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Abstract: A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using
gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin
antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG–OH was first modified
to obtain four-arm-PEG–succinimidyl glutarate (4-arm-PEG–SG), which formed the gelatin–PEG
composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm

hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid
contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release
properties of the hydrogels were intensively investigated. The results revealed that increasing the
crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling
ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug
release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model,
suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the
concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of
degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method
revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility.
This study offers new insights and methodologies for the development of hydrogels as biomedical
composite materials.

Keywords: hydrogel; poly(ethylene glycol); gelatin; degradable; drug release

1. Introduction

In the past few decades, extensive research has been carried out in the design and
preparation of drug delivery systems, such as nanoparticles, micelles, hydrogels, liposomes,
porous frame materials, etc. Compared to conventional drug formulations, these new deliv-
ery materials show various advantages, including high drug loading efficiency, controllable
release rate, and long delivery periods [1,2]. Among them, hydrogels are three-dimensional,
crosslinked polymeric networks that are durable to swelling in water and that maintain
their shape without obvious deformation. The storage of plenty of water endows hydrogels
with good biocompatibility, excellent hydrophilicity, and similar mechanical properties to
human soft tissues [3]. Importantly, hydrogels can be formulated into various physical
forms. As a consequence, hydrogels have been commonly used in clinical practice and
experimental medicine for a large range of applications, such as tissue engineering [4],
regenerative medicine [5], biosensors [6], and adhesion barrier materials [7–10].

Due to their unique physical properties, hydrogels have also attracted much attention
in the field of drug delivery. Their pore structure can be adjusted by controlling the
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density of crosslinks in the matrix, and their chemical properties can easily be tuned by
selecting proper polymers and processing techniques. The rich porosity of hydrogels
allows the loading of targeted drugs into the gel matrix and subsequent drug release
in a controlled manner. By modulating the pore structures and chemical compositions
of the hydrogels, the release kinetics and time can be tailored to meet the therapeutic
requirements. A prolonged therapeutic effect [11], reduced dosing frequency [12], and
improved patient compliance [13–15] have been achieved due to the sustained drug release
capability of hydrogels. Furthermore, stimuli-responsive hydrogels have been developed
by incorporating responsive species into the hydrogel matrix, such as temperature-sensitive
or pH-sensitive polymers and light-responsive moieties. Through external stimuli, the
selective release of drugs can be triggered, which can minimize systemic side effects and
maximize therapeutic efficacy [16–18].

Biocompatibility is a critical criterion for assessing the safety of medical hydrogels.
Excellent biocompatibility means that a substance will not cause significant immune or
tissue rejection reactions, thereby reducing complications and risks during the treatment
process [19,20]. Meanwhile, it would be ideal if the hydrogels could be degraded naturally
or adsorbed by the body after fulfilling their function [21], which is essential for preventing
material removal during secondary surgery and promoting patient recovery. Poly(ethylene
glycol) (PEG), which has excellent water-solubility and biocompatibility, exhibits rapid
clearance from the body [22,23]. However, PEG hydrogels alone generally cannot provide
an ideal environment in clinical practice and experimental medicine. The coupling of
proteins or other biological molecules to PEG can endow it with good biological activity,
rendering PEG surfaces resistant to cell and protein adsorption. These properties enable
PEG-containing hydrogels to be ideal candidates for drug delivery systems. Therefore,
synthetic PEG-containing hydrogels have been developed, and they exhibit advantages
over natural hydrogels, such as the capability for adjustable mechanical properties and
easy control of the scaffold structure and chemical compositions, etc. In this regard, PEG
and multi-arm-PEG derivatives with various active end groups are more frequently used
to prepare PEG-based hybrid hydrogels for medical applications, such as PEG/albumin
hydrogels for loading protein [24,25], PEG/collagen hydrogels for tissue regeneration,
and tissue engineering scaffolds [26,27]. As a natural polypeptide polymer, gelatin not
only offers wide availability and low cost but also possesses a chemically manipulable
structure, which makes it extensively investigated in biomaterials for the design of drug
delivery systems and tissue engineering scaffolds [28–30]. Although PEG-modified gelatin
nanoparticles or microspheres have been developed as long-circulating gene intracellular
delivery systems [31–33], PEG–gelatin medical hydrogels with satisfactory mechanical
properties have scarcely been reported.

The covalent crosslinked gelatin with multi-arm-PEG not only integrates the advan-
tages of both materials but also overcomes their limitations. Crosslinking can enhance the
mechanical properties and stability of the composite, prolonging its functional lifespan
within the body and improving the efficacy and durability of the material in drug delivery
systems. Furthermore, by adjusting the crosslinking degree and solid content, the physico-
chemical properties of the hybrid hydrogels can be regulated to meet specific requirements
for sustainable release in drug delivery systems. In recent years, PEG–gelatin hybrid hydro-
gels have been developed. For instance, an injectable PEG–gelatin hydrogel was designed
from a multifunctional PEG-based hyperbranched polymer and a commercially available
thiolated gelatin. Although the PEG–gelatin hydrogel can be used to encapsulate murine
adipose-derived stem cells (ASCs), sulfides can undergo an S-phosphonate esterification
reaction with proteins, thereby affecting the enzymatic activity and structural stability
of the proteins [34]. To improve the mechanical and cell adhesive properties, a series of
hybrid hydrogels based on PEG and natural polymer gelatin were also prepared, where
PEG dimethacrylate (PEG-dMA) and gelatin methacrylate (GelMA) macromers were first
prepared and underwent photo-crosslinking in water in different ratios [35]. However, the
operation process of this strategy is complex and cannot be scaled up for preparation. Con-
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sequently, the design and preparation of PEG–gelatin hydrogels with good biocompatibility
in a simple and efficient way are of practical significance for medical hydrogels.

