Advances in Research on the Improvement of Low-Salt Meat Product Through Ultrasound Technology: Quality, Myofibrillar Proteins, and Gelation Properties
Abstract
:1. Introduction
2. Current Research Status of Low-Salt Meat Product Processing Technologies
2.1. Salt Substitute
2.2. Flavor Enhancers and Masking Agents
2.3. Optimize the Physical Form and Spatial Distribution of Salt
2.4. Non-Thermal Processing Technology
3. Effect of Ultrasound on Quality Characteristics of Low-Salt Meat Products
3.1. Texture
Sources | Treatment Parameters | Texture | WHC | Structure | Flavor | Permeability | Proteins Properties | Gelation Properties | Author |
---|---|---|---|---|---|---|---|---|---|
Tuna | 4%, 6%, 8% NaCl + US (40 kHz, 840 W) | √ | √ | — | — | √ | — | — | [47] |
Pork | 2% NaCl + US (37 kHz, 22 W/cm2) | × | × | — | — | √ | — | — | [24] |
Chicken | 6% NaCl and 2% sodium bicarbonate + US (20 kHz, 300 W) | √ | √ | √ | — | √ | √ | — | [46] |
Chicken | NaCl + PA + US (15.6 W/cm2) | √ | √ | √ | — | — | √ | √ | [45] |
Sea bass | 5% NaCl + US (20.5 kHz, 300 W) | √ | √ | √ | √ | √ | — | — | [14] |
Chicken | 2% Phosphate + US (40 kHz, 300 W) | √ | √ | √ | √ | √ | — | — | [15] |
Beef | 0.15% L-histidine + US (20 kHz, 300 W) | √ | √ | √ | — | — | √ | √ | [48] |
Beef | 6% NaCl + US (20 kHz, 2.39, 6.23, 11.32 and 20.96 W/cm2) | — | — | √ | √ | — | √ | — | [49] |
Chicken | 4% NaCl + 4% KCl + US | √ | √ | — | — | √ | — | — | [50] |
Beef | CaCl2 + US (40 kHz) | √ | √ | √ | — | √ | — | — | [51] |
Dry-cured meat | Ultrasound treatment | √ | √ | √ | √ | √ | √ | √ | [52] |
Beef | US (20 kHz, 600 W) | — | — | — | √ | √ | √ | — | [53] |
Lamb | US (26 kHz, 1 W/cm2) | — | √ | — | — | — | — | — | [54] |
Pork | US (20 kHz, 600 W) | — | — | — | — | √ | — | — | [55] |
3.2. Flavor
3.3. Ion Permeability
4. Effect of Ultrasound on Properties of Proteins and Gel
4.1. Solubility
4.2. Emulsifying Properties
4.3. Strength and WHC of Gel
4.4. Microstructure
5. Conclusions
Funding
Conflicts of Interest
References
- Wang, J.; Huang, X.H.; Zhang, Y.Y.; Li, S.; Dong, X.; Qin, L. Effect of sodium salt on meat products and reduction sodium strategies—A review. Meat Sci. 2023, 205, 109296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, X.; Peng, Z.; Jamali, M.A. A review of recent progress in reducing NaCl content in meat and fish products using basic amino acids. Trends Food Sci. Technol. 2022, 119, 215–226. [Google Scholar] [CrossRef]
- Scourboutakos, M.J.; Murphy, S.A.; L’Abbé, M.R. Association between salt substitutes/enhancers and changes in sodium levels in fast-food restaurants: A cross-sectional analysis. Can. Med. Assoc. Open Access J. 2018, 6, E118–E125. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Tan, M.; Yuan, M.; MacGregor, G. Salt Reduction to Prevent Hypertension and Cardiovascular Disease. J. Am. Coll. Cardiol. Found. 2020, 75, 632–647. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Badar, I.H.; Liu, Q.; Liu, H.; Chen, Q.; Kong, B. Insights into the flavor perception and enhancement of sodium-reduced fermented foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 64, 1–15. [Google Scholar] [CrossRef]
- Trieu, K.; Neal, B.; Hawkes, C.; Dunford, E.; Campbell, N.; Rodriguez-Fernandez, R.; Webster, J. Salt reduction initiatives around the world–a systematic review of progress towards the global target. PLoS ONE 2015, 10, e0130247. [Google Scholar] [CrossRef]
- Żochowska-Kujawska, J. Effects of fibre type and structure of longissimus lumborum (Ll), biceps femoris (Bf) and semimembranosus (Sm) deer muscles salting with different NaCl addition on proteolysis index and texture of dry-cured meats. Meat Sci. 2016, 121, 390–396. [Google Scholar] [CrossRef]
