plasma glucose levels. Based on its pharmacological properties, PPARγ
has been recognized as one of the most efficient targets for anti-diabetic drug discovery
and development [3,4]. The activity of PPARγ is regulated by agonists, and the interaction
between PPARγ and its ligands serves as a pivotal step in modulating PPARγ activity, with
the structural characteristics of PPARγ playing a crucial role in this binding process [5].

Structurally, PPARγ comprises distinct functional domains, including an N-terminal
transactivation domain containing an activation function (AF1), a highly conserved DNA-
binding domain (DBD) and a C-terminal ligand-binding domain (LBD) containing a ligand-
dependent transactivation function (AF2) [6]. The structure of the PPARγ ligand-binding
domain (LBD) is composed of 13 α-helices and four stranded β-sheets (Figure 1). The
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ligand-binding pocket has three branches and has been described as a large Y- or T-shaped
cavity. Branch-I is hydrophilic in nature, and is formed by helices H3, H5, H11 and H12.
Branch-I is located proximal to helix H12, which forms a critical part of the activation
function-2 (AF2) coregulator binding surface. In contrast, Branch-II exhibits a hydrophobic
character, formed by helices H2’, H3, H6 and H7 and a β-sheet region. Branch-III consists
of both hydrophobic and hydrophilic regions, surrounded by a β-sheet as well as helices
H2, H3 and H5 [7]. The LBD of PPARγ has several regulatory functions [8]. Depending
on the specific ligand, agonists activate PPARγ, leading to conformational changes in
the ligand-binding domain and subsequently inducing the transcription of distinct target
genes, thereby enhancing insulin sensitivity. Some PPARγ agonists are prescribed for the
management of T2D, such as rosiglitazone and pioglitazone [9]. The synthetic agonist
rosiglitazone stabilizes helices H3 and H12, which constitute the AF2 site, subsequently in-
ducing coactivator recruitment. The binding of rosiglitazone to the ligand-binding domain
(LBD) effectively inhibits CDK5-mediated phosphorylation of Ser245. Reduced Ser245
phosphorylation alters the expression of a subset of genes with regulatory functions in
metabolism; for example, it increases expression of the insulin sensitizing genes adipokine
and adiponectin [10]. Due to the potential side effects of PPARγ full agonists, such as
weight gain, fluid retention, vascular events and bone fractures [11,12], the European
Marketing Authority recommended removal of rosiglitazone from the European market in
2010 [13]. However, partial PPARγ agonists MRL-24, nTZDpa and amorfrutin 1 display
similar anti-diabetic effects to rosiglitazone due to their ability to block PPARγ-Ser245 phos-
phorylation as effectively as rosiglitazone while only moderately inducing the expression
of PPARγ target genes involved in adipocyte differentiation [14]. In addition, these partial
agonists do not contact helix H12 but rather stabilize helix H3 and the β-sheet region of
the binding pocket of the PPARγ LBD [15]. Consequently, partial agonists exhibit hypo-
glycemic effects without causing severe side effects. In recent years, inverse agonists which
decrease expression of PPARγ-controlled genes and antagonists which maintain the basal
transcriptional output of PPARγ have emerged as safer alternatives to full agonists [16,17].
These principles and the associated structural insights offer a novel and rational approach
for the development of effective PPARγ modulators in the pursuit of anti-diabetic drug
discovery [5,6,18].
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Natural compounds remain pivotal in drug discovery due to their extensive chemical
diversity and potential therapeutic benefits. Historically, natural products, including plant
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extracts, have been significant sources of bioactive compounds [19,20]. In order to identify
suitable candidates from natural products, our efforts focused on rapidly seeking new
PPARγ partial agonists for anti-diabetic drug discovery. Thus, the present study’s aim is
(a) virtual screening of the Targetmol L6000 Natural Product Library to search for potential
hits that function as PPARγ partial agonists with the ability to block cyclin-dependent
kinase 5 (CDK5)-mediated phosphorylation of PPARγ-Ser245 in the absence of classical
transcription activity of PPARγ via the AF-2 helix “lock” mechanism; (b) further exami-
nation of the binding stability of the system utilizing molecular dynamics and molecular
mechanics Poisson–Boltzmann surface area (MM-PBSA); (c) testing the PPARγ binding
affinity and agonistic activity of the selected hit. Taken together, our present study aims
to combine computational approaches with in vitro experimental validation, thereby con-
stituting a logical and robust workflow for the identification of promising candidates
targeting PPARγ.

