Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast
Abstract
:1. Introduction
2. Results
2.1. Lactic Acid Bacteria and Yeast Growth in the Presence of Acrylamide
2.2. Lactic Acid Bacteria and Yeast Viability in the Presence of Acrylamide
2.3. Lactic Acid Bacteria and Yeast Binding Ability of AA
2.3.1. Effect of pH
2.3.2. Effect of Temperature
2.3.3. Effect of Cell Density
2.3.4. Inanimate Cells
2.3.5. Bioaccumulation of AA
2.4. Lactic Acid Bacteria and Yeast Cells Decrease AA-Induced DNA Damage
3. Discussion
4. Materials and Methods
4.1. Culture Vessels, Chemicals, and Other Materials
4.2. Strains and Growth Conditions
4.3. AA Stock Preparation and Storage
4.4. Effect of AA on the Growth of Strains
4.4.1. Spectrophotometric Method
4.4.2. Pour Plate Method
4.5. MTT Assay
4.6. AA-Binding Assay
4.6.1. Whole Live LAB and Yeast Cells
4.6.2. Thermally Inactivated LAB and Yeast Cells
4.6.3. Intracellular Extracts (ICEs) and Membrane Extracts (MEs)
4.7. Determination of AA Content Using the LC-MS/MS Method
4.8. Cell Line Cultures
4.9. Single-Cell Gel Electrophoresis Assay (Comet Assay)
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 2002, 50, 4998–5006. [Google Scholar] [CrossRef]
- Perestrelo, S.C.; Schwerbel, K.; Hessel-Pras, S.; Schäfer, B.; Kaminski, M.; Lindtner, O.; Sarvan, I. Results of the BfR MEAL Study: Acrylamide in foods from the German market with highest levels in vegetable crisps. Food Chem. X 2024, 22, 101403. [Google Scholar] [CrossRef]
- Schettino, L.; Benedé, J.L.; Chisvert, A.; Salvador, A. Development of a sensitive method for determining traces of prohibited acrylamide in cosmetic products based on dispersive liquid-liquid microextraction followed by liquid chromatography-ultraviolet detection. Microchem. J. 2020, 159, 105402. [Google Scholar] [CrossRef]
- Kenwood, B.M.; Zhu, W.; Zhang, L.; Bhandari, D.; Blount, B.C. Cigarette smoking is associated with acrylamide exposure among the U.S. population: NHANES 2011–2016. Environ. Res. 2022, 209, 112774. [Google Scholar] [CrossRef]
- Su, H.-H.; Cheng, C.-M.; Yang, Y.-N.; Chang, Y.-W.; Li, C.-Y.; Wu, S.-T.; Lin, C.-C.; Wu, H.-E.; Suen, J.-L. Acrylamide, an air pollutant, enhances allergen-induced eosinophilic lung inflammation via group 2 innate lymphoid cells. Mucosal Immunol. 2024, 17, 13–24. [Google Scholar] [CrossRef]
- Canbay, H.S.; Doğantürk, M. Analysis of acrylamide in drinking water by SPE and GC–MS. Appl. Water Sci. 2019, 9, 42. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer; World Health Organization. Some industrial chemicals. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; International Agency for Research on Cancer: Lyon, France; World Health Organization: Geneva, Switzerland, 1994; Volume 60. [Google Scholar]
- Puppel, N.; Tjaden, Z.; Fueller, F.; Marko, D. DNA strand breaking capacity of acrylamide and glycidamide in mammalian cells. Mutat. Res. 2005, 580, 71–80. [Google Scholar] [CrossRef]
- Hogervorst, J.G.; Schouten, L.J.; Konings, E.J.; Goldbohm, R.A.; van den Brandt, P.A. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 2304–2313. [Google Scholar] [CrossRef]
- Hogervorst, J.G.; Schouten, L.J.; Konings, E.J.; Goldbohm, R.A.; van den Brandt, P.A. Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. Am. J. Clin. Nutr. 2008, 87, 1428–1438. [Google Scholar] [CrossRef]