- Gullón, P.; Astray, G.; Gullón, B.; Franco, D.; Campagnol, P.C.B.; Lorenzo, J.M. Inclusion of seaweeds as healthy approach to formulate new low-salt meat products. Curr. Opin. Food Sci. 2021, 40, 20–25. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, Y.; Shang, Z.; Ma, L.; Xu, Y.; Zhang, L.; Chen, Y. Structural and functional modification of miscellaneous beans protein by high-intensity ultrasound: Mechanism, processing, and new insights. Food Hydrocoll. 2024, 151, 109774. [Google Scholar] [CrossRef]
- Zheng, X.; Zou, B.; Zhang, J.; Cai, W.; Na, X.; Du, M.; Wu, C. Recent advances of ultrasound-assisted technology on aquatic protein processing: Extraction, modification, and freezing/thawing-induced oxidation. Trends Food Sci. Technol. 2024, 144, 104309. [Google Scholar] [CrossRef]
- Gómez-Salazar, J.A.; Galván-Navarro, A.; Lorenzo, J.M.; Sosa-Morales, M.E. Ultrasound effect on salt reduction in meat products: A review. Curr. Opin. Food Sci. 2021, 38, 71–78. [Google Scholar] [CrossRef]
- Perez-Santaescolastica, C.; Fraeye, I.; Barba, F.J.; Gomez, B.; Tomasevic, I.; Romero, A.; Lorenzo, J.M. Application of non-invasive technologies in dry-cured ham: An overview. Trends Food Sci. Technol. 2019, 86, 360–374. [Google Scholar] [CrossRef]
- Zhang, Y.; Abatzoglou, N. Fundamentals, applications and potentials of ultrasound-assisted drying. Chem. Eng. Res. Des. 2020, 154, 21–46. [Google Scholar] [CrossRef]
- Bai, H.; Li, L.; Wu, Y.; Chen, S.; Zhao, Y.; Cai, Q.; Wang, Y. Ultrasound improves the low-sodium salt curing of sea bass: Insights into the effects of ultrasound on texture, microstructure, and flavor characteristics. Ultrason. Sonochem. 2023, 100, 106597. [Google Scholar] [CrossRef]
- Tong, H.; Cao, C.; Du, Y.; Liu, Y.; Huang, W. Ultrasonic-assisted phosphate curing: A novel approach to improve curing rate and chicken meat quality. Int. J. Food Sci. Technol. 2022, 57, 2906–2917. [Google Scholar] [CrossRef]
- Krasulya, O.; Tsirulnichenko, L.; Potoroko, I.; Bogush, V.; Novikova, Z.; Sergeev, A.; Anandan, S. The study of changes in raw meat salting using acoustically activated brine. Ultrason. Sonochem. 2019, 50, 224–229. [Google Scholar] [CrossRef]
- Xu, S.; Guo, X.; Fu, C.; Wang, J.; Meng, X.; Hui, T.; Peng, Z. Effect of ultrasound-assisted L-lysine treatment on pork meat quality and myofibrillar protein properties during postmortem aging. J. Food Sci. 2024, 89, 4162–4177. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Amiri, A.; Sharifian, P.; Soltanizadeh, N. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins. Int. J. Biol. Macromol. 2018, 111, 139–147. [Google Scholar] [CrossRef]
- Zhao, C.; Chu, Z.; Miao, Z.; Liu, J.; Liu, J.; Xu, X.; Yan, J. Ultrasound heat treatment effects on structure and acid-induced cold set gel properties of soybean protein isolate. Food Biosci. 2021, 39, 100827. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, M.; Wang, L. Effects of different curing methods on edible quality and myofibrillar protein characteristics of pork. Food Chem. 2022, 387, 132872. [Google Scholar] [CrossRef] [PubMed]
- Leong, T.; Juliano, P.; Knoerzer, K. Advances in ultrasonic and megasonic processing of foods. Food Eng. Rev. 2017, 9, 237–256. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Lopez, G.; Carnero-Hernandez, A.; Huerta-Jimenez, M.; Alarcon-Rojo, A.D.; Garcia-Galicia, I.; Carrillo-López, L. High-intensity ultrasound applied on cured pork: Sensory and physicochemical characteristics. Food Sci. Nutr. 2020, 8, 786–795. [Google Scholar] [CrossRef]
- Kang, D.; Zhang, W.; Lorenzo, J.M.; Chen, X. Structural and functional modification of food proteins by high power ultrasound and its application in meat processing. Crit. Rev. Food Sci. Nutr. 2021, 61, 1914–1933. [Google Scholar] [CrossRef]
- World Health Organization. Salt Reduction. 2016. Available online: https://www.who.int/news-room/fact-sheets/detail/salt-reduction (accessed on 16 October 2023).
