Optimization of the Cold Water Extraction Method for High-Value Bioactive Compounds from Chamomile (Matricaria chamomilla L.) Flower Heads Through Chemometrics
Abstract
:1. Introduction
2. Results
2.1. HPLC Analysis
2.2. UV-Vis Analysis
2.3. DPPH Assay
- For 1.50 mg⋅mL−1: 25% ± 3%.
- For 1.88 mg⋅mL−1: 28% ± 1%.
- For 3.00 mg⋅mL−1: 36.6% ± 0.3%.
- For 3.75 mg⋅mL−1: 50% ± 3%.
- For 7.50 mg⋅mL−1: 90.5% ± 0.3%.
3. Discussion
4. Materials and Methods
4.1. Sample Treatment
4.2. HPLC Analysis
- Hydroxybenzoic acid derivatives: Protocatechuic acid (>97.0% purity), Gentisic acid (98.0% purity), Syringic acid (>95.0% purity), Gallic acid (97.5–102.5% purity), and Vanillic acid (>97.0% purity).
- Hydroxycinnamic acids: Caffeic acid (>98.0% purity), trans-Ferulic acid (99.0% purity), p-Coumaric acid (>98.0% purity), and 3-O-Caffeoylquinic acid (95.0% purity), Syringic acid (purity greater than 95.0%), Gallic acid (97.5–102.5% purity).
- Flavones: Apigenin (95.0% purity) and Luteolin (>97.0% purity).
- Flavonols: Quercetin (>95.0% purity) and Rutin trihydrate (>95.0% purity).
4.3. UV-Vis Analysis
4.4. DPPH Assay
4.5. DOE-Based Sample Preparation
4.6. Statistical Analysis
4.6.1. Design of Experiment
4.6.2. Principal Component Analysis
4.6.3. ANOVA–Simultaneous Component Analysis (ASCA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srivastava, J.K.; Shankar, E.; Gupta, S. Gupta Chamomile: A Herbal Medicine of the Past with a Bright Future (Review). Mol. Med. Rep. 2010, 3, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M. Chamomile (Matricaria chamomilla L.): An Overview. Pharmacogn. Rev. 2011, 5, 82. [Google Scholar] [CrossRef] [PubMed]
- El Joumaa, M.M.; Borjac, J.M. Matricaria Chamomilla: A Valuable Insight into Recent Advances in Medicinal Uses and Pharmacological Activities. Phytochem. Rev. 2022, 21, 1913–1940. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A Review of Ethnomedicinal Use, Phytochemistry and Pharmacological Uses. Life 2022, 12, 479. [Google Scholar] [CrossRef]
- Tuladhar, P.; Sasidharan, S.; Saudagar, P. Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses. In Biocontrol Agents and Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128229194. [Google Scholar]
- Tsivelika, N.; Irakli, M.; Mavromatis, A.; Chatzopoulou, P.; Karioti, A. Phenolic Profile by HPLC-PDA-MS of Greek Chamomile Populations and Commercial Varieties and Their Antioxidant Activity. Foods 2021, 10, 2345. [Google Scholar] [CrossRef]
- Mailänder, L.K.; Lorenz, P.; Bitterling, H.; Stintzing, F.C.; Daniels, R.; Kammerer, D.R. Phytochemical Characterization of Chamomile (Matricaria recutita L.) Roots and Evaluation of Their Antioxidant and Antibacterial Potential. Molecules 2022, 27, 8508. [Google Scholar] [CrossRef]
- Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M. Analysis of Phenolic Compounds in Matricaria chamomilla and Its Extracts by UPLC-UV. Res. Pharm. Sci. 2014, 9, 31–37. [Google Scholar]
- Zengin, G.; Mollica, A.; Arsenijević, J.; Pavlić, B.; Zeković, Z.; Sinan, K.I.; Yan, L.; Cvetanović Kljakić, A.; Ražić, S. A Comparative Study of Chamomile Essential Oils and Lipophilic Extracts Obtained by Conventional and Greener Extraction Techniques: Chemometric Approach to Chemical Composition and Biological Activity. Separations 2022, 10, 18. [Google Scholar] [CrossRef]
- Žlabur, J.Š.; Žutić, I.; Radman, S.; Pleša, M.; Brnčić, M.; Barba, F.J.; Rocchetti, G.; Lucini, L.; Lorenzo, J.M.; Domínguez, R.; et al. Effect of Different Green Extraction Methods and Solvents on Bioactive Components of Chamomile (Matricaria chamomilla L.) Flowers. Molecules 2020, 25, 810. [Google Scholar] [CrossRef]
- Poureini, F.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Comparative Study on the Extraction of Apigenin from Parsley Leaves (Petroselinum crispum L.) by Ultrasonic and Microwave Methods. Chem. Pap. 2020, 74, 3857–3871. [Google Scholar] [CrossRef]