- Hogervorst, J.G.; de Bruijn-Geraets, D.; Schouten, L.J.; van Engeland, M.; de Kok, T.M.; Goldbohm, R.A.; van den Brandt, P.A.; Weijenberg, M.P. Dietary acrylamide intake and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis 2014, 35, 1032–1038. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Wajda, Ł.; Tarko, T.; Sroka, P.; Satora, P. A review of the interactions between acrylamide, microorganisms and food components. Food Funct. 2016, 7, 1282–1295. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Overview on mitigation of acrylamide in starchy fried and baked foods. J. Sci. Food Agric. 2018, 98, 4385–4394. [Google Scholar] [CrossRef]
- Kwolek-Mirek, M.; Zadrąg-Tecza, R.; Bednarska, S.; Bartosz, G. Yeast Saccharomyces cerevisiae devoid of Cu, Zn-superoxide dismutase as a cellular model to study acrylamide toxicity. Toxicol. Vitr. 2011, 25, 573–579. [Google Scholar] [CrossRef]
- Gouveia-Fernandes, S.; Rodrigues, A.; Nunes, C.; Charneira, C.; Nunes, J.; Serpa, J.; Antunes, A.M. Glycidamide and cis-2-butene-1, 4-dial (BDA) as potential carcinogens and promoters of liver cancer-An in vitro study. Food Chem. Toxicol. 2022, 166, 113251. [Google Scholar] [CrossRef]
- Wang, F.; Fan, B.; Zhang, W. Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells. Food Chem. Toxicol. 2022, 163, 112982. [Google Scholar] [CrossRef]
- Yedier, S.K.; Şekeroğlu, Z.A.; Aydın, B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem. Toxicol. 2022, 161, 112852. [Google Scholar] [CrossRef]
- Yu, D.; Jiang, X.; Kuang, H. Gestational exposure to acrylamide uppresses luteal endocrine function through dysregulation of ovarian angiogenesis, oxidative stress and apoptosis in mice. Food Chem. Toxicol. 2022, 159, 112766. [Google Scholar] [CrossRef]
- Li, L.; Lei, X.; Feng, X. Protective mechanism of quercetin compounds against acrylamide -induced hepatotoxicity. Food Sci. Hum. Well. 2024, 13, 225–240. [Google Scholar] [CrossRef]
- Hashem, M.M.; Abo-EL-Sooud, K.; Bahy-EL-Dien, A. The impact of long-term oral exposure to low doses of acrylamide on the hematological indicators, immune functions, and splenic tissue architecture in rats. Int. Immunopharmacol. 2022, 105, 108568. [Google Scholar] [CrossRef]
- Bedade, D.K.; Singhal, R.S. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour. Technol. 2018, 261, 122–132. [Google Scholar] [CrossRef]
- Tiwary, B.N.; Das, R.; Paul, V. Bioremediation technology: A cumulative study on microbial bioremediation of heavy metals, aromatic hydrocarbons, acrylamide, and polyacrylamide. In Industrial Microbiology and Biotechnology; Verma, P., Ed.; Springer: Singapore, 2022; pp. 589–623. [Google Scholar]
- Omuya, Y.; Sufyan, A.J.; Babandi, A.; Ya’u, M.; Ibrahim, S.; Musa, K.A.; Jibril, M.M.; Babagana, K.; Mashi, J.A.; Shehu, D.; et al. Characterizing the Potentials of Alcaligenes sp. for Acrylamide Degradation. J. Biochem. Microbiol. Biotechnol. 2021, 9, 37–41. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Accepted Claims about the Nature of Probiotic Microorganisms in Food. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-labelling/health-claims/accepted-claims-about-nature-probiotic-microorganisms-food.html (accessed on 10 September 2024).