2. Results
2.1. Docking Validation, Virtual Screening and Molecular Docking

To validate the docking protocol, we redocked the partial agonist (VSP-51-2) ob-
tained from co-crystalized PPARγ complex (PDB code: 8DK4) which yielded a score of
−10.96 kcal/mol. The docking pose was basically aligned with the co-crystal ligand, prov-
ing the reliability and validity of this methodology. Virtual screening of Targetmol L6000
Natural Product Library (containing 4320 compounds) was carried out using the Autodock
Vina software [21]. The docking scores and structures of the top four compounds from
virtual screening are listed in Table 1. The docking scores of the four highest-binding
compounds ranged from −10.68 to −10.04 kcal/mol. Compared to the original ligand
VSP-51-2, the binding affinities of these compounds were generally lower, with the top
binding compound endomorphin 1 producing a 0.28 kcal/mol lower binding score than
VSP-51-2. Nevertheless, the affinity scores were highly negative, suggestive of favorable
binding. We further evaluated the interactions between the ligands and PPARγ (Table 1).
These four ligands interact with crucial structural residues through a hydrogen-bonding
network with PPARγ other than those involved in classical agonism, as defined by residues
shaping the activation function surface 2 (His323, Tyr473 and His449) [15]. Taken together,
these four compounds exhibited favorable characteristics as candidate compounds for
further exploration. In summary, based on the obtained docking scores and binding confor-
mation, the resulting docked structures can serve as initial models for subsequent molecular
dynamics (MD) simulations.

Table 1. Top four compounds from virtual screening of the Targetmol L6000 Natural Product Library
via Autodock Vina.

Name CAS Molecular Structure Docking Score
(kcal/mol) Hydrogen Bond Hydrophobic

Interaction

Tubuloside B 112516-04-8
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Table 1. Cont.

Name CAS Molecular Structure Docking Score
(kcal/mol) Hydrogen Bond Hydrophobic

Interaction

Podophyllotoxone 477-49-6
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2.2. Stable Assessment of MD Simulation

The stability of these crucial binding interactions could not be fully explained by the
static nature of molecular docking, given the flexibility of the residues and the correspond-
ing fluctuations in secondary structure. To overcome these limitations, we employed MD
simulations to effectively assess the stability of the protein−ligand complexes and apo
protein [22]. The average values of the Root Mean Square Deviation (RMSD), Root Mean
Square Fluctuation (RMSF), Radius of Gyration (RG) and Solvent-Accessible Surface Area
(SASA) of the five systems in the last 50 ns of MD simulations are provided in Table S1.

RMSD evaluates the binding state and stability of the systems, with lower values
indicating more stability in the system [22]. The RMSD of the protein backbone from the
crystal structure of PPARγ are presented in simulation time (Figure 2). RMSD values tended
to be stable after 150 ns, and the last 50 ns was selected for data analysis. Upon achieving
equilibrium, the average RMSD of the backbone atoms fitted to the initial structure were
0.28, 0.24, 0.25, 0.20 and 0.24 nm for the tubuloside b-, podophyllotoxone-, endomorphin 1-,
paliperidone-bound and apo PPARγ, respectively (Table S1). The apo protein exhibited
a significantly higher RMSD value in comparison to the ligand-bound protein, thereby
suggesting that the presence of these ligands contributes to enhancing the stability of the
protein–ligand complexes. In conclusion, the overall RMSD values of the four systems
ranged between 0.10 and 0.35 nm, indicating the stability of each system.