- Hu, Y.; Wang, Q.; Sun, F.; Chen, Q.; Xia, X.; Liu, Q.; Kong, B. Role of partial replacement of NaCl by KCl combined with other components on structure and gel properties of porcine myofibrillar protein. Meat Sci. 2022, 190, 108832. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Cittadini, A.; Bermúdez, R.; Munekata, P.E.; Domínguez, R. Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on proteolysis, lipolysis and sensory properties during the manufacture of dry-cured lacón. Food Control 2015, 55, 90–96. [Google Scholar] [CrossRef]
- Ding, X.; Wang, G.; Zou, Y.; Zhao, Y.; Ge, C.; Liao, G. Evaluation of small molecular metabolites and sensory properties of Xuanwei ham salted with partial replacement of NaCl by KCl. Meat Sci. 2021, 175, 108465. [Google Scholar] [CrossRef]
- Guo, X.; Tao, S.; Pan, J.; Lin, X.; Ji, C.; Liang, H.; Li, S. Effects of L-lysine on the physiochemical properties and sensory characteristics of salt-reduced reconstructed ham. Meat Sci. 2020, 166, 108133. [Google Scholar] [CrossRef]
- da Silva, S.L.; Lorenzo, J.M.; Machado, J.M.; Manfio, M.; Cichoski, A.J.; Fries, L.L.M.; Campagnol, P.C.B. Application of arginine and histidine to improve the technological and sensory properties of low-fat and low-sodium bologna-type sausages produced with high levels of KCl. Meat Sci. 2020, 159, 107939. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, P.; Li, S.; Zhu, X.; Chen, C.; Zhou, C. Effects of L-lysine/L-arginine on the physicochemical properties and quality of sodium-reduced and phosphate-free pork sausage. Int. J. Nutr. Food Sci. 2017, 6, 12–18. [Google Scholar] [CrossRef]
- Chen, X.W.; Yang, D.X.; Guo, J.; Ruan, Q.J.; Yang, X.Q. Quillaja saponin-based hollow salt particles as solid carriers for enhancing sensory aroma with reduced sodium intake. Food Funct. 2018, 9, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Noort, M.W.; Bult, J.H.; Stieger, M.; Hamer, R.J. Saltiness enhancement in bread by inhomogeneous spatial distribution of sodium chloride. J. Cereal Sci. 2010, 52, 378–386. [Google Scholar] [CrossRef]
- Xing, T.; Xu, Y.; Qi, J.; Xu, X.; Zhao, X. Effect of high intensity ultrasound on the gelation properties of wooden breast meat with different NaCl contents. Food Chem. 2021, 347, 129031. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, Y.; Yu, Z.; Wu, T.; Bennett, L.E. Effects of high-pressure processing on microbial, textural and sensory properties of low-salt emulsified beef sausage. Food Control 2022, 133, 108596. [Google Scholar] [CrossRef]
- Cropotova, J.; Tappi, S.; Genovese, J.; Rocculi, P.; Laghi, L.; Dalla Rosa, M.; Rustad, T. Study of the influence of pulsed electric field pre-treatment on quality parameters of sea bass during brine salting. Innov. Food Sci. Emerg. Technol. 2021, 70, 102706. [Google Scholar] [CrossRef]
- Mitchell, M.; Brunton, N.P.; Wilkinson, M.G. Current salt reduction strategies and their effect on sensory acceptability: A study with reduced salt ready-meals. Eur. Food Res. Technol. 2011, 232, 529–539. [Google Scholar] [CrossRef]
- Henney, J.E.; Taylor, C.L.; Boon, C.S.; Institute of Medicine (US) Committee on Strategies to Reduce Sodium Intake. Sodium intake reduction: An important but elusive public health goal. In Strategies to Reduce Sodium Intake in the United States; National Academies Press (US): Washington, DC, USA, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK50951/ (accessed on 16 October 2023).
