High Fluorescence of Phytochromes Does Not Require Chromophore Protonation
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Protein Expression and Purification
4.2. Spectroscopy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Daetwyler, S.; Fiolka, R.P. Light-Sheets and Smart Microscopy, an Exciting Future Is Dawning. Commun. Biol. 2023, 6, 502. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.R.; Jarrett, J.W.; Hassan, A.M.; Dunn, A.K. Deep Tissue Imaging with Multiphoton Fluorescence Microscopy. Curr. Opin. Biomed. Eng. 2017, 4, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Karasev, M.M.; Stepanenko, O.V.; Rumyantsev, K.A.; Turoverov, K.K.; Verkhusha, V.V. Near-Infrared Fluorescent Proteins and Their Applications. Biochemistry 2019, 84, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakova, D.M. Near-Infrared and Far-Red Genetically Encoded Indicators of Neuronal Activity. J. Neurosci. Methods 2021, 362, 109314. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, Y.; Wei, R.; Jiang, G.; Yao, C.; Lv, M.; Wu, Y.; Gardner, S.H.; Zhang, F.; Lucero, M.Y.; et al. Stable, Bright, and Long-Fluorescence-Lifetime Dyes for Deep-Near-Infrared Bioimaging. J. Am. Chem. Soc. 2022, 144, 14351–14362. [Google Scholar] [CrossRef]
- Oliinyk, O.S.; Chernov, K.G.; Verkhusha, V.V. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of near-Infrared Fluorescent Probes. Int. J. Mol. Sci. 2017, 18, 1691. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lai, T.; Campbell, R.E. Red Fluorescent Proteins (RFPs) and RFP-Based Biosensors for Neuronal Imaging Applications. Neurophotonics 2015, 2, 031203. [Google Scholar] [CrossRef]
- Schmitt, F.J.; Mehmood, A.S.; Tüting, C.; Phan, H.T.; Reisdorf, J.; Rieder, F.; Ghane Golmohamadi, F.; Verma, R.; Kastritis, P.L.; Laufer, J. Effect of Molecular Dynamics and Internal Water Contact on the Photophysical Properties of Red PH-Sensitive Proteins. Biochemistry 2024, 63, 82–93. [Google Scholar] [CrossRef]
- Fischer, A.J.; Lagarias, J.C. Harnessing Phytochrome’s Glowing Potential. Proc. Natl. Acad. Sci. USA 2004, 101, 17334–17339. [Google Scholar] [CrossRef]
- Wagner, J.R.; Zhang, J.; von Stetten, D.; Günther, M.; Murgida, D.H.; Mroginski, M.A.; Walker, J.M.; Forest, K.T.; Hildebrandt, P.; Vierstra, R.D. Mutational Analysis of Deinococcus Radiodurans Bacteriophytochrome Reveals Key Amino Acids Necessary for the Photochromicity and Proton Exchange Cycle of Phytochromes. J. Biol. Chem. 2008, 283, 12212–12226. [Google Scholar] [CrossRef]
- Toh, K.C.; Stojković, E.A.; Van Stokkum, I.H.M.; Moffat, K.; Kennis, J.T.M. Proton-Transfer and Hydrogen-Bond Interactions Determine Fluorescence Quantum Yield and Photochemical Efficiency of Bacteriophytochrome. Proc. Natl. Acad. Sci. USA 2010, 107, 9170–9175. [Google Scholar] [CrossRef] [PubMed]
- Matlashov, M.E.; Shcherbakova, D.M.; Alvelid, J.; Baloban, M.; Pennacchietti, F.; Shemetov, A.A.; Testa, I.; Verkhusha, V.V. A Set of Monomeric Near-Infrared Fluorescent Proteins for Multicolor Imaging across Scales. Nat. Commun. 2020, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Oliinyk, O.S.; Shemetov, A.A.; Pletnev, S.; Shcherbakova, D.M.; Verkhusha, V.V. Smallest Near-Infrared Fluorescent Protein Evolved from Cyanobacteriochrome as Versatile Tag for Spectral Multiplexing. Nat. Commun. 2019, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Oliinyk, O.S.; Pletnev, S.; Baloban, M.; Verkhusha, V.V. Development of Bright Red-Shifted MiRFP704nano Using Structural Analysis of MiRFPnano Proteins. Protein Sci. 2023, 32, e4709. [Google Scholar] [CrossRef]