- Shoukat, S. Potential anti-carcinogenic effect of probiotic and lactic acid bacteria in detoxification of benzo [a] pyrene: A review. Trends Food Sci. Technol. 2020, 99, 450–459. [Google Scholar] [CrossRef]
- Serrano-Niño, J.C.; Cavazos-Garduño, A.; Cantú-Cornelio, F.; González-Córdova, A.F.; Vallejo-Córdoba, B.; Hernández-Mendoza, A.; García, H.S. In vitro study of the potential protective role of Lactobacillus strains by acrylamide binding. J. Food Saf. 2014, 34, 62–68. [Google Scholar] [CrossRef]
- Serrano-Niño, J.C.; Cavazos-Garduño, A.; Cantú-Cornelio, F.; González-Córdova, A.F.; Vallejo-Córdoba, B.; Hernández-Mendoza, A.; García, H.S. In vitro reduced availability of aflatoxin B1 and acrylamide by bonding interactions with teichoic acids from Lactobacillus strains. LWT 2015, 64, 1334–1341. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, W.; Li, L.; Zhao, H.-Y.; Sun, H.-Y.; Meng, M.-H.; Zhang, S.; Shao, M.-L. Key role of peptidoglycan on acrylamide binding by lactic acid bacteria. Food Sci. Biotechnol. 2017, 26, 271–277. [Google Scholar] [CrossRef]
- Sen, S.; Mansell, T.J. Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genet. Biol. 2020, 137, 103333. [Google Scholar] [CrossRef]
- Kelesidis, T.; Pothoulakis, C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap. Adv. Gastroenterol. 2012, 5, 111–125. [Google Scholar] [CrossRef]
- Lin, Z.; Luo, P.; Huang, D.; Wu, Y.; Li, F.; Liu, H. Multi-omics based strategy for toxicity analysis of acrylamide in Saccharomyces cerevisiae model. Chem.-Biol. Inter. 2021, 349, 109682. [Google Scholar] [CrossRef]
- Zhou, X.; Duan, M.; Gao, S.; Wang, T.; Wang, Y.; Wang, X.; Zhou, Y. A strategy for reducing acrylamide content in wheat bread by combining acidification rate and prerequisite substance content of Lactobacillus and Saccharomyces cerevisiae. Curr. Res. Food Sci. 2022, 5, 1054–1060. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E. Review of methods for the reduction of dietary content and toxicity of acrylamide. J. Agric. Food Chem. 2008, 56, 6113–6140. [Google Scholar] [CrossRef]
- Mojska, H.; Gielecińska, I.; Szponar, L.; Ołtarzewski, M. Estimation of the dietary acrylamide exposure of the Polish population. Food Chem. Toxicol. 2010, 48, 2090–2096. [Google Scholar] [CrossRef]
- Keramat, J.; LeBail, A.; Prost, C.; Soltanizadeh, N. Acrylamide in foods: Chemistry and analysis. A Review. Food Bioproc. Technol. 2011, 4, 340–363. [Google Scholar] [CrossRef]
- Survey Data on Acrylamide in Food. Available online: https://www.fda.gov/food/chemicals/survey-data-acrylamide-food (accessed on 10 September 2024).
- Rivas-Jimenez, L.; Ramírez-Ortiz, K.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Garcia, H.S.; Hernandez-Mendoza, A. Evaluation of acrylamide-removing properties of two Lactobacillus strains under simulated gastrointestinal conditions using a dynamic system. Microbiol. Res. 2016, 190, 19–26. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/37f97e4d-c080-46d5-a271-0651eda8dc01/content (accessed on 10 September 2024).
- Joint FAO/WHO Expert Committee on Food Additives. Available online: https://www.who.int/publications/i/item/9789241209595 (accessed on 10 September 2024).