RMSF indicates the flexibility of residues in the systems. A higher RMSF value
indicates a more loosely bonded structure with turns, bends and coils, whereas a lower
RMSF value suggests a rigid secondary structure [23]. The RMSF values of the backbone
atoms within the protein structure are depicted in Figure S2. The RMSF values of residues
in four complexes fluctuated within the range of 0.05–0.60 nm, indicating overall stable
dynamics. The RMSF values of the residues comprising the core structure remained
consistently low across each system. The most significant differences were within the
residues of Ala235–Ser245 (H2-H2′ loop) and Asp260–Lys275 (Ω loop) in PPARγ. Residues
at helix H9 appeared to have the greatest fluctuation in apo protein compared with other
ligand-bound systems. Overall, the average RMSF values of each system showed less
deviations and suggested the overall stability.
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The protein’s compactness relative to its backbone was determined by calculating the
RG value. It was observed that throughout the simulation, the PPARγ protein exhibited a
consistently compact secondary structure (Figure S3). The apo PPARγ tended to fluctuate
around its initial conformation throughout the simulation, whereas the ligand-bound
PPARγ appeared to become more compact over time. SASA can be calculated to assess
the packing and stability of complexes during MD simulations. The SASA analysis of the
PPARγ protein was in the range of 140–160 nm2 (Figure S4). In conclusion, both SASA and
RG analyses confirmed the stability of the five systems.

2.3. Analysis of the Binding Energy

The calculation of binding energy (∆Ebind) between the receptor and ligand is cur-
rently a commonly used and effective method for calculating binding affinity [24]. The
MM-PBSA method allows a more accurate consideration of solvation contribution to the
protein−ligand binding [25]. Therefore, in this study, we conducted the binding energy
calculations between PPARγ and tubuloside b, podophyllotoxone, endomorphin 1 and
paliperidone complexes, respectively. By comparing and analyzing the binding energy
calculation results of all protein−ligand complexes (Table 2), it can be revealed that the bind-
ing energy of PPARγ with tubuloside b was the highest (−45.18 kcal/mol). This indicated
that tubuloside b has higher binding affinity for PPARγ than the other three compounds,
followed by endomorphin 1 (−38.86 kcal/mol), podophyllotoxone (−30.15 kcal/mol) and
paliperidone (−28.08 kcal/mol). The obtained binding energy results convincingly demon-
strated that these four compounds exhibit high binding affinities to PPARγ, making them
suitable candidates targeting PPARγ.
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Table 2. Calculated binding energies (kcal/mol) of the ligands with PPARγ by MM-PBSA using
MD-derived trajectories as well as the energy decomposition.

Compound ∆EvdW ∆Eelec ∆EMM ∆Gpolar ∆Gnonpolar ∆Gsol ∆Ebind

Tubuloside B −69.12 ± 0.43 −79.92 ± 1.61 −149.04 ± 1.62 111.05 ± 1.25 −7.19 ± 0.02 103.86 ± 1.24 −45.18 ± 0.70
Podophyllotoxone −53.00 ± 0.38 −21.67 ± 0.49 −74.67 ± 0.61 49.23 ± 0.41 −4.71 ± 0.01 44.52 ± 0.41 −30.15 ± 0.38
Endomorphin 1 −66.03 ± 0.38 −54.33 ± 1.39 −120.35 ± 1.49 88.34 ± 1.26 −6.58 ± 0.02 81.49 ± 1.25 −38.86 ± 0.54

Paliperidone −55.47 ± 0.29 −18.96 ± 0.53 −74.43 ± 0.60 51.56 ± 0.53 −5.21 ± 0.01 46.35 ± 0.52 −28.08 ± 0.34

∆EMM is the MM part and amounts to ∆EvdW + ∆Eelec. ∆Gsol is the solvation energies (∆Gpolar + ∆Gnonpolar). For
each compound, 50 frames from the last 50 ns trajectories were used for the MM-PBSA analysis.