- Sineshchekov, V.A. Photobiophysics and Photobiochemistry of the Heterogeneous Phytochrome System. Biochim. Biophys. Acta 1995, 1228, 125–164. [Google Scholar] [CrossRef]
- Liu, F.; Hu, H.; Deng, M.; Xiang, Z.; Guo, Y.; Guan, X.; Li, D.; Hu, Q.; Lei, W.; Peng, H.; et al. A Bright Monomeric Near-Infrared Fluorescent Protein with an Excitation Peak at 633 Nm for Labeling Cellular Protein and Reporting Protein-Protein Interaction. ACS Sens. 2022, 7, 1855–1866. [Google Scholar] [CrossRef]
- Hall, C.; von Grabowiecki, Y.; Pearce, S.P.; Dive, C.; Bagley, S.; Muller, P.A.J. IRFP (near-Infrared Fluorescent Protein) Imaging of Subcutaneous and Deep Tissue Tumours in Mice Highlights Differences between Imaging Platforms. Cancer Cell Int. 2021, 21, 247. [Google Scholar] [CrossRef]
- Yoshihara, S.; Ikeuchi, M. Phototactic Motility in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Photochem. Photobiol. Sci. 2004, 3, 512–518. [Google Scholar] [CrossRef]
- Escherichia, P.; Yoshihara, S.; Shimada, T.; Matsuoka, D.; Zikihara, K.; Kohchi, T. Reconstitution of Blue—Green Reversible Photoconversion of a Cyanobacterial. Biochemistry 2006, 45, 3775–3784. [Google Scholar]
- Rockwell, N.C.; Martin, S.S.; Lagarias, J.C. Red/Green Cyanobacteriochromes: Sensors of Color and Power. Biochemistry 2012, 51, 9667–9677. [Google Scholar] [CrossRef]
- Hirose, Y.; Rockwell, N.C.; Nishiyama, K.; Narikawa, R.; Ukaji, Y.; Inomata, K.; Lagarias, J.C.; Ikeuchi, M. Green/Red Cyanobacteriochromes Regulate Complementary Chromatic Acclimation via a Protochromic Photocycle. Proc. Natl. Acad. Sci. USA 2013, 110, 4974–4979. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Kikukawa, T.; Miyoshi, R.; Kajimoto, K.; Yonekawa, C.; Fujisawa, T.; Unno, M.; Eki, T.; Hirose, Y. Protochromic Absorption Changes in the Two-Cysteine Photocycle of a Blue/Orange Cyanobacteriochrome. J. Biol. Chem. 2019, 294, 18909–18922. [Google Scholar] [CrossRef] [PubMed]
- Osoegawa, S.; Miyoshi, R.; Watanabe, K.; Hirose, Y.; Fujisawa, T.; Ikeuchi, M.; Unno, M. Identification of the Deprotonated Pyrrole Nitrogen of the Bilin-Based Photoreceptor by Raman Spectroscopy with an Advanced Computational Analysis. J. Phys. Chem. B 2019, 123, 3242–3247. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, T.; Narikawa, R.; Kohchi, T.; Katayama, M.; Ikeuchi, M. Cyanobacteriochrome TePixJ of Thermosynechococcus Elongatus Harbors Phycoviolobilin as a Chromophore. Plant Cell Physiol. 2007, 48, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Velazquez Escobar, F.; Utesch, T.; Narikawa, R.; Ikeuchi, M.; Mroginski, M.A.; Gärtner, W.; Hildebrandt, P. Photoconversion Mechanism of the Second GAF Domain of Cyanobacteriochrome AnPixJ and the Cofactor Structure of Its Green-Absorbing State. Biochemistry 2013, 52, 4871–4880. [Google Scholar] [CrossRef]
- Hirose, Y.; Shimada, T.; Narikawa, R.; Katayama, M.; Ikeuchi, M. Cyanobacteriochrome CcaS Is the Green Light Receptor That Induces the Expression of Phycobilisome Linker Protein. Proc. Natl. Acad. Sci. USA 2008, 105, 9528–9533. [Google Scholar] [CrossRef]