This study aimed to covalently crosslink gelatin with PEG to form new composite
hydrogels for controlled drug release. To this end, four-arm-PEG–succinimidyl glutarate (4-
arm-PEG–SG) was first synthesized based on a commercially available 4-arm-PEG–OH and
subsequently crosslinked with gelatin in situ to form gelatin–PEG hydrogels with various
solid contents and crosslinking degrees. The corresponding dried gels were obtained using
a freeze-drying technique. The 4-arm-PEG–SG was characterized using 1H Nuclear Mag-
netic Resonance (1H NMR) and Fourier Transform Infrared (FT–IR) spectroscopy, and the
dried gels were characterized using FT–IR and a Scanning Electron Microscope (SEM). The
effects of the solid content and crosslinking degree on the thermal properties, mechanical
properties, swelling behavior, degradation performance, and drug release characteristics
of the hydrogels were thoroughly investigated. Additionally, the biocompatibility of the
hydrogels was evaluated by testing their cytotoxicity.

2. Materials and Methods
2.1. Chemicals

4-arm-PEG–OH (Mn = 10 kDa) was obtained from Sigma-Aldrich and vacuum-
dehydrated at 70 ◦C for 3 h. Gelatin (cowhide, Mn = 150 kDa,) with –NH2 content
of 5.14 × 10−4 mol g−1 was provided by National Pharmaceutical Chemical Reagent
(Tianjin, China). Glutaric anhydride (GA, 99%), 4-dimethylaminopyridine (DMAP,
95%), N-hydroxysuccinimide (NHS, 95%), triethylamine (TEA, 99%), and 1-ethyl-(3-
dimethylaminopropyl) carbodiimide (EDC, 97%) were purchased from Macklin (Shanghai,
China). CFD (99.5%) was supplied by Shandong Tianming Pharmaceutical Co., Ltd. (Jinan,
China). Fresh rabbit blood was sourced from Success Bio-Tech Co., Ltd. (Jinan, China). All
other reagents were of analytical grade.

2.2. Experimental
2.2.1. Synthesis of 4-arm-PEG–SG

According to the reported method with minor modifications [24], 4-arm-PEG–SG was
synthesized through a two-step esterification process, as shown in Figure 1a,b.

(a) 4-arm-PEG–OH (20.0 g), GA (2.75 g), and TEA (3.5 mL) were dissolved in 150 mL
of toluene and refluxed for 24 h. After cooling the mixture to room temperature,
the toluene was removed under reduced pressure. Deionized water (~100 mL)
was added, and the solution was filtered. The filtrate was extracted with CH2Cl2
(40 × 30 × 30 mL), and the organic layers were dried by anhydrous Na2SO4. After
the dried solution was concentrated to ~30 mL, cold diethyl ether (~200 mL, 0 ◦C) was
poured into the solution under vigorous stirring. The resulting mixture was filtered
to yield a pale-yellow crude product, which was further precipitated twice using the
same method and vacuum-dried at room temperature to obtain 4-arm-PEG–glutarate
acid (4-arm-PEG–GA) as a white powder. The yield was 78.3%.

(b) 4-arm-PEG–GA (15.0 g) and NHS (2.7 g) were dissolved in CH2Cl2 (200 mL) to obtain
a homogenous solution. CH2Cl2 solution of EDC (35 mL, 0.06 g/mL) was then
added dropwise into the solution under stirring. The reaction was performed at
room temperature for 24 h. Subsequently, the mixture was filtered, and the filtrate
was concentrated to ~30 mL. The cold diethyl ether (~250 mL, 0 ◦C) was added
to the system under vigorous stirring to produce the crude product, which then
underwent precipitation twice using the same method. After vacuum drying at
room temperature, 4-arm-PEG–SG, as a white powder, was obtained. The yield was
determined to be 85.9%.
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Figure 1. (a) Synthesis of 4-arm-PEG–SG; (b) preparation of SnNm hydrogel; (c) possible crosslinking
mechanism of hydrogel; and (d) optical image of hydrogel.