Regarding the energy contribution of ∆Ebind (Table 2), we decomposed the energy to
explore the details of the interactions between binding partners. ∆Ebind was decomposed
into four components, namely van der Waals interactions (∆EvdW), electrostatic interac-
tions (∆Eelec), polar solvation contributions (∆Gpolar) and nonpolar solvation contributions
(∆Gnonpolar) [26]; see Equation (1) in the Section 3.4 for details on the decomposition. The
van der Waals interaction (∆EvdW, −53.00 to −69.12 kcal/mol) and electrostatic interac-
tions (∆Eelec, −18.96 to −79.92 kcal/mol) had significant positive contributions to the final
binding energy (∆Ebind). Electrostatic and van der Waals interactions are often used as indi-
cators for the evaluation of relative binding strengths [26]. In contrast, the contributions of
nonpolar solvation energy (∆Gnonpolar, −4.71 to −7.19 kcal/mol) were relatively small, and
polar solvation energy provided a negative contribution (∆Gpolar, 49.23 to 111.05 kcal/mol).
The findings suggested that the primary factors driving the formation of the complexes
between PPARγ and four compounds were ∆EvdW and ∆Eelec.

It is noteworthy that MM-PBSA calculations yielded significantly more negative bind-
ing energies, indicating greater binding strengths than virtual screening methods. This
was attributed to the fact that the Vina scoring did not utilize atomic charges for modeling
electrostatic interactions [21]. Therefore, there may be a problem simulating strong elec-
trostatic interactions between the charged parts in the Vina score. The MM-PBSA analysis
provided a solution, which has been validated in multiple calculations and experiments [25].
Therefore, the employment of MD simulation and MM-PBSA significantly improve the
reliability of the outcomes, rendering them necessary processes in computational research.

2.4. The Receptor and Ligand Interactions Analysis

We further explored the interaction mechanism between PPARγ and four compounds.
We clustered the last 50 ns simulation trajectories and converted them into the repre-
sentative binding poses for these complexes. The three-dimensional diagrams for the
representative binding poses are shown in Figure S1. Biovia Discovery Studio Visualizer
was used to generated two-dimensional figures to illustrate the receptor–ligand interactions
(Figure 3). The complexation was primarily attributed to a diverse array of interaction types,
encompassing van der Waals (vdW) contacts, hydrogen bonds, electrostatic attractions and
a range of benzene-mediated interactions, specifically π-sulfur, π-alkyl and π-π stacking.
Protein–ligand contact graphs are plotted for the four systems during the simulations in
Figures S5–S8. Additionally, the hydrogen bond interactions played a significant role in the
formation of the complex.

The analysis of hydrogen bonds serves as a crucial parameter in the detailed examina-
tion of protein–ligand complexes throughout MD simulations, providing insights into their
stability and interactions. The formation of hydrogen bonds between PPARγ and specific
amino acid residues has been identified as a crucial determinant in some studies [7,27].
We analyzed the number of hydrogen bond formations, as shown in Figure S9; the result
found that the average number of hydrogen bonds of tubuloside b, podophyllotoxone,
endomorphin 1 and paliperidone were 5, 2, 3 and 1, respectively. The results were basically
consistent with the two-dimensional results (Figure 3).
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In detail, one ether group in tubuloside b formed a hydrogen bond with Arg288,
with a bond length of 2.2 Å. Arg288 is also a key residue located in helix H3 in PPARγ,
as exhibited in partial agonists AL29-26 [28] and halofenicacid (S)-2 [29]. Two hydroxyl
groups in tubuloside b formed hydrogen bonds with Leu228 and Lys261. In particular,
Glu343, located in the β-sheet, formed two strong hydrogen bonds with two hydroxyl
groups in tubuloside b with bond lengths of 1.47 and 1.59 Å. For podophyllotoxone, one
ether group formed a hydrogen bond with a bond length of 1.88 Å with the key residue
of Ser342. The role of Ser342 is an important criterion for identifying partial agonist. The
binding of Ser342 with PPARγ partial agonists leads to a decrease in the stabilization of
helix H12 and an increase in the stabilization of helix H3, thus affecting the recruitment of
coactivators and reducing the transactivation activity of PPARγ [10,30]. One carbonyl group
in endomorphin 1 exhibits a notable hydrogen bond interaction with the crucial residue
of Cys285 with a bond length of 2.01 Å. The residue of Cys285 plays an important role in
enhancing interactions between PPARγ and partial agonists MEKT75 [31]. Furthermore, it
also formed two hydrogen bonds with Leu343 and Arg288 with bond lengths of 1.73 and
1.78 Å, respectively. The hydroxyl group of paliperidone formed a hydrogen bond with
Leu340 with a bond length of 2.86 Å. It was noteworthy that the abovementioned amino
acids were not the amino acids that define the compound as a full agonist rosiglitazone
(His323, His449 and Tyr473) [32], suggesting the roles of compounds as potential partial
agonists of PPARγ.