- Minter, S. Salt Product Patent WO2009/133409Al, 16 October 2009.
- Guyon, C.; Le Vessel, V.; Meynier, A.; de Lamballerie, M. Modifications of protein-related compounds of beef minced meat treated by high pressure. Meat Sci. 2018, 142, 32–37. [Google Scholar] [CrossRef]
- Jiranuntakul, W.; Nakwiang, N.; Berends, P.; Kasemsuwan, T.; Saetung, T.; Devahastin, S. Physicochemical, microstructural, and microbiological properties of skipjack tuna (Katsuwonus pelamis) after high-pressure processing. J. Food Sci. 2018, 83, 2324–2336. [Google Scholar] [CrossRef]
- Li, K.; Kang, Z.L.; Zou, Y.F.; Xu, X.L.; Zhou, G.H. Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. J. Food Sci. Technol. 2015, 52, 2622–2633. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, L.; Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Garcia-Galicia, I.A.; Huerta-Jimenez, M.; Paniwnyk, L. Does ultrasound equally improve the quality of beef? An insight into longissimus lumborum, infraspinatus and cleidooccipitalis. Meat Sci. 2020, 160, 107963. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhang, X.; Chen, X.; Fang, R.; Zou, Y.; Wang, D.; Xu, W. How ultrasound combined with potassium alginate marination tenderizes old chicken breast meat: Possible mechanisms from tissue to protein. Food Chem. 2020, 328, 127144. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Fu, X.; Pan, D.; Qi, J.; Xu, X.; Jiang, X. Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat. Ultrason. Sonochem. 2020, 60, 104808. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Han, R.; Li, F.; Tang, J.; Jiao, Y. Mass transfer enhancement of tuna brining with different NaCl concentrations assisted by ultrasound. Ultrason. Sonochem. 2022, 85, 105989. [Google Scholar] [CrossRef]
- Shi, H.; Khan, I.A.; Zhang, R.; Zou, Y.; Xu, W.; Wang, D. Evaluation of ultrasound-assisted L-histidine marination on b1eef M. semitendinosus: Insight into meat quality and actomyosin properties. Ultrason. Sonochem. 2022, 85, 105987. [Google Scholar] [CrossRef]
- Kang, D.C.; Zou, Y.H.; Cheng, Y.P.; Xing, L.J.; Zhou, G.H.; Zhang, W.G. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrason. Sonochem. 2016, 33, 47–53. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Burgess, C.M.; Kerry, J.P.; Tiwari, B.K. Ultrasound-assisted marination: Role of frequencies and treatment time on the quality of sodium-reduced poultry meat. Foods 2019, 8, 473. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, H.; Wang, W.; Zan, L.; Zhu, J. Effect of ultrasound and calcium chloride on the ultrastructure and the warner-bratzler shear force value of beef shank muscle fibers. Food Biophys. 2018, 13, 396–403. [Google Scholar] [CrossRef]
- Jia, S.; Shen, H.; Wang, D.; Liu, S.; Ding, Y.; Zhou, X. Novel NaCl reduction technologies for dry-cured meat products and their mechanisms: A comprehensive review. Food Chem. 2024, 431, 137142. [Google Scholar] [CrossRef]
- Sanches, M.A.R.; Silva, P.M.O.C.; Barretto, T.L.; Darros-Barbosa, R.; da Silva-Barretto, A.C.; Telis-Romero, J. Technological and diffusion properties in the wet salting of beef assisted by ultrasound. LWT 2021, 149, 112036. [Google Scholar] [CrossRef]
- Krasnikova, E.S.; Morgunova, N.L.; Krasnikov, A.V.; Rykhlov, A.S.; Babushkin, V.A.; Sukharev, M.I. Intensification of lamb salting process with low frequency ultrasound. IOP Conf. Ser. Earth Environ. Sci. 2021, 845, 012075. [Google Scholar] [CrossRef]
- Sanches, M.A.R.; Lapinskas, N.M.; Barretto, T.L.; da Silva-Barretto, A.C.; Telis-Romero, J. Improving salt diffusion by ultrasound application during wet salting of pork meat: A mathematical modeling approach. J. Food Process Eng. 2023, 46, e14143. [Google Scholar] [CrossRef]