2.2.2. Preparation of Gelatin–PEG Crosslinked Hydrogels

The preparation process and crosslinking diagram of the hydrogels are illustrated in
Figure 1b,c, respectively. The solid content of gelatin in the hydrogels was set at 1.5%, and
the group molar ratios of –SG:–NH2 were set at 1:2, 1:1, and 2:1. 4-arm-PEG–SG and gelatin
were dissolved in PBS with pH values of 4.0 and 9.0 at room temperature, respectively. The
solutions were individually loaded into the tubes of a dual-chamber syringe equipped with
a spiral-type nozzle. Subsequently, they were extruded and allowed to stand at ambient
temperature for 5~10 min to form hydrogels (Figure 1d). The hydrogels were named as
SnNm–I, where n:m denotes the molar ratio of –SG:–NH2. The –SG:–NH2 was fixed at
1:1, and hydrogels with solid contents of 2.5% and 3.5% were prepared using the same
method, which were denoted as S1N1–II and S1N1–III, respectively. The hydrogels were
then freeze-dried to obtain the corresponding dried gels, named as DSnNm.

2.3. Testing and Characterization
1H NMR spectra were recorded on an AVANCE II 400 MHz spectrometer (Bruker,

Germany) with CDCl3 as the solvent and TMS as an internal standard. 1H NMR spectra
were acquired using Bruker pulse program with the following settings: flip angle of 90◦;
relaxation delay (d1) = 20 s, size of fid (TD) = 65,536, number of scans (NS) = 64, spectral
width (SW) = 20.0255 ppm, acquisition time (AQ) = 4.0894 s, requested probe temperature
(TE) = 298.0 K. Data acquisition and processing were performed using MestReNova 9.0
(Mestrelab Research, S.L., Santiago de Compostela, Spain). FT–IR spectra were obtained on
an ALPHA II infrared spectrometer (Bruker, Germany) equipped with an ATR accessory
with 4 cm−1 resolution in the 4000 to 400 cm−1 absorbance range. The quantity of the
sample and KBr in the pellets was about 2 mg/200 mg for all the studied samples. Three
recordings were performed for each sample after successive milling. The sectional micro-
morphologies of the lyophilized dry gel were observed by SEM (SU–8010, Hitachi, Japan).
The samples were sputter-coated with gold before observation. The thermal stability and
transition properties of the dry gel were assessed on a 2050 TGA (TGA, New Castle, DE,
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USA) and a 2910 DSC (Thermal, New Castle, DE, USA) with heating rates of 20 ◦C/min
and 10 ◦C/min, respectively. The DSC curves were recorded from the second heating, and
all tests were performed under a nitrogen atmosphere.

Swelling properties: The swelling properties were evaluated by measuring the water
absorption rate of the samples [36]. The hydrogel was cut into a cylindrical shape with
a cross-sectional diameter of 15 mm and a height of 5 mm, and the original weight was
recorded as G0. The sample was immersed in deionized water at 37 ◦C. At specified inter-
vals, the sample was removed and weighed as Gb. The swelling rate (SR) was calculated
using Formula (1).

SR(%) =
Gb − G0

G0
× 100 (1)

Compression properties: The hydrogel sample was fabricated into a cylindrical shape
(diameter: 15 mm; height: 10 mm) and was compressed on a CT3 Texture Analyzer
(Brookfield, Middleboro, MA, USA) equipped with a TA10A probe. The compression rate
and maximum compression strain were set as 0.01 mm/s and 90%, respectively. The test
was performed at room temperature.

Degradability: The degradability of the hydrogels was assessed by measuring their
mass loss rate in a PBS solution (pH 7.4). Samples that had reached swelling equilibrium
were placed in a wet tea bag, and the overall mass was denoted as m0. The tea bags were
subsequently immersed in PBS and incubated at 37 ± 0.1 ◦C. At specified time intervals,
the tea bags were fetched out, left hanging for 3 min, and weighed as mn. The mass loss
rate (MLR) for degradation was calculated according to Formula (2).

MLR(%) =
m0 − mn

m0
× 100 (2)

Drug-release behavior: The sustained drug-release behavior of drug-loaded hydrogels
in PBS (pH 7.4) was investigated using CFD as the model drug. The drug-loaded hydrogels
were prepared by incorporating CFD into the 4-arm-PEG–SG and gelatin solution, followed
by mixing and extruding the mixture through a dual-chamber syringe. The cylindrical drug-
loaded hydrogels (diameter: 15 mm; height: 5 mm) with CFD of ~10 mg were immersed
in PBS (10 mL) and incubated at 37 ◦C. At predetermined time intervals, the supernatant
(1 mL) was withdrawn and diluted to 10 mL with fresh PBS. The absorbance at 205 nm was
measured using UV–visible spectrophotometry. The released drug was calculated based on
a standard curve, and the cumulative released drug was determined using Formula (3).

CRD(%) =
cnvnv10

v1

(
m0 − cn−1×vn−1×v10

v1

) × 100 (3)

where cn and vn are the concentration of CFD and the volume of the solvent in the nth
dilution solution, respectively; v10 is the volume of PBS (10 mL); v1 is the volume of the
supernatant withdrawn (1 mL); and m0 is the total amount of CFD in the hydrogel.