Following the analysis of hydrogen bonds, we examined the detailed energy contribu-
tions of each residue within the ligand-bound systems, as clearly depicted in Figures S10–S13.
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It was noteworthy that the residues exhibited distinct energetic behaviors, contributing
favorably (negative energy values) or unfavorably (positive energy values) upon interactions
with the ligands and PPARγ. This decomposition of energy contributions provided valuable
insights into the underlying molecular mechanisms that govern the interactions, facilitating
a deeper understanding of the system.

Within the relatively large ligand-binding domain, residues tended to congregate
predominantly around structural features such as helices H2, H3, H5 and H7 and beta
sheets, where partial agonists were known to bind [10]. Notably, sulfur-containing residues,
including Cys285, Met329 and Met364, exhibited particularly strong negative binding ener-
gies, indicating their crucial involvement in ligand stabilization. Further non-polar residues
like Phe282, Leu330, Ile326 and Phe363 appeared to have a high energy contribution to
tubuloside b, endomorphin 1 and paliperidone. The favorable binding energies exhibited
by podophyllotoxone were primarily contributions from the non-polar residues of Pro227,
Leu228, Leu330, Ile326, Leu333 and Ile341. This specific interaction pattern distinguished
the binding mechanism of podophyllotoxone from that observed in the other three systems,
highlighting a unique molecular recognition process.

By far, most partial agonists do not occupy branch I of the ligand-binding pocket,
thereby lacking any contact with AF2 residues. Instead, most partial agonists predomi-
nantly occupy branches II and III portions of the ligand-binding pocket [15]. Based on
the analyses of binding poses and interacting residues, tubuloside b, podophyllotoxone,
endomorphin 1 and paliperidone were mainly positioned in the branch II and III portions
of the ligand-binding pocket, suggesting they may function as potential partial agonists.

2.5. TR-FRET Competitive Binding Assay and PPARγ Transactivation Assay

Encouraged by the above results, we subsequently performed a TR-FRET (Time-
Resolved Fluorescence Resonance Energy Transfer) competitive binding assay to detect
the binding affinities of hit compounds with PPARγ at the concentrations of 100 µM and
200 µM. DMSO and PPARγ full agonist Rosi were used as negative and positive controls,
respectively. As shown in Figure 4A, podophyllotoxone revealed the highest binding
affinity among the four potent hits. We further evaluated the concentration of compounds
that produce 50% displacement of the tracer (IC50) and inhibition constant (ki) values of
podophyllotoxone. As displayed in Figure 4B, the IC50 and ki values of podophyllotoxone
were 27.43 µM and 9.86 µM, respectively. We further conducted cell-based transcription
assays to evaluate the agonistic activity of podophyllotoxone toward PPARγ at concen-
trations of 30 µM and 100 µM. As shown in Figure 4C, Rosi displayed powerful agonistic
activity against PPARγ; in contrast, podophyllotoxone exhibited weak PPARγ agonistic
activity, similar to fenticonazole (FN), a PPARγ partial agonist reported in our previous
study [33]. Taken together, the combined computational studies and in vitro evaluations
including TR-FRET competitive binding assay and cell-based transcription assay identified
podophyllotoxone as a ligand directly bound to PPARγ with partial agonistic activity.
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PPARγ after incubating for 6 h. (B) Dose–response competition curves for podophyllotoxone
(100 µM–500 µM) incubated for 6 h. Concentrations were expressed as a log 10 scale. (C) Cell-
based transcription assays were used to compare the agonistic activity of podophyllotoxone and FN
toward PPARγ at the concentration of 30 and 100 µM. * p < 0.05, *** p < 0.001 compared with DMSO
group. (n = 3, error bar = SEM).