- Fushimi, K.; Miyazaki, T.; Kuwasaki, Y.; Nakajima, T.; Yamamoto, T.; Suzuki, K.; Ueda, Y.; Miyake, K.; Takeda, Y.; Choi, J.H.; et al. Rational Conversion of Chromophore Selectivity of Cyanobacteriochromes to Accept Mammalian Intrinsic Biliverdin. Proc. Natl. Acad. Sci. USA 2019, 116, 8301–8309. [Google Scholar] [CrossRef]
- Oliinyk, O.S.; Baloban, M.; Clark, C.L.; Carey, E.; Pletnev, S.; Nimmerjahn, A.; Verkhusha, V.V. Single-Domain near-Infrared Protein Provides a Scaffold for Antigen-Dependent Fluorescent Nanobodies. Nat. Methods 2022, 19, 740–750. [Google Scholar] [CrossRef]
- Oliinyk, O.S.; Ma, C.; Pletnev, S.; Baloban, M.; Taboada, C.; Sheng, H.; Yao, J.; Verkhusha, V.V. Deep-Tissue SWIR Imaging Using Rationally Designed Small Red-Shifted near-Infrared Fluorescent Protein. Nat. Methods 2023, 20, 70–74. [Google Scholar] [CrossRef]
- Filonov, G.S.; Piatkevich, K.D.; Ting, L.M.; Zhang, J.; Kim, K.; Verkhusha, V.V. Bright and Stable Near-Infrared Fluorescent Protein for in Vivo Imaging. Nat. Biotechnol. 2011, 29, 757–761. [Google Scholar] [CrossRef]
- Hildebrandt, P. Vibrational Spectroscopy of Phytochromes. Biomolecules 2023, 13, 1007. [Google Scholar] [CrossRef] [PubMed]
- Velazquez Escobar, F.; Hildebrandt, T.; Utesch, T.; Schmitt, F.J.; Seuffert, I.; Michael, N.; Schulz, C.; Mroginski, M.A.; Friedrich, T.; Hildebrandt, P. Structural Parameters Controlling the Fluorescence Properties of Phytochromes. Biochemistry 2013, 53, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Stojković, E.A.; Ozarowski, W.B.; Kuk, J.; Davydova, E.; Moffat, K. Light Signaling Mechanism of Two Tandem Bacteriophytochromes. Structure 2015, 23, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Kneip, C.; Hildebrandt, P.; Schlamann, W.; Braslavsky, S.E.; Mark, F.; Schaffner, K. Protonation State and Structural Changes of the Tetrapyrrole Chromophore during the Pr → Pfr Phototransformation of Phytochrome: A Resonance Raman Spectroscopic Study. Biochemistry 1999, 38, 15185–15192. [Google Scholar] [CrossRef]
- López, M.F.; Dahl, M.; Escobar, F.V.; Bonomi, H.R.; Kraskov, A.; Michael, N.; Mroginski, M.A.; Scheerer, P.; Hildebrandt, P. Photoinduced Reaction Mechanisms in Prototypical and Bathy Phytochromes. Phys. Chem. Chem. Phys. 2022, 24, 11967–11978. [Google Scholar] [CrossRef]
- Salewski, J.; Escobar, F.V.; Kaminski, S.; Von Stetten, D.; Keidel, A.; Rippers, Y.; Michael, N.; Scheerer, P.; Piwowarski, P.; Bartl, F.; et al. Structure of the Biliverdin Cofactor in the Pfr State of Bathy and Prototypical Phytochromes. J. Biol. Chem. 2013, 288, 16800–16814. [Google Scholar] [CrossRef]
- Strehlow, H.; Wagner, I.; Hildebrandt, P. Chemical Exchange and Raman Line Broadening. the Rate of Protolysis of Nitric Acid. Berichte Der Bunsenges./Phys. Chem. Chem. Phys. 1983, 87, 516–522. [Google Scholar] [CrossRef]
- Taniguchi, M.; Lindsey, J.S. Database of Absorption and Fluorescence Spectra of >300 Common Compounds for Use in PhotochemCAD. Photochem. Photobiol. 2018, 94, 290–327. [Google Scholar] [CrossRef]
- Taniguchi, M.; Lindsey, J.S. Absorption and Fluorescence Spectra of Open-Chain Tetrapyrrole Pigments–Bilirubins, Biliverdins, Phycobilins, and Synthetic Analogues. J. Photochem. Photobiol. C Photochem. Rev. 2023, 55, 100585. [Google Scholar] [CrossRef]