- Polcaro, L.M.; Cerulli, A.; Montella, F.; Ciaglia, E.; Masullo, M.; Piacente, S. Chemical Profile and Antioxidant and Tyrosinase Inhibitory Activity of Chamaemelum nobile L. Green Extracts. Cosmetics 2024, 11, 94. [Google Scholar] [CrossRef]
- Catani, M.V.; Rinaldi, F.; Tullio, V.; Gasperi, V.; Savini, I. Comparative Analysis of Phenolic Composition of Six Commercially Available Chamomile (Matricaria chamomilla L.) Extracts: Potential Biological Implications. Int. J. Mol. Sci. 2021, 22, 10601. [Google Scholar] [CrossRef] [PubMed]
- da Graça Campos, M.; Markham, K.R. Structure Information from HPLC and On-Line Measured Absorption Spectra: Flavones, Flavonols and Phenolic Acids; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2007. [Google Scholar] [CrossRef]
- Sotiropoulou, N.S.; Megremi, S.F.; Tarantilis, P. Evaluation of Antioxidant Activity, Toxicity, and Phenolic Profile of Aqueous Extracts of Chamomile (Matricaria chamomilla L.) and Sage (Salvia officinalis L.) Prepared at Different Temperatures. Appl. Sci. 2020, 10, 2270. [Google Scholar] [CrossRef]
- Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Jerković, J.; Zengin, G.; Gašić, U.; Tešić, Ž.; Mašković, P.; Soares, C.; Fatima Barroso, M.; et al. The Influence of the Extraction Temperature on Polyphenolic Profiles and Bioactivity of Chamomile (Matricaria chamomilla L.) Subcritical Water Extracts. Food Chem. 2019, 271, 328–337. [Google Scholar] [CrossRef]
- Stagos, D.; Portesis, N.; Spanou, C.; Mossialos, D.; Aligiannis, N.; Chaita, E.; Panagoulis, C.; Reri, E.; Skaltsounis, L.; Tsatsakis, A.M.; et al. Correlation of Total Polyphenolic Content with Antioxidant and Antibacterial Activity of 24 Extracts from Greek Domestic Lamiaceae Species. Food Chem. Toxicol. 2012, 50, 4115–4124. [Google Scholar] [CrossRef]
- Biancolillo, A.; Foschi, M.; D’Archivio, A.A. Geographical Classification of Italian Saffron (Crocus sativus L.) by Multi-Block Treatments of UV-Vis and IR Spectroscopic Data. Molecules 2020, 25, 2332. [Google Scholar] [CrossRef]
- Sarma, N.; Gogoi, R.; Begum, T.; Lal, M.; Perveen, K.; Alsahikh, N.A.; Alsulami, J.A. A Study on the Chemical Profile of Cultivated Chamomile (Matricaria chamomilla L.) Flower Essential Oil from North East India with Special Emphasis on Its Pharmacological Importance. J. Essent. Oil-Bearing Plants 2023, 26, 745–760. [Google Scholar] [CrossRef]
- Lin, L.Z.; Harnly, J.M. LC-PDA-ESI/MS Identification of the Phenolic Components of Three Compositae Spices: Chamomile, Tarragon, and Mexican Arnica. Nat. Prod. Commun. 2012, 7, 749–752. [Google Scholar] [CrossRef]
- Oktaviani, N.M.D.; Larasati, I.D.; Nugroho, A.W.; Setyaningsih, W.; Palma, M. Ultrasound-Assisted Extraction of L-Tryptophan from Chamomile Flower: Method Development and Application for Flower Parts Characterization and Varietal Difference. Trends Sci. 2024, 21, 3. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Karaaslan Ayhan, N. Investigation of Antioxidant Properties of Chamomile Consumed as Herbal Tea. J. Food Process. Preserv. 2021, 45, 15327. [Google Scholar] [CrossRef]
- Abou-Arab, E.A.; Abu-Salem, F.M. Evaluation of bioactive compounds of Stevia rebaudiana leaves and callus. Afr. J. Food Sci. 2010, 4, 627–634. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Venskutonis, P.R.; Ragažinskienė, O. Valorisation of Roman Chamomile (Chamaemelum nobile L.) Herb by Comprehensive Evaluation of Hydrodistilled Aroma and Residual Non-Volatile Fractions. Food Res. Int. 2022, 160, 111715. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Mori, D.; Rathod, P.; Parmar, R.; Dudhat, K.; Chavda, J. Preparation and Optimization of Multi-Functional Directly Compressible Excipient: An Integrated Approach of Principal Component Analysis and Design of Experiments. Drug Dev. Ind. Pharm. 2020, 46, 2010–2021. [Google Scholar] [CrossRef]