3. Materials and Methods
3.1. Receptor and Ligand Preparations

The crystal structure of PPARγ (PDB code: 8DK4) was obtained from the RCSB Protein
Data Bank database [34]. All ligand and solvent molecules in the model were removed
from receptors using PyMOL (version 2.5). The missing atoms of the PPARγ protein were
fixed using pdbfixer tool. The structures of compounds were collected from the PubChem
compound database. The AutoDockTools module in the MGLTools package (version: 1.5.7)
was used to generate the PDBQT file via adding polar hydrogens, computing Gasteiger
charges and assigning AD4 atom types.

3.2. Docking Validation, Virtual Screening and Molecular Docking

A re-docking experiment docking the original ligand VSP-51-2 into the active site
of PPARγ (PDB code: 8DK4) was conducted to evaluate the reliability of the docking
procedure using the Autodock Vina software (version 1.2.3) [21]. Both the protein and the
co-crystal ligand structure were processed with the procedure described above. The grid
parameter file was set as the grid center X: −23.349, Y: −20.461, Z: 10.481 (dimensional
units, Å) and dimensions 30 × 30 × 30 Å.

With this protocol, the crystal structure of PPARγ (PDB code: 8DK4) was adopted as
receptor for the virtual screening of Targetmol L6000 Natural Product Library using the
Autodock Vina software. Candidate compounds were considered for further examination
in molecular dynamic simulations if they exhibit (a) favorable energy scores, (b) a high
number of hydrogen bonds formed with PPARγ key residues and (c) the ability to bind to
residues other than those involved in classical agonism, as defined by residues shaping the
activation function surface 2 (His323, Tyr473 and His449).

3.3. Molecular Dynamics Simulation

To gain insights into the relative dynamics and behavioral changes of PPARγ upon
interactions with different ligands, we conducted comprehensive molecular dynamic sim-
ulations encompassing five distinct systems: apo PPARγ, as well as the tubuloside b-,
podophyllotoxone-, endomorphin 1- and paliperidone-bound PPARγ complexes. Molecu-
lar dynamics simulations were carried with GROMACS (version 2021.6) [35]. We optimized
eight ligands at B97-3c in the water with ORCA (version 5.0.4) [36] and then calculated the
restrained electrostatic potential (RESP) charges with the aid of Multiwfn (version 3.8) [37].
The Amber99SB-ILDN force field [38] was employed to model PPARγ and ions, and the
general Amber force field (GAFF) [39] was chosen for the ligands. The rigid SPC model [40]
was used to model water molecules. The protein–ligand complex was immersed in a cubic
box and the minimum value between the solvent and the nearest box edge was 1.0 nm.
The system was neutralized by adding a corresponding number of sodium or chloride
(Na+/Cl−) ions. We performed an energy minimization step on the system using the
steepest descent algorithm to simply remove any unreasonable contacts between atoms.
For the equilibration phase, a short NPT equilibration was carried out for 0.5 ns. The
system was equilibrated with a temperature coupling (298.15 K) using a V-rescale ther-
mostat [41] and a pressure coupling using the C-rescale coupling algorithm [42]. Finally,
200 ns production simulations were performed under the NPT ensemble with the time step
set as 2 fs. The simulated temperature was set to 298.15 K while the pressure was set to
1 bar. The Particle mesh Ewald (PME) [43] method was employed to treat the long-range
electrostatic interactions and the cut off of van der Waals interaction was set to 1.2 nm. The
trajectories were analyzed by tools in the GROMACS suite, including Root Mean Square
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Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (RG) and
Solvent-Accessible Surface Area (SASA).

3.4. Calculation of the Binding Energy

The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) is a popular
method to estimate the binding energy between the receptor and ligand. It is more accurate
than most fast scoring approaches in the docking and has a relatively lower computation
load than the free energy calculations with an explicit solvent.