- Lin, W.L.; Han, Y.X.; Liu, F.F.; Huang, H.; Li, L.H.; Yang, S.L.; Wu, Y.Y. Effect of lipid on surimi gelation properties of the three major Chinese carp. J. Sci. Food Agric. 2020, 100, 4671–4677. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, J.; Xu, X.; Qin, L.; Wu, C.; Du, M. Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion. Food Res. Int. 2019, 121, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yongsawatdigul, J. High-intensity ultrasound improves threadfin bream surimi gelation at low NaCl contents. J. Food Sci. 2021, 86, 842–851. [Google Scholar] [CrossRef]
- Antti, G.; Pentti, P.; Hanna, K. Ultrasonic degradation of aqueous carboxymethylcellulose: Effect of viscosity, molecular mass, and concentration. Ultrason. Sonochem. 2008, 15, 644–648. [Google Scholar] [CrossRef]
- Feng, X.; Ahn, D.U. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products. Radiat. Phys. Chem. 2016, 127, 27–33. [Google Scholar] [CrossRef]
- Cichoski, A.J.; da Silva, J.S.; Leães, Y.S.V.; Robalo, S.S.; Dos Santos, B.A.; Reis, S.R.; Campagnol, P.C.B. Effects of ultrasonic-assisted cooking on the volatile compounds, oxidative stability, and sensory quality of mortadella. Ultrason. Sonochem. 2021, 72, 105443. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, M.; Su, G.; Sun, W. Binding of aroma compounds with myofibrillar proteins modified by a hydroxyl-radical-induced oxidative system. J. Agric. Food Chem. 2014, 62, 9544–9552. [Google Scholar] [CrossRef]
- Kang, D.C.; Wang, A.R.; Zhou, G.H.; Zhang, W.G.; Xu, S.M.; Guo, G.P. Power ultrasonic on mass transport of beef: Effects of ultrasound intensity and NaCl concentration. Innov. Food Sci. Emerg. Technol. 2016, 35, 36–44. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Zhou, Y.; Leng, Y. 63 Effect of ultrasonic-assisted brining on mass transfer of beef. J. Food Process Eng. 2019, 42, e13257. [Google Scholar] [CrossRef]
- Kang, D.C.; Gao, X.Q.; Ge, Q.F.; Zhou, G.H.; Zhang, W.G. Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification. Ultrason. Sonochem. 2017, 38, 317–325. [Google Scholar] [CrossRef]
- Gómez-Salazar, J.A.; Ochoa-Montes, D.A.; Cerón-García, A.; Ozuna, C.; Sosa-Morales, M.E. Effect of acid marination assisted by power ultrasound on the quality of rabbit meat. J. Food Qual. 2018, 2018, 5754930. [Google Scholar] [CrossRef]
- Wang, J.Y.; Yang, Y.L.; Tang, X.Z.; Ni, W.X.; Zhou, L. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein. Ultrason. Sonochem. 2017, 38, 225–233. [Google Scholar] [CrossRef]
- Li, K.; Fu, L.; Zhao, Y.Y.; Xue, S.W.; Wang, P.; Xu, X.L.; Bai, Y.H. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocoll. 2020, 98, 105275. [Google Scholar] [CrossRef]
- Mi, H.; Li, Y.; Wang, C.; Yi, S.; Li, X.; Li, J. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi. Food Hydrocoll. 2021, 112, 106290. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Feng, J.; Liu, Y.; Suo, R.; Jin, J.; Wang, W. Ultrasonic pretreatment improves the gelation properties of low-salt Penaeus vannamei (Litopenaeus vannamei) surimi. Ultrason. Sonochem. 2022, 86, 106031. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, H.; Guo, H.; Zhang, L.; Zhang, X.; Chen, Y. High intensity ultrasound-assisted quality enhancing of the marinated egg: Gel properties and in vitro digestion analysis. Ultrason. Sonochem. 2022, 86, 106036. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, K.; Bai, Y.; Li, B.; Xu, W. Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT 2020, 129, 109563. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Xia, X.; Sun, F.; Kong, B. Effect of ultrasound-assisted immersion thawing on emulsifying and gelling properties of chicken myofibrillar protein. LWT 2021, 142, 111016. [Google Scholar] [CrossRef]