Cell morphology: The cylindrical hydrogels with a diameter of 15 mm and a height of
2 mm were first immersed in 75% ethanol solution for 30 min, then rinsed three times with
PBS after removal and sterilized under UV light for 30 min. The sterilized hydrogels were
placed in a 24-well plate which contained 1.0 mL of culture medium, and cultured mouse
fibroblasts (L929, ~104 cells/well) were introduced. The multi-well plate was subsequently
incubated at 37 ◦C in 5% CO2. After 72 h, the multi-well plate was removed, and the
cell morphology on the hydrogel surface was observed using an inverted fluorescence
microscope (XSP–15C, Shanghai Batuo Instrument, Shanghai, China).
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Cytotoxicity: Cytotoxicity was assessed using the MTT assay, as reported in the
previous literature [37,38]. Typically, sterilized samples were immersed in 2.5 mL of DMEM
medium supplemented with 10% PBS. Following a 24 h extraction period at 37 ± 0.5 ◦C,
the extract was filtered with a 0.22 µm filter, and the filtrate was diluted with 2.5 mL of
fresh medium. A diluted solution (100 µL) was transferred to a 24-well plate containing
L929 cells (~105 cells/well). The cells cultured in pure medium served as the control. After
72 h of incubation at 37 ◦C in 5% CO2, cell viability was determined using the MTT assay.
The optical density (OD) was measured at 570 nm with a 24-well plate reader, and the cell
survival rate (CSR) was calculated according to Formula (4).

CSR(%) =
As − Ab
Ac − Ab

× 100 (4)

where As, Ab, and Ac are the absorbance values of the sample, blank, and control groups,
respectively. CSR ≥ 75% (class 0 or 1) indicated excellent cell compatibility.

Cell live/dead assay: After 72 h of culture as in the method in cytotoxicity, the culture
medium was sucked out, and 250 µL of Calcein AM/PI staining solution was added to
each well. The plate was then incubated in the dark for 30 min at 5% CO2 and 37 ◦C.
The live/dead cells were observed under an inverted fluorescence microscope. Calcein
AM emits green fluorescence (Ex/Em = 494/517 nm) for live cells, while PI emits red
fluorescence (Ex/Em = 535/617 nm) for dead cells.

3. Results and Discussion
3.1. Synthesis of 4-arm-PEG–SG

To achieve fast crosslinking between PEG and gelatin at ambient temperature and
atmospheric pressure, the PEG needs to be modified, and thus the terminal –OH was
activated by a two-step modification. The acylation reaction between 4-arm-PEG–OH and
GA produced the carboxylic-acid-terminal 4-arm-PEG–GA, which then reacted with NHS to
form activated ester, i.e., 4-arm-PEG–SG. The resultant 4-arm-PEG–SG can form hydrogels
in the presence of gelatin. Figure 2 presents the 1H NMR spectra of 4-arm-PEG–OH, 4-arm-
PEG–GA, and 4-arm-PEG–SG. The spectrum of 4-arm-PEG–OH (Figure 2a) exhibited no
impurity peaks, and the distribution and positions of the proton peaks were consistent
with the anticipated structure, indicating a high purity. Based on the ratio of the peak
area of the repeating unit –O–CH2–CH2– (δ 3.42–3.80 ppm) to C–CH2–O (δ 3.38 ppm), the
molecular weight was calculated to be ~10.5 kDa, which was consistent with the theoretical
molecular weight [39]. The esterification of the terminal –OH of 4-arm-PEG–OH resulted
in the formation of 4-arm-PEG–GA. The –CH2– proton peak of the terminal repeating unit
–O–CH2–CH2– appeared at δ 4.22 ppm, and other proton peaks, as indicated in the 1H
NMR spectrum (Figure 2b), were consistent with the expected structure. The absence of
the –COOH proton peak in the spectrum was attributed to active hydrogen exchange with
water in the sample (H2O: δ ~2.69 ppm). The substitution degree of the terminal –OH could
be calculated using the integral area ratio of the peaks. Se:Sd,f:Sa = 1.07:2.03:1.00 ≈ 1:2:1
means a substitution degree of ~100%. The 1H NMR spectrum of 4-arm-PEG–SG is shown
in Figure 2c, and the proton peak positions are denoted in the figure. The degree of terminal
group substitution was calculated from the area ratio of the newly appeared peak (e, f, d,
g) to the –CH2– peak in the core (a). To avoid interference from the water proton peak
(δ 2.5–3.0 ppm), the integral area of peak e was utilized for the accurate calculation. The
total degree of terminal group substitution was found to be Se:Sa = 0.92:1.02 = 90.2%. In
addition, the area ratio of Sg to Se was approximately 2:1, indicating the absence of residual
NHS in the product. No other impurity peaks were observed, suggesting the high purity of
the 4-arm-PEG–SG.
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CDCl3 as solvent.

3.2. Synthesis of Gelatin–PEG Hydrogels

The gelatin–PEG hydrogels were synthesized by the crosslinking of PEG with gelatin
(Figure 1b,c). Hybrid hydrogels can be formulated into various forms, such as cylinders
(Figure 1d). The resultant hydrogels were freeze-dried to obtain the corresponding dried
gels (DSnNm). In order to be more intuitive, the compositions of the hydrogels are listed in
Table 1.

Table 1. The compositions of the hydrogels.