After 150 ns MD simulations, we stripped water molecules and ions from the systems,
and extracted 50 conformations of complexes from the last 50 ns trajectory with an interval
of 1000 ps. Decomposition of the binding energies (kcal/mol) of the ligands with PPARγ
using the MM-PBSA analysis of the last 50 ns simulation trajectories. The gmx_MMPBSA
toolkit [44] was used to compute the binding energy (∆Ebind) that includes the contributions
from van der Waals and electrostatic interactions as well as the polar (∆Gpolar) and nonpolar
(∆Gnonpolar) solvation energies. Together with an entropy contribution (−T∆S), one can
obtain the binding free energy (∆Gbind), as provided in Equation (1):

∆Gbind = ∆EMM + ∆Gsol − T∆S = ∆EvdW + ∆Eelec + ∆Gpolar + ∆Gnonpolar − T∆S (1)

where ∆EMM denotes vacuum potential energy and is the sum of van der Waals (∆EvdW)
and electrostatic (∆Eelec) contributions. ∆Gsol can be decomposed into polar (∆Gpolar) and
nonpolar (∆Gnonpolar) solvation contributions. T∆S refers to the conformational entropy
contribution at temperature T. The entropy calculations typically dominate the computa-
tional cost of the MM-PBSA estimates. Due to the large computational cost, this term is
neglected in most cases of practical applications [44]. Therefore, the binding energy (∆Ebind)
was used for comparing different ligands against PPARγ.

3.5. Materials

The rosiglitazone (Rosi), fenticonazole (FN), tubuloside b, podophyllotoxone, endo-
morphin 1 and paliperidone were purchased from MedChem Express (Monmouth Junction,
NJ, USA). The LanthaScreen™ TR-FRET PPARγ competitive binding assay kit (PV4894)
and Lipofectamin 2000 was obtained from Invitrogen (Carlsbad, CA, USA). PPRE × 3 TK-
luciferase plasmid, renilla luciferase plasmid and hPPARγ plasmid were constructed by
Obio Technology (Shanghai, China). Dual luciferase reporter assay kits (Promega, Madison,
WI, USA) were also utilized.

3.6. TR-FRET Competitive Binding Assay

The LanthaScreen™ TR-FRET PPARγ competitive binding assay kit (PV4894) was
utilized to assess the binding affinities of tubuloside b, podophyllotoxone, endomorphin
1 and paliperidone toward PPARγ. Following the manufacturer’s detailed instructions,
20 µL of each test compound, 10 µL of Fluormone™ pan-PPARγ Green and 10 µL of
PPARγ LBD/Tb anti-GST Ab were added into a 384-well microtiter plate and made the
final concentrations of Fluormone™ pan-PPARγ Green, PPARγ LBD and Tb anti-GST Ab
5 nM, 5 nM and 0.5 nM, respectively. Subsequently, the plate was gently mixed on an
orbital plate shaker for 30 s and then incubated in the dark for 6 h at room temperature
(20–25 ◦C). In this experimental setup, DMSO served as the negative control group, while
Rosi (a known PPARγ full agonist) was used as the positive control group, allowing for the
accurate evaluation of the test compounds’ binding affinities relative to these standards.
Subsequently, the fluorescent emission signals from each well were measured at both
495 nm and 520 nm utilizing a multi-mode reader. The TR-FRET ratio was calculated
by dividing the emission signal obtained at 520 nm and 495 nm; the decreased ratio of
compounds indicates their potent binding affinity. A competition curve was then generated
by plotting this TR-FRET ratio against the logarithmic concentration of the test compounds.
The more potent binding affinity of the compound towards PPARγ was reflected by a
decrease in the TR-FRET ratio, providing a quantitative measure of their interaction strength



Molecules 2024, 29, 4881 11 of 14

with the receptor. The inhibition constant (Ki) for competitor was calculated by applying
the Cheng–Prusoff equation as given in Equation (2):

Ki = IC50/(1 + [tracer]/Kd) (2)

where IC50 is the concentration of the competitor that produces 50% displacement of the
tracer, [tracer] is the concentration of Fluormone™ pan-PPAR Green used in the assay
(5 nM) and Kd is the binding constant of Fluormone™ pan-PPAR Green to PPARγ-LBD.