Strategy | Product | Method | Results | References |
---|---|---|---|---|
Salt substitute | Porcine MP | 70% NaCl + 30% KCl 70% NaCl + 20% KCl + 10% other components | The partial replacement of NaCl by KCl combined with other components improves the physicochemical and gel properties of MPs. | [5] |
Dry cured bacon | 45% NaCl + 25% KCl + 20% CaCl2 + 10% MgCl2 30% NaCl + 50% KCl + 15% CaCl2 + 5% MgCl2 | Promoting the hydrolysis of dry-cured lacón and lipids, which, in turn, promotes the production of flavor substances. | [28] | |
Ham | 70% NaCl + 30% KCl 60% NaCl + 40% KCl | The NaCl content of ham can be reduced by 30% and 40%, respectively, while maintaining good sensory acceptance. | [29] | |
Flavor enhancers and masking agents | Salt-reduced ham | 1.25% NaCl + 0.6% Lys 1.25% NaCl + 0.8% Lys | The addition of 0.8% lysine significantly improves the WHC, texture properties, and sensory attributes of ham. | [30] |
Bologna-type sausage | 1% NaCl + 1.5% KCl + 1% arginine + 0.2% histidine | It is feasible to produce bologna sausages with reduced sodium content (approximately 40%) while maintaining overall acceptability and sensory characteristics. | [31] | |
pork sausages | 0.6% lysine + 0.5% KCl 0.6% arginine + 0.5% KCl | The combination of Lys/Arg with potassium chloride in low-salt sausages forms a dense and uniform three-dimensional network, thereby enhancing the water-holding capacity and flavor of the sausages. | [32] | |
Optimize the physical form and spatial distribution of salt | Venison | 4%, 6% or 8% NaCl | Dry-cured venison with lower NaCl content showed higher proteolysis and reduced textural properties. | [7] |
Hollow salt particles | Perilla saponin-based hollow salt particles developed by spray drying (~10 μm) | Improving flavor performance by reducing sodium intake. | [33] | |
Bread | A strategy using uneven spatial distribution of Na | The Na content in bread can be significantly reduced without losing saltiness intensity and without the use of sodium substitutes or taste or aroma additives. | [34] | |
Non-thermal processing technology | Wooden breast meat | 1% NaCl + US 2% NaCl + US | Ultrasound can improve the gel properties of meat and has the potential to produce low-salt gel meat products. | [35] |
Emulsified beef sausage | 1.4% NaCl + 200 MPa HHP | High-pressure treatment at 200 MPa achieves texture and sensory attributes that consumers prefer. | [36] | |
Sea bass | 5% NaCl + PEF 10% NaCl + PEF | PEF pretreatment can effectively shorten the brine curing time and increase the salt absorption to 77% while ensuring its even distribution in the muscle. | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Xu, S.; Fu, C.; Peng, Z. Advances in Research on the Improvement of Low-Salt Meat Product Through Ultrasound Technology: Quality, Myofibrillar Proteins, and Gelation Properties. Molecules 2024, 29, 4926. https://doi.org/10.3390/molecules29204926
Guo X, Xu S, Fu C, Peng Z. Advances in Research on the Improvement of Low-Salt Meat Product Through Ultrasound Technology: Quality, Myofibrillar Proteins, and Gelation Properties. Molecules. 2024; 29(20):4926. https://doi.org/10.3390/molecules29204926
Chicago/Turabian StyleGuo, Xiuyun, Shuangyi Xu, Chao Fu, and Zengqi Peng. 2024. "Advances in Research on the Improvement of Low-Salt Meat Product Through Ultrasound Technology: Quality, Myofibrillar Proteins, and Gelation Properties" Molecules 29, no. 20: 4926. https://doi.org/10.3390/molecules29204926
APA StyleGuo, X., Xu, S., Fu, C., & Peng, Z. (2024). Advances in Research on the Improvement of Low-Salt Meat Product Through Ultrasound Technology: Quality, Myofibrillar Proteins, and Gelation Properties. Molecules, 29(20), 4926. https://doi.org/10.3390/molecules29204926