Samples –SG:–NH2 Solid Content (%) State

S1N2–I 1:2 1.5 hydrogels
S1N1–I 1:1 1.5 hydrogels
S2N1–I 2:1 1.5 hydrogels
S1N1–II 1:1 2.5 hydrogels
S1N1–III 1:1 3.5 hydrogels
DSnNm n:m 100 dried gels

The FT–IR spectra of 4-arm-PEG–SG, DSnNm–I, and gelatin are displayed in Figure 3.
The absorption peaks corresponding to the imide (1640 cm−1) and carbonyl groups of
ester groups (~1730 cm−1) [40] in 4-arm-PEG–SG disappeared completely in the spectra
of DSnNm–I, which indicates the successful esterification between the succinimide of the
4-arm-PEG–SG and the –NH2 of the gelatin. The amide I band of the newly formed
amide groups overlapped with the amide I band of the gelatin (~1632 cm−1). In addition,
compared to the gelatin, the amide II band (1537 cm−1) and amide III band (1235 cm−1) had
no significant changes. In the FT–IR spectra of DSnNm–I (Figure 3b–d), the characteristic
peaks of 4-arm-PEG–SG, such as –CH2– (2870 cm−1) and ether C–O–C (1089 cm−1), show
increasing intensity with increasing PEG content, which is in accordance with the expected
result. Meanwhile, the peak intensities of –OH (3304 cm–1) and the amide I, II, and III bands
also increased with the increase in gelatin content. Thus, the FT–IR spectra confirmed the
successful crosslinking between 4-arm-PEG–SG and gelatin.
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3.3. Microscopic Morphology

Figure 4 shows the SEM images of the dry gels. It can be observed that all the DSnNm-I
exhibited a honeycomb-like structure with good interconnectivity [41], and the average pore
size is: DS2N1-I ≈ DS1N2-I > DS1N1-I. The DS1N1-I has the smallest pore, but the most rigid
structure, which could be ascribed to the equivalent crosslinking of 4-arm-PEG–SG and
gelatin (–SG:–NH2 = 1:1). In other words, the crosslinking degree of DSnNm-I is: DS1N1-I >
DS2N1-I ≈ DS1N2-I. The high porosity can enhance the contact area between the dry gel
and water molecules, facilitating water storage within the pores. In addition, the dense pore
wall can help to distribute forces when external pressure is applied, thereby maintaining the
shape of the hydrogel. The hydrogels with high crosslinking degrees generally have dense
three-dimensional network structures and improved mechanical properties [42]. Therefore,
the porous microstructure meant good water absorbency, which was closely related to their
swelling, degradation, and mechanical properties. Consequently, the performance of the
hydrogels could be controlled by regulating their crosslinking degree. Furthermore, the
hydrogels can be regenerated by immersing the dry gels in water.
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3.4. Thermogravimetric Analysis (TGA)

The TGA curves of the DSnNm–I samples (DS1N1–II and –III possess the same chem-
ical composition and similar TGA curves as DS1N1–I) are illustrated in Figure 5, and
characteristic values for the TGA curves are summarized in Table 2. It can be found that
the weight loss of the dry gels was less than 2% at temperatures ~100 ◦C, which was
attributed to the evaporation of the small molecular substances and residual moisture in
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the samples. The temperatures at 5% weight loss (T5%) for gelatin, DS1N2–I, DS2N1–I,
DS1N1–I, and 4-arm-PEG–SG were 193.9, 202.5, 211.9, 220.1, and 296.7 ◦C, respectively,
which demonstrated a gradually increasing trend in thermal stability. This phenomenon
was ascribed to two factors. On the one hand, the crosslinking restricts the movement of
the gelatin molecular chains, which need more energy for thermal decomposition, thereby
resulting in a higher T5%. Therefore, DS1N1–I, with the highest crosslinking degree in the
three gel samples, exhibited the highest T5%. On the other hand, the T5% of 4-arm-PEG–SG
was approximately 300 ◦C. Increasing the content of 4-arm-PEG–SG can enhance the ther-
mal stability of DSnNm–I, resulting in a higher T5% of DS2N1–I than DS1N2–I when their
crosslinking degrees are similar. Pure gelatin exhibited a residual mass (Wr) of ~60% at
the end of the test (600 ◦C), indicating its superior thermal stability [43]. The Wr values for
DS2N1–I, DS1N1–I, and DS1N2–I were 36.5%, 46.8%, and 55.3%, respectively. This tendency
was consistent with increased gelatin content. The thermal weight loss of gelatin can be
divided into two stages, ranging from 200 to 400 ◦C, which are initially decomposing into
polypeptides and amino acids [44], followed by further thermal decomposition of these
pyrolysis products. The thermal weight loss of the DSnNm–I was mainly categorized into
three distinct stages. The slight mass loss at the first stage, with a maximum decomposition
temperature (T1) of ~190 ◦C, was primarily attributed to the release of small molecules
from the samples. The second stage, at T2 of ~270 ◦C, was due to the thermal decompo-
sition of peptide bonds in the gelatin chain and ester bonds in 4-arm-PEG–SG. The third
stage, with T3 at ~420 ◦C, displayed a major mass loss, which was due to the thermal
decomposition of ether bonds in the PEG chain segments [29]. Overall, the incorporation
of the crosslinking agent 4-arm-PEG–SG significantly enhanced the thermal stability of the
gelatin. The T5% values exceeded 200 ◦C, indicating that these materials were suitable for
high-temperature sterilization.
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Table 2. Characteristic values of 4-arm-PEG–SG, DSnNn–I, and gelatin from TGA curves.