3.7. PPARγ Transactivation Assay

Based on our preceding studies [27,33,45], cos-7 cells were transfected with hPPARγ,
PPRE × 3 TK-luciferase plasmids and renilla luciferase plasmids by using Lipofectamin
2000. After 24 h of incubation, the transfected cells were treated with DMSO, podophyllo-
toxone, FN and Rosi at a concentration of 30 or 100 µM for another 24 h. Ultimately, dual
luciferase reporter assay kits were used to detect luciferase activities. Briefly, (1) 1× passive
lysis buffer was added into 24 well plates to lyse cells for 15 min; (2) 20 µL cell lysate and
100 µL luciferase assay reagent II were mixed into the 96-well plates, and the fluorescence
values were immediately detected with a multifunction microplate reader (Bioteck, Syn-
egy1), which represented the luciferase activity; (3) 100 µL Stop & Glo® Reagent was added
into the above mixture and the fluorescence values were detected, which represented the
renilla activity. The luciferase activity was normalized to renilla activity. Each experiment
was repeated three times, with DMSO serving as the negative control and rosiglitazone
(Rosi) serving as the positive control.

4. Discussion

In recent years, synthetic PPARγ partial agonists [27,33,45,46] have emerged as a
promising alternative to full agonists, demonstrating hypoglycemic efficacy while mitigat-
ing the risk of severe side effects commonly associated with full agonists, including weight
gain, fluid retention and heart failure. Despite the promising potential of PPARγ-targeting
agents for treating T2DM, no such anti-diabetic agents specifically designed to modulate
PPARγ have yet been translated into clinical practice. Upon conducting virtual screening
of the Targetmol L6000 Natural Product Library, utilizing both molecular dynamics simula-
tions and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) approaches,
we have identified four compounds: tubuloside b, podophyllotoxone, endomorphin 1 and
paliperidone, as promising candidates for PPARγ partial agonists.

In MM-PBSA calculations, tubuloside b showed the highest binding energy for PPARγ,
followed by endomorphin 1, podophyllotoxone and paliperidone. We further utilized a
TR-FRET competitive binding assay experiment to find out the binding affinity between
these ligands and PPARγ. To our surprise, the binding affinity results were quite different
from the MM-PBSA calculation results. Tubuloside b, endomorphin 1 and paliperidone
showed low binding affinity with PPARγ, while podophyllotoxone emerged as the most
potent compound among the four identified hits. Cell-based transcription assays further
showed that podophyllotoxone exhibits partial agonistic activity.

The differences of binding affinities observed between molecular simulations and
in vitro experiments were mainly attributed to the distinct chemical structures and orienta-
tions of the chemical groups in the compounds. In molecular dynamics simulations, such
inconsistencies are often encountered and can be attributed to various factors, including
the inherent limitations of the computational models and the complexity of the underlying
biological systems. From a systematic evaluation of the prediction capabilities of MM-PBSA
methods, researchers have concluded that the accuracy of binding free energy predic-
tions is related to several crucial factors, including force field, charge model, continuum
solvation method, interior dielectric constant and sampling method [47]. Nevertheless,
computational simulations continue to play a pivotal role in drug discovery.



Molecules 2024, 29, 4881 12 of 14

5. Conclusions

In this work, virtual screening of Targetmol L6000 Natural Product Library leaded
to the discovery of tubuloside b, podophyllotoxone, endomorphin 1 and paliperidone as
potential PPARγ partial agonists. The subsequent evaluation of RMSD, RMSF, RG and
SASA values of complexes between four compounds and PPARγ LBD by performing
molecular dynamic simulations indicated that the four complexes were stable. The MM-
PBSA calculations revealed the binding energies of four compounds ranged from −28.08 to
−45.18 kcal/mol, suggesting their potent binding affinities with PPARγ. Further in vitro
evaluations including TR-FRET competitive binding assays and cell-based transcription
assays demonstrated podophyllotoxone functions as a PPARγ partial agonist. Our research
has yielded an effective strategy for the identification of novel PPARγ partial agonists.
Additionally, we have identified a scaffold that can be utilized for structural optimization,
with the goal of enhancing binding affinity while preserving the partial agonistic activity of
the agonists.
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