- Petka, K.; Wajda, Ł.; Duda-Chodak, A. The Utilisation of Acrylamide by Selected Microorganisms Used for Fermentation of Food. Toxics 2021, 9, 295. [Google Scholar] [CrossRef]
- Najjari, A.; Amairi, H.; Chaillou, S.; Mora, D.; Boudabous, A.; Zagorec, M.; Ouzari, H. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei. J. Adv. Res. 2016, 7, 155–163. [Google Scholar] [CrossRef]
- Pang, X.Y.; Cui, W.M.; Liu, L.; Zhang, S.W.; Lv, J.P. Gene knockout and overexpression analysis revealed the role of N-acetylmuramidase in autolysis of Lactobacillus delbrueckii subsp. bulgaricus Ljj-6. PLoS ONE 2014, 9, e104829. [Google Scholar] [CrossRef]
- Petka, K.; Tarko, T.; Duda-Chodak, A. Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Lactobacillus. Nutrients 2020, 12, 1157. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Hsieh, T.-J.; Lu, C.-Y. Simple analytical strategy for MALDI-TOF-MS and nanoUPLC—MS/MS: Quantitating curcumin in food condiments and dietary supplements and screening of acrylamide-induced ROS protein indicators reduced by curcumin. Food Chem. 2015, 174, 571–576. [Google Scholar] [CrossRef]
- Nowak, A.; Zakłos-Szyda, M.; Żyżelewicz, D.; Koszucka, A.; Motyl, I. Acrylamide Decreases Cell Viability, and Provides Oxidative Stress, DNA Damage, and Apoptosis in Human Colon Adenocarcinoma Cell Line Caco-2. Molecules 2020, 25, 368. [Google Scholar] [CrossRef]
- Yang, L.; Dong, L.; Zhang, L.; Bai, J.; Chen, F.; Luo, Y. Acrylamide Induces Abnormal mtDNA Expression by Causing Mitochondrial ROS Accumulation, Biogenesis, and Dynamics Disorders. J. Agric. Food Chem. 2021, 69, 7765–7776. [Google Scholar] [CrossRef]
- Li, D.; Xian, F.; Ou, J.; Jiang, K.; Zheng, J.; Ou, S.; Liu, F.; Rao, Q.; Huang, C. Formation and Identification of Six Amino Acid–Acrylamide Adducts and Their Cytotoxicity Toward Gastrointestinal Cell Lines. Front. Nutr. 2022, 9, 902040. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Q.; Zhao, X.-H.; Zhang, N. The Impact of Heat Treatment of Quercetin and Myricetin on their Activities to Alleviate the Acrylamide-Induced Cytotoxicity and Barrier Loss in IEC-6 Cells. Plant Foods Hum. Nutr. 2022, 77, 436–442. [Google Scholar] [CrossRef]
- Kovár, M.; Navrátilová, A.; Kolláthová, R.; Trakovická, A.; Požgajová, M. Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast. Molecules 2022, 27, 4307. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, H.; Wang, F.; Wei, D.; Wang, X. An improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J. Microbiol. Methods 2010, 82, 330–333. [Google Scholar] [CrossRef]
- Xu, M.; McCanna, D.J.; Sivak, J.G. Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells. J. Pharmacol. Toxicol. Methods 2015, 71, 1–7. [Google Scholar] [CrossRef]
- Hegyi, F.; Zalán, Z.; Halász, A. Improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay for measuring the viability of lactic acid bacteria. Acta Aliment. 2012, 41, 506–512. [Google Scholar] [CrossRef]