Samples T5%/◦C T1/◦C T2/◦C T3/◦C Wr/%

gelatin 193.9 189.3 272.1 – 59.1
DS2N1–I 211.9 192.1 324.0 415.3 36.5
DS1N2–I 202.5 193.9 326.1 418.6 55.3
DS1N1–I 220.1 197.9 329.8 423.0 46.8

4-arm-PEG–SG 296.7 – 303.5 404.4 1.6
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3.5. Differential Scanning Calorimetry (DSC) Analysis

The DSC curves of 4-arm-PEG–SG, DSnNm–I, and gelatin are shown in Figure 6, and
the characteristic values derived from these curves are listed in Table 3. As noted in the
literature [45], no distinct glass transition temperature (Tg) was observed in the curve of the
gelatin. The Tg values for DS1N2–I, DS1N1–I, DS2N1–I, and 4-arm-PEG–SG were measured
to be −10.6, −8.5, −11.2, and −49.6 ◦C, respectively. Crosslinking significantly led to a
substantial reduction in the mobility of the molecular chains, resulting in higher Tg values
for DSnNm–I than for 4-arm-PEG–SG [46]. The slight difference in Tg among the DSnNm–I
samples could be attributed to two primary factors: one is that the high crosslinking degree
produces strong intermolecular forces, which improve Tg value, and the other is that the
high content of PEG, composed of soft segments, can lead to low Tg value, such as in
DS2N1–I. Notably, the Tg values of all the DSnNm–I samples are below room temperature,
indicating that the molecular chains of the hydrogels were in a highly elastic state at the
application temperatures. Additionally, the gelatin exhibited a broad crystallization peak
with a melting temperature (Tm2) of ~80 ◦C, while the Tm1 of 4-arm-PEG–SG was observed
at 41.7 ◦C, indicating that the gelatin and 4-arm-PEG–SG possessed a certain degree of
crystallinity [47]. DSnNm–I displayed a melting endothermic peak with Tm1 at ~43 ◦C,
which corresponded to the crystal melting peak of the PEG segment. The enthalpy (∆H1)
associated with the melting peak was inversely correlated with the crosslinking degree.
The crosslinking restricts the free movement of molecular chains, thereby diminishing their
crystallization capacity. For example, DS1N1–I, with the highest crosslinking degree among
the DSnNm–I samples, demonstrated a crystal melting peak with the lowest enthalpy
change. Another factor that influences the ∆H value is PEG content: high PEG content
contributes to crystallization and results in a large ∆H value. When the crosslinking degree
was the same, DS2N1–I, which contained a higher PEG content, possessed a larger ∆H1
value than DS1N2–I. DSnNm–I presented a broad Tm2 peak at ~80 ◦C, which belonged to
the crystal melting peak of the gelatin component. The corresponding ∆H2 values followed
the same relationship with ∆H1.

Molecules 2024, 29, x FOR PEER REVIEW 10 of 18 
 

 

3.5. Differential Scanning Calorimetry (DSC) Analysis 

The DSC curves of 4-arm-PEG–SG, DSnNm–I, and gelatin are shown in Figure 6, and 

the characteristic values derived from these curves are listed in Table 3. As noted in the 

literature [45], no distinct glass transition temperature (Tg) was observed in the curve of 

the gelatin. The Tg values for DS1N2–I, DS1N1–I, DS2N1–I, and 4-arm-PEG–SG were meas-

ured to be −10.6, −8.5, −11.2, and −49.6 °C, respectively. Crosslinking significantly led to a 

substantial reduction in the mobility of the molecular chains, resulting in higher Tg values 

for DSnNm–I than for 4-arm-PEG–SG [46]. The slight difference in Tg among the DSnNm–I 

samples could be attributed to two primary factors: one is that the high crosslinking de-

gree produces strong intermolecular forces, which improve Tg value, and the other is that 

the high content of PEG, composed of soft segments, can lead to low Tg value, such as in 

DS2N1–I. Notably, the Tg values of all the DSnNm–I samples are below room temperature, 

indicating that the molecular chains of the hydrogels were in a highly elastic state at the 

application temperatures. Additionally, the gelatin exhibited a broad crystallization peak 

with a melting temperature (Tm2) of ~80 °C, while the Tm1 of 4-arm-PEG–SG was observed 

at 41.7 °C, indicating that the gelatin and 4-arm-PEG–SG possessed a certain degree of 

crystallinity [47]. DSnNm–I displayed a melting endothermic peak with Tm1 at ~43 °C, 

which corresponded to the crystal melting peak of the PEG segment. The enthalpy (ΔH1) 

associated with the melting peak was inversely correlated with the crosslinking degree. 