- Jansen, J.J.; Hoefsloot, H.C.J.; Van Der Greef, J.; Timmerman, M.E.; Westerhuis, J.A.; Smilde, A.K. ASCA: Analysis of Multivariate Data Obtained from an Experimental Design. J. Chemom. 2005, 19, 469–481. [Google Scholar] [CrossRef]
- Bertinetto, C.; Engel, J.; Jansen, J. ANOVA Simultaneous Component Analysis: A Tutorial Review. Anal. Chim. Acta X 2020, 6, 100061. [Google Scholar] [CrossRef]
Code | Compound |
---|---|
1AI | p-hydroxybenzoic acid 3 |
2AI | Gentisic Acid 1 |
3AI | Protocatechuic Acid 1 |
4AI | Tyrosol/Tryptophan Derivative 2 |
5AC | 3-O-Caffeoylquinic acid 1 |
6AI | p-hydroxybenzoic acid derivative 2 |
7AS | Salicylic acid derivative 3 |
8AC | 5-O-Caffeoylquinic acid 2 |
9AC | 4-O-Caffeoylquinic acid 2 |
10AC | cis-2-Hydroxy-4-methoxycinnamic acid 2-O-glucopyranoside 3 |
11AC | tran-2-Hydroxy-4-methoxycinnamic acid 2-O-glucopyranoside 3 |
12AC | Dicaffeoylquinic acid D1 3 |
13A | Apigenin-7-O-glucoside 2 |
14AC | Dicaffeoylquinic acid D2 3 |
15A | Apigenin-7-O-hexoside D1 2 |
16A | Apigenin-7-O-hexoside D2 2 |
17U | Unknown |
18U | Unknown |
Origin | DF | Sum of Squares | Mean Squares | F-Ratio |
---|---|---|---|---|
Regression | 6 | 253.357 | 42.226 | 26.735 |
Residues (E) | 26 | 41.066 | 1.579 | Prob |
Total | 32 | 294.423 | <0.0001 | |
Lack of Fit | 18 | 36.421 | 2.023 | 36.421 |
Pooled Error | 8 | 5.006 | 6.626 | Prob |
Residues | 26 | 41.427 | 0.045 |
Sample | Q | T (min) | T | Y |
---|---|---|---|---|
C1 | 0.5 | 32 | 15 | 0.207 |
C1bis | 0.5 | 32 | 15 | 0.228 |
C2 | 0.5 | 32 | 35 | 0.204 |
C2bis | 0.5 | 32 | 35 | 0.224 |
C3 | 0.5 | 92 | 15 | 0.144 |
C3bis | 0.5 | 92 | 15 | 0.126 |
C4 | 0.5 | 92 | 35 | 0.090 |
C5 | 0.5 | 62 | 25 | 0.213 |
C6 | 2.5 | 32 | 35 | 0.495 |
C6bis | 2.5 | 32 | 35 | 0.470 |
C7 | 2.5 | 32 | 15 | 0.517 |
C8 | 2.5 | 32 | 15 | 0.517 |
C9 | 2.5 | 92 | 15 | 0.465 |
C9bis | 2.5 | 92 | 15 | 0.456 |
C10 | 2.5 | 92 | 35 | 0.350 |
C11 | 2.5 | 62 | 25 | 0.501 |
C12 | 1.5 | 62 | 25 | 0.389 |
C12bis | 1.5 | 62 | 25 | 0.403 |
C14 | 1.5 | 62 | 35 | 0.377 |
C15 | 1.5 | 62 | 15 | 0.407 |
C16 | 1.5 | 92 | 25 | 0.329 |
C17 | 1.5 | 32 | 25 | 0.470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foschi, M.; Marsili, L.; Luciani, I.; Gornati, G.; Scappaticci, C.; Ruggieri, F.; D’Archivio, A.A.; Biancolillo, A. Optimization of the Cold Water Extraction Method for High-Value Bioactive Compounds from Chamomile (Matricaria chamomilla L.) Flower Heads Through Chemometrics. Molecules 2024, 29, 4925. https://doi.org/10.3390/molecules29204925
Foschi M, Marsili L, Luciani I, Gornati G, Scappaticci C, Ruggieri F, D’Archivio AA, Biancolillo A. Optimization of the Cold Water Extraction Method for High-Value Bioactive Compounds from Chamomile (Matricaria chamomilla L.) Flower Heads Through Chemometrics. Molecules. 2024; 29(20):4925. https://doi.org/10.3390/molecules29204925
Chicago/Turabian StyleFoschi, Martina, Lorenzo Marsili, Ilaria Luciani, Giulia Gornati, Claudia Scappaticci, Fabrizio Ruggieri, Angelo Antonio D’Archivio, and Alessandra Biancolillo. 2024. "Optimization of the Cold Water Extraction Method for High-Value Bioactive Compounds from Chamomile (Matricaria chamomilla L.) Flower Heads Through Chemometrics" Molecules 29, no. 20: 4925. https://doi.org/10.3390/molecules29204925
APA StyleFoschi, M., Marsili, L., Luciani, I., Gornati, G., Scappaticci, C., Ruggieri, F., D’Archivio, A. A., & Biancolillo, A. (2024). Optimization of the Cold Water Extraction Method for High-Value Bioactive Compounds from Chamomile (Matricaria chamomilla L.) Flower Heads Through Chemometrics. Molecules, 29(20), 4925. https://doi.org/10.3390/molecules29204925