- Lv, M.; Bai, H.; Ren, H.; Liu, Q.; Cui, W.; Teng, F.; Shao, M.; Xia, X. Mechanisms of acrylamide biosorption by Lactobacillus plantarum ATCC8014 peptidoglycan. LWT 2024, 199, 116086. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Wang, T.; Zhao, H.; Zhang, B. Bovine serum albumin plays an important role in the removal of acrylamide by Lactobacillus strains. LWT 2023, 174, 114413. [Google Scholar] [CrossRef]
- Albedwawi, A.S.; Turner, M.S.; Olaimat, A.N.; Osaili, T.M.; Al-Nabulsi, A.A.; Liu, S.-Q.; Shah, N.P.; Ayyash, M.M. An overview of microbial mitigation strategies for acrylamide: Lactic acid bacteria, yeast, and cell-free extracts. LWT 2021, 143, 111159. [Google Scholar] [CrossRef]
- Nachi, I.; Fhoula, I.; Smida, I.; Taher, B.I.; Chouaibi, M.; Jaunbergs, J.; Bartkevics, V.; Hassouna, M. Assessment of lactic acid bacteria application for the reduction of acrylamide formation in bread. LWT 2018, 92, 435–441. [Google Scholar] [CrossRef]
- Esfahani, N.B.; Kadivar, M.; Shahedi, M.; Soleimanian-Zad, S. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Addit. Contam. Part A 2017, 34, 1904–1914. [Google Scholar] [CrossRef]
- Piotrowska, M.; Masek, A. Saccharomyces cerevisiae cell wall components as tools for ochratoxin A decontamination. Toxins 2015, 7, 1151–1162. [Google Scholar] [CrossRef]
- Bzducha-Wróbel, A.; Bryła, M.; Gientka, I.; Błażejak, S.; Janowicz, M. Candida utilis ATCC 9950 cell walls and β(1,3)/(1,6)-glucan preparations produced using agro-waste as a mycotoxins Trap. Toxins 2019, 11, 192. [Google Scholar] [CrossRef]
- El-Nezami, H.; Kankaanpaa, P.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 1998, 36, 321–326. [Google Scholar] [CrossRef]
- Choi, S.M.; Yang, L.; Chang, Y.; Chu, I.K.; Dong, N. Study of the Efficacy of Probiotic Bacteria to Reduce Acrylamide in Food and In Vitro Digestion. Foods 2022, 11, 1263. [Google Scholar] [CrossRef]
- Lee, Y.; El-Nezami, H.; Haskard, C.; Gratz, S.; Puong, K.; Salminen, S.; Mykkänen, H. Kinetics of adsorption and desorption of aflatoxin B1 by viable and nonviable bacteria. J. Food Prot. 2003, 66, 426–430. [Google Scholar] [CrossRef]
- Ma, Z.X.; Amaro, F.X.; Romero, J.J.; Pereira, O.G.; Jeong, K.C.; Adesogan, A.T. The capacity of silage inoculant bacteria to bind aflatoxin B1 in vitro and in artificially contaminated corn silage. J. Dairy Sci. 2017, 100, 7198–7210. [Google Scholar] [CrossRef]
- Piotrowska, M. The adsorption of ochratoxin a by lactobacillus species. Toxins 2014, 6, 2826–2839. [Google Scholar] [CrossRef]
- Haskard, C.A.; El-Nezami, H.S.; Kankaanpaa, P.E.; Salminen, S.; Ahokas, J.T. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol. 2001, 67, 3086–3091. [Google Scholar] [CrossRef]
- Pierides, M.; El-Nezami, H.; Peltonen, K.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind aflatoxin M1 in a food model. J. Food Prot. 2000, 63, 645–650. [Google Scholar] [CrossRef]