The crosslinking restricts the free movement of molecular chains, thereby diminishing 

their crystallization capacity. For example, DS1N1–I, with the highest crosslinking degree 

among the DSnNm–I samples, demonstrated a crystal melting peak with the lowest en-

thalpy change. Another factor that influences the ΔH value is PEG content: high PEG con-

tent contributes to crystallization and results in a large ΔH value. When the crosslinking 

degree was the same, DS2N1–I, which contained a higher PEG content, possessed a larger 

ΔH1 value than DS1N2–I. DSnNm–I presented a broad Tm2 peak at ~80 °C, which belonged 

to the crystal melting peak of the gelatin component. The corresponding ΔH2 values fol-

lowed the same relationship with ΔH1. 

Temperature (℃)

T
m2

T
m1

T
g

S
2
N

1
-Ⅰ

S
1
N

1
-Ⅰ

S
1
N

2
-Ⅰ

Gelatin

4-arm-PEG-SG

E
n

d
o

−40 0 40 80 120

 

Figure 6. DSC curves of 4-arm-PEG–SG, DSnNn–I, and gelatin. 

  

Figure 6. DSC curves of 4-arm-PEG–SG, DSnNn–I, and gelatin.



Molecules 2024, 29, 4952 11 of 18

Table 3. Characteristic parameters of 4-arm-PEG–SG, DSnNn–I, and gelatin from DSC curves.

Samples Tg (◦C) Tm1 (◦C) Tm2 (◦C) ∆H1 (J/g) ∆H2 (J/g)

4-arm-PEG–SG −49.6 41.7 – 29.07 –
DS1N2–I −10.6 43.6 88.2 18.59 43.57
DS1N1–I −8.5 44.6 90.3 13.80 37.85
DS2N1–I −11.2 42.8 86.8 23.14 50.95
gelatin – – 82.8 – 72.86

3.6. Swelling Performance

The swelling ratios (SRs) of the hydrogels SnNm in deionized water at 37 ◦C over time
are illustrated in Figure 7. The SR of SnNm presented a rapid increase in the initial stage,
followed by a gradual increase. The SnNm–I samples have the same solid content, and their
SR increased rapidly within the first 30 min and subsequently reached swelling equilibrium
at ~80 min. The equilibrium swelling ratios (ESR) for S1N1–I, S1N2–I, and S2N1–I were
30.65%, 31.45%, and 37.95%, respectively. The ESR of the samples tended to decrease with
the increase in crosslinking degree [48]. The ESR of S2N1–I was slightly higher than that of
S1N2–I. This could be due to the increased content of hydrophilic PEG, which enhanced
the hydrophilicity of hydrogels. For the samples that had the same crosslinking degree
(S1N1–I, –II, and –III), the SR exhibited an initial rapid increase and gradually reached
swelling equilibrium at ~120 min. With the increase in solid content (i.e., from S1N1–I
to S1N1–II, and further to S1N1–III), the ESR values presented a significant increasing
trend from 30.65%, to 51.32% and further to 68.54%. A high solid content means more
components of hydrophilic gelatin and PEG, thereby leading to an enhancement in ESR.
Furthermore, the high solid content of hydrogels also contributes to their stability, which
could prevent dissolution before achieving equilibrium swelling. Therefore, the swelling
capacity of the SnNm could be effectively controlled by changing the crosslinking degree
and/or solid content.
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3.7. Compression Performance

An important requirement for the practical application of hydrogels is their ability to
withstand external pressures without failure. Hydrogels with high compression resistance
capacity can extend their application range. The compression stress–strain curves of the
SnNm are displayed in Figure 8a. Gel–I, prepared from 1.5% pure gelatin, serves as a control.
Gel–I exhibited weaker mechanical strength, indicating that the pure gelatin cannot be



Molecules 2024, 29, 4952 12 of 18

applied directly. When the compression deformation (ε) exceeds 20%, the stress–strain
curve of S1N1–I shows a significant difference compared to S2N1–I and S1N2–I, which
required larger stress to achieve the same ε. The maximum compressive strength (σm)
of S1N1–I could reach 25.03 kPa, whereas the σm of S2N1–I and S1N2–I were only 5.89
and 4.46 kPa, respectively. This difference should be attributed to the fact that a denser
three-dimensional network formed under a high crosslinking degree reduces the mobility
of the molecular chains, resulting in requiring more energy to disrupt its structure [49].
S1N2–I and S2N1–I, having similar crosslinking degrees, displayed analogous compression
stress–strain curves and maximum compressive deformation (εm) of ~80%, while the εm
of S1N1–I was only 58.37%. As the solid content increased (S1N1–I~–III), both the σm and
εm values were enhanced greatly. S1N1–II and S1N1–III achieved σm of 33.17 kPa and
40.08 kPa, and εm of 74% and 82%, respectively. The reason is that high solid content could
lead to a decrease in the diameter of the pores and an increase in pore density, as observed
by SEM. Although the mechanical properties of the prepared hydrogels are improved by
the increase in solid content, an excessive solid content can increase the brittleness and
decrease the toughness of the hydrogels. Therefore, an appropriate crosslinking degree and
a solid content of SnNm hydrogels are needed to achieve good compressive performance
and toughness.
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Figure 8. (a) Compressive stress–strain curve of SnNm hydrogels and (b) cyclic compressive stress–

strain curves of S1N1–II. 
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For further investigation of the compression performance, S1N1–II with good com-
prehensive performance was adopted as the representative sample to perform the cyclic
compression tests. The ε was set to 90% of εm, and the cyclic compressive stress–strain
curves are shown in Figure 8b. As expected, the σm gradually decreased with increasing
cycles. However, after five cycles, the S1N1–II exhibited nearly overlapping stress–strain
curves, and the σm remained above 95% of the initial value, indicating superior anti-fatigue
performance compared to the inelastic cellulose hydrogel [50]. This good cyclic compres-
sion performance could be attributed to the amide and hydrogen bonds and the crosslinked
network structure within the hydrogels.