- Braslavsky, S.E.; Holzwarth, A.R.; Lehner, H.; Schaffner, K. The Fluorescence of Biliverdin Dimethyl Ester. Helv. Chim. Acta 1978, 61, 2219–2222. [Google Scholar] [CrossRef]
- Braslavsky, S.E.; Holzwarth, A.R.; Schaffner, K. Solution Conformations, Photophysics, and Photochemistry of Bile Pigments; Bilirubin and Biliverdin, Dimethyl Esters and Related Linear Tetrapyrroles. Angew. Chemie Int. Ed. Engl. 1983, 22, 656–674. [Google Scholar] [CrossRef]
- Mizutani, Y.; Kitagawa, T.; Tokutomi, S.; Aoyagi, K.; Horitsu, K. Resonance Raman Study on Intact Pea Phytochrome and Its Model Compounds: Evidence for Proton Migration during the Phototransformation. Biochemistry 1991, 30, 10693–10700. [Google Scholar] [CrossRef] [PubMed]
- Borucki, B.; von Stetten, D.; Seibeck, S.; Lamparter, T.; Michael, N.; Mroginski, M.A.; Otto, H.; Murgida, D.H.; Heyn, M.P.; Hildebrandt, P. Light-Induced Proton Release of Phytochrome Is Coupled to the Transient Deprotonation of the Tetrapyrrole Chromophore. J. Biol. Chem. 2005, 280, 34358–34364. [Google Scholar] [CrossRef] [PubMed]
- Margulies, L.; Toporowicz, M. Resonance Raman Study of Model Compounds of the Phytochrome Chromophore. 2. Biliverdin Dimethyl Ester. J. Am. Chem. Soc. 1984, 106, 7331–7336. [Google Scholar] [CrossRef]
- Jiang, H.J.; Underwood, T.C.; Bell, J.G.; Ranjan, S.; Sasselov, D.; Whitesides, G.M. Mimicking Lighting-Induced Electrochemistry on the Early Earth. Proc. Natl. Acad. Sci. USA 2017, 120, 2017. [Google Scholar] [CrossRef]
- Nagae, T.; Unno, M.; Koizumi, T.; Miyanoiri, Y.; Fujisawa, T.; Masui, K.; Kamo, T.; Wada, K.; Eki, T.; Ito, Y.; et al. Structural Basis of the Protochromic Green/Red Photocycle of the Chromatic Acclimation Sensor RcaE. Proc. Natl. Acad. Sci. USA 2021, 118, e2024583118. [Google Scholar] [CrossRef]
- Nagae, T.; Fujita, Y.; Tsuchida, T.; Kamo, T.; Seto, R.; Hamada, M.; Aoyama, H.; Sato-Tomita, A.; Fujisawa, T.; Eki, T.; et al. Green/Red Light-Sensing Mechanism in the Chromatic Acclimation Photosensor. Sci. Adv. 2024, 10, eadn8386. [Google Scholar] [CrossRef]
- Raps, S. Differentiation between Phycobiliprotein and Colorless Linker Polypeptides by Fluorescence in the Presence of ZnSO4. Plant Physiol. 1990, 92, 358–362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katz, S.; Phan, H.T.; Rieder, F.; Seifert, F.; Pietzsch, M.; Laufer, J.; Schmitt, F.-J.; Hildebrandt, P. High Fluorescence of Phytochromes Does Not Require Chromophore Protonation. Molecules 2024, 29, 4948. https://doi.org/10.3390/molecules29204948
Katz S, Phan HT, Rieder F, Seifert F, Pietzsch M, Laufer J, Schmitt F-J, Hildebrandt P. High Fluorescence of Phytochromes Does Not Require Chromophore Protonation. Molecules. 2024; 29(20):4948. https://doi.org/10.3390/molecules29204948
Chicago/Turabian StyleKatz, Sagie, Hoang Trong Phan, Fabian Rieder, Franziska Seifert, Markus Pietzsch, Jan Laufer, Franz-Josef Schmitt, and Peter Hildebrandt. 2024. "High Fluorescence of Phytochromes Does Not Require Chromophore Protonation" Molecules 29, no. 20: 4948. https://doi.org/10.3390/molecules29204948
APA StyleKatz, S., Phan, H. T., Rieder, F., Seifert, F., Pietzsch, M., Laufer, J., Schmitt, F. -J., & Hildebrandt, P. (2024). High Fluorescence of Phytochromes Does Not Require Chromophore Protonation. Molecules, 29(20), 4948. https://doi.org/10.3390/molecules29204948