- Leska, A.; Nowak, A.; Miśkiewicz, K.; Rosicka-Kaczmarek, J. Binding and Detoxification of Insecticides by Potentially Probiotic Lactic Acid Bacteria Isolated from Honeybee (Apis mellifera L.) Environment—An In Vitro Study. Cells 2022, 11, 3743. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Z.; Zhou, Y.; Zheng, L.; Guo, J.; Liu, Y.; Sun, Z.; Yang, Z.; Yu, X. Synergy of surface adsorption and intracellular accumulation for removal of uranium with Stenotrophomonas sp.: Performance and mechanisms. Environ. Res. 2023, 220, 115093. [Google Scholar] [CrossRef]
- Gerbino, E.; Carasi, P.; Tymczyszyn, E.E.; Gómez-Zavaglia, A. Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity. Res. J. Dairy Sci. 2014, 81, 280–287. [Google Scholar] [CrossRef]
- Beglari, S.; Khodagholi, F.; Gholami Pourbadie, H.; Iranbakhsh, A.; Rohani, M. Biosorption and bioaccumulation of nickel by probiotic lactic acid bacteria isolated from human feces. Bioremediat. J. 2022, 27, 453–464. [Google Scholar] [CrossRef]
- Kirillova, A.V.; Danilushkina, A.A.; Irisov, D.S.; Bruslik, N.L.; Fakhrullin, R.F.; Zakharov, Y.A.; Bukhmin, V.S.; Yarullina, D.R. Assessment of Resistance and Bioremediation Ability of Lactobacillus Strains to Lead and Cadmium. Int. J. Microbiol. 2017, 2017, 9869145. [Google Scholar] [CrossRef]
- Kieliszek, M.; Błażejak, S.; Gientka, I.; Bzducha-Wróbel, A. Accumulation and metabolism of selenium by yeast cells. Appl. Microbiol. Biotechnol. 2015, 99, 5373–5382. [Google Scholar] [CrossRef]
- Saini, K.; Tomar, S.K. In vitro evaluation of probiotic potential of Lactobacillus cultures of human origin capable of selenium bioaccumulation. LWT 2017, 84, 497–504. [Google Scholar] [CrossRef]
- Nowak, A.; Kuberski, S.; Libudzisz, Z. Probiotic lactic acid bacteria detoxify N-nitrosodimethylamine. Food Addit. Contam. Part A 2014, 31, 1678–1687. [Google Scholar] [CrossRef]
- Nowak, A.; Libudzisz, Z. Zespół mikroorganizmów jelitowych–czy wiemy, jaki powinien być? Stand. Med./Pediatr. 2009, 6, 120–127. [Google Scholar]
- Zhao, S.; Zhao, X.; Liu, Q.; Jiang, Y.; Li, Y.; Feng, W.; Xu, H.; Shao, M. Protective effect of Lactobacillus plantarum ATCC8014 on acrylamide-induced oxidative damage in rats. App. Biol. Chem. 2020, 63, 43. [Google Scholar] [CrossRef]
- Yue, Z.; Zhao, F.; Guo, Y.; Zhang, Y.; Chen, Y.; He, L.; Li, L. Lactobacillus reuteri JCM 1112 ameliorates chronic acrylamide-induced glucose metabolism disorder via the bile acid-TGR5-GLP-1 axis and modulates intestinal oxidative stress in mice. Food Funct. 2024, 15, 6450–6458. [Google Scholar] [CrossRef]
- Cuevas-González, P.F.; Aguilar-Toalá, J.E.; García, H.S.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Protective Effect of the Intracellular Content from Potential Probiotic Bacteria against Oxidative Damage Induced by Acrylamide in Human Erythrocytes. Probiotics Antimicrob. Proteins 2020, 12, 1459–1470. [Google Scholar] [CrossRef]
- Li, T.; Wu, S.Q.; Cao, X.; Song, J.Y.; Zhang, H.X.; Xie, Y.H.; Jin, J.H. Screening for antioxidant probiotics and their protective effect on oxidative damage induced by acrylamide in intestinal epithelial cells. Food Sci. 2020, 41, 173–180. [Google Scholar] [CrossRef]
- Zamani, E. In Vitro Study Towards Role of Acrylamide-Induced Genotoxicity in Human Lymphocytes and the Protective Effect of L- Carnitine. Braz. Arch. Biol. Technol. 2018, 61, e18160685. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Geng, C.; Yoshimura, H.; Zhong, L. Inhibition of acrylamide genotoxicity in human liver-derived HepG2 cells by the antioxidant hydroxytyrosol. Chem.-Biol. Interact. 2008, 176, 173–178. [Google Scholar] [CrossRef]
- Nowak, A.; Zakłos-Szyda, M.; Rosicka-Kaczmarek, J.; Motyl, I. Anticancer Potential of Post-Fermentation Media and Cell Extracts of Probiotic Strains: An In Vitro Study. Cancers 2022, 14, 1853. [Google Scholar] [CrossRef]
- Leska, A.; Nowak, A.; Rosicka-Kaczmarek, J.; Ryngajłło, M.; Czarnecka-Chrebelska, K.H. Characterization and Protective Properties of Lactic Acid Bacteria Intended to Be Used in Probiotic Preparation for Honeybees (Apis mellifera L.)—An In Vitro Study. Animals 2023, 13, 1059. [Google Scholar] [CrossRef]
- Leska, A.; Nowak, A.; Szulc, J.; Motyl, I.; Czarnecka-Chrebelska, K.H. Antagonistic Activity of Potentially Probiotic Lactic Acid Bacteria against Honeybee (Apis mellifera L.) Pathogens. Pathogens 2022, 11, 1367. [Google Scholar] [CrossRef]
Initial Concentration of AA 5 µg/mL | |||||
---|---|---|---|---|---|
Strain | Remaining Concentration of AA [µg/mL] | ||||
pH 4.0 | pH 5.0 | pH 6.0 | pH 7.0 | pH 8.0 | |
L. plantarum 52 | 2.66 ± 0.12 | 0.67 ± 0.01 | 1.31 ± 0.05 | 2.23 ± 0.01 | 0.99 ± 0.10 |
P. acidilactici 16 | 2.64 ± 0.10 | 0.62 ± 0.04 | 1.08 ± 0.03 | 1.93 ± 0.08 | 0.72 ± 0.05 |
L. rhamnosus 0997 | 2.71 ± 0.11 | 2.49 ± 0.18 | 2.45 ± 0.18 | 2.47 ± 0.13 | 1.45 ± 0.07 |
Initial concentration of AA 50 µg/mL | |||||
Strain | Remaining concentration of AA [µg/mL] | ||||
pH 4.0 | pH 5.0 | pH 6.0 | pH 7.0 | pH 8.0 | |
L. citreum 50 | 28.73 ± 0.21 | 29.02 ± 0.44 | 29.88 ± 0.57 | 23.54 ± 0.43 | 32.00 ± 0.33 |
L. lactis 3 | 28.42 ± 0.31 | 26.68 ± 0.38 | 29.99 ± 0.42 | 23.62 ± 0.56 | 32.13 ± 0.49 |
K. lactis D2 | 29.48 ± 0.34 | 27.34 ± 0.24 | 29.57 ± 0.31 | 20.24 ± 0.60 | 29.59 ± 0.36 |
K. barnettii D8 | 27.83 ± 0.52 | 26.84 ± 0.35 | 30.89 ± 0.32 | 26.38 ± 0.53 | 30.07 ± 0.21 |
Initial Concentration of AA 5 µg/mL | ||||
---|---|---|---|---|
Strain | Remaining Concentration of AA [µg/mL] | |||
T = 4 °C | T = 20 °C | T = 30 °C | T = 37 °C | |
L. plantarum 52 | 2.65 ± 0.03 | 2.96 ± 0.05 | 1.80 ± 0.02 | 2.23 ± 0.03 |
P. acidilactici 16 | 2.80 ± 0.10 | 2.91 ± 0.12 | 2.11 ± 0.00 | 1.93 ± 0.10 |
L. rhamnosus 0997 | 2.80 ± 0.07 | 2.83 ± 0.04 | 2.12 ± 0.01 | 2.47 ± 0.04 |
Initial concentration of AA 50 µg/mL | ||||
Strain | Remaining concentration of AA [µg/mL] | |||
T = 4 °C | T = 20 °C | T = 30 °C | T = 37 °C | |
L. citreum 50 | 27.73 ± 0.54 | 29.97 ± 0.37 | 21.13 ± 0.43 | 23.54 ± 0.39 |
L. lactis 3 | 28.01 ± 0.66 | 29.42 ± 0.39 | 22.20 ± 0.56 | 23.62 ± 0.21 |
K. lactis D2 | 27.85 ± 0.43 | 28.63 ± 0.44 | 23.49 ± 0.21 | 20.24 ± 0.15 |
K. barnettii D8 | 29.25 ± 0.31 | 29.19 ± 0.22 | 22.68 ± 0.35 | 26.38 ± 0.41 |
Initial Concentration of AA 5 µg/mL | ||||
---|---|---|---|---|
Strain | Remaining Concentration of AA [µg/mL] (AA Bound per 1 Cell) | |||
106 | 108 | 109 | 1010 | |
L. plantarum 52 | 3.05 ± 0.12 (1.95 × 10−6) | 3.19 ± 0.03 (1.81 × 10−8) | 2.23 ± 0.05 (2.77 × 10−9) | 2.63 ± 0.12 (2.37 × 10−10) |
P. acidilactici 16 | 3.17 ± 0.08 (1.83 × 10−6) | 3.09 ± 0.09 (1.91 × 10−8) | 1.93 ± 0.07 (3.07 × 10−9) | 2.57 ± 0.08 (2.43 × 10−10) |
L. rhamnosus 0997 | 3.00 ± 0.04 (2.00 × 10−6) | 2.77 ± 0.10 (2.23 × 10−8) | 2.47 ± 0.11 (2.53 × 10−9) | 2.31 ± 0.04 (2.69 × 10−10) |
Initial concentration of AA 50 [µg/mL] | ||||
Strain | Remaining concentration of AA [µg/mL] (AA bound per 1 cell) | |||
106 | 108 | 109 | 1010 | |
L. citreum 50 | 30.38 ± 0.31 (19.62 × 10−6) | 30.85 ± 0.55 (19.15 × 10−8) | 23.54 ± 0.29 (26.46 × 10−9) | 22.26 ± 0.24 (27.74 × 10−10) |
L. lactis 3 | 31.67 ± 0.33 (18.77 × 10−6) | 31.04 ± 0.42 (18.96 × 10−8) | 23.62 ± 0.35 (26.38 × 10−9) | 23.78 ± 0.64 (26.22 × 10−10) |
K. lactis D2 | 27.12 ± 0.23 (22.88 × 10−6) | 29.10 ± 0.39 (20.90 × 10−8) | 20.24 ± 0.47 (29.76 × 10−9) | 11.80 ± 0.34 (38.20 × 10−10) |
K. barnettii D8 | 29.85 ± 0.43 (20.15 × 10−6) | 31.68 ± 0.23 (18.32 × 10−8) | 26.38 ± 0.30 (23.62 × 10−9) | 27.43 ± 0.51 (22.57 × 10−10) |
Initial Concentration of AA 5 µg/mL | |
---|---|
Strain | Remaining Concentration of AA [µg/mL] |
L. plantarum 52 | 2.78 ± 0.04 |
P. acidilactici 16 | 2.77 ± 0.01 |
L. rhamnosus 0997 | 2.89 ± 0.07 |
Initial concentration of AA 50 µg/mL | |
Strain | Remaining concentration of AA [µg/mL] |
L. citreum 50 | 28.11 ± 0.37 |
L. lactis 3 | 27.39 ± 0.31 |
K. lactis D2 | 27.39 ± 0.44 |
K. barnettii D8 | 28.23 ± 0.51 |
Initial Concentration of AA 5 [µg/mL] | ||
---|---|---|
Strain | Remaining Concentration of AA [µg/mL] | |
Intracellular Extracts | Membrane Extracts | |
L. plantarum 52 | 0.42 ± 0.03 | 0.49 ± 0.02 |
P. acidilactici 16 | 0.47 ± 0.01 | 0.54 ± 0.00 |
L. rhamnosus 0997 | 0.62 ± 0.02 | 0.61 ± 0.01 |
Initial concentration of AA 50 [µg/mL] | ||
Strain | Remaining concentration of AA [µg/mL] | |
Intracellular extracts | Membrane extracts | |
L. citreum 50 | 0.87 ± 0.03 | 0.94 ± 0.09 |
L. lactis 3 | 1.23 ± 0.11 | 1.51 ± 0.04 |
K. lactis D2 | 0.75 ± 0.05 | 0.91 ± 0.03 |
K. barnettii D8 | 0.80 ± 0.02 | 0.94 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maher, A.; Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nowak, A. Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast. Molecules 2024, 29, 4922. https://doi.org/10.3390/molecules29204922
Maher A, Miśkiewicz K, Rosicka-Kaczmarek J, Nowak A. Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast. Molecules. 2024; 29(20):4922. https://doi.org/10.3390/molecules29204922
Chicago/Turabian StyleMaher, Agnieszka, Karolina Miśkiewicz, Justyna Rosicka-Kaczmarek, and Adriana Nowak. 2024. "Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast" Molecules 29, no. 20: 4922. https://doi.org/10.3390/molecules29204922
APA StyleMaher, A., Miśkiewicz, K., Rosicka-Kaczmarek, J., & Nowak, A. (2024). Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast. Molecules, 29(20), 4922. https://doi.org/10.3390/molecules29204922