3.8. In Vitro Degradation Performance

Degradability is a crucial requirement for drug-loaded hydrogels. The degradation
performances of the SnNm hydrogels were assessed by measuring their mass loss over
time in PBS (pH 7.4, 37 ◦C), and the degradation curves are shown in Figure 9. After 12 h
of degradation, the mass losses for S1N2–I, S2N1–I, S1N1–I, S1N1–II, and S1N1–III were
recorded as 96.99%, 94.32%, 77.05%, 64.45%, and 53.80%, respectively. This indicated that
S1N2–I and S2N1–I were nearly completely degraded, while S1N1–I, S1N1–II, and S1N1–III
were relatively stable. The degradation rate was primarily affected by the solid content
and crosslinking degree: high crosslinking degree and/or solid content contribute to the
improvement of biostability. S1N1–III, which had the highest crosslinking degree and solid
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content in the samples, required 72 h to achieve 90% mass loss. The results demonstrated
that the prepared hydrogels were degradable, and the complete degradation time could be
controlled between 12 and 72 h by adjusting the crosslinking degree and solid content.

Molecules 2024, 29, x FOR PEER REVIEW 13 of 18 
 

 

relatively stable. The degradation rate was primarily affected by the solid content and 

crosslinking degree: high crosslinking degree and/or solid content contribute to the im-

provement of biostability. S1N1–III, which had the highest crosslinking degree and solid 

content in the samples, required 72 h to achieve 90% mass loss. The results demonstrated 

that the prepared hydrogels were degradable, and the complete degradation time could 

be controlled between 12 and 72 h by adjusting the crosslinking degree and solid content. 

0 12 24 36 48 60 72
0

20

40

60

80

100

M
a

ss
 l

o
ss

 (
%

)

Time (h)

 S1N1-Ⅲ

 S1N1-Ⅱ

 S1N1-Ⅰ

 S2N1-Ⅰ

 S1N2-Ⅰ

 

Figure 9. Mass loss curves of SnNm hydrogels against the degradation time in PBS (pH 7.4) at 37 

°C. 

3.9. Drug Release Performance 

Cefazedone sodium (CFD), a first-generation cephalosporin antibiotic, possesses 

strong antimicrobial activity against various Gram-positive bacteria [51]. It remains 

widely used for treating bacteria-caused systemic infections and prophylaxis before sur-

gical procedures. Figure 10 illustrates the CFD release profiles of SnNm hydrogels in PBS 

(pH 7.4) at 37 °C. It was found that all the hydrogels exhibited similar drug-release profiles, 

which could be divided into two distinct stages: initial burst release and subsequent sus-

tained release. A high drug release rate was displayed in the initial release stage, which 

was due to the release of the drug located within the outer surface of the hydrogels. With 

the swelling of the hydrogels, the diffusion of the drugs in the superficial layer of the hy-

drogels accelerated the release rate. Subsequently, the drug release rate decreased gradu-

ally, until the hydrogels were largely degraded and ~90% of the drug was released. In this 

stage, the drug release rate was mainly controlled by the degradation rate. The S1N2–I and 

S2N1–I samples exhibited similar release profiles, with 80% of the drug released within 8 

h and complete drug release (~90%) after 24 h. In contrast, the sustained release duration 

for S1N1–I, S1N1–II, and S1N1–III was prolonged: they released 70–80% of the drug after 24 

h, subsequently entering the sustained release phase, with 90% CFD being released after 

40, 48, and 72 h, respectively. The increase in crosslinking degree and solid content in 

hydrogels could extend their drug release time, and the drug-release profiles were con-

sistent with their degradation curves. Santi groups also found a similar phenomenon of 

degradation-controlled drug release in PEG-based hydrogel [52]. 

  

Figure 9. Mass loss curves of SnNm hydrogels against the degradation time in PBS (pH 7.4) at 37 ◦C.

3.9. Drug Release Performance

Cefazedone sodium (CFD), a first-generation cephalosporin antibiotic, possesses
strong antimicrobial activity against various Gram-positive bacteria [51]. It remains widely
used for treating bacteria-caused systemic infections and prophylaxis before surgical proce-
dures. Figure 10 illustrates the CFD release profiles of SnNm hydrogels in PBS (pH 7.4) at
37 ◦C. It was found that all the hydrogels exhibited similar drug-release profiles, which
could be divided into two distinct stages: initial burst release and subsequent sustained
release. A high drug release rate was displayed in the initial release stage, which was
due to the release of the drug located within the outer surface of the hydrogels. With the
swelling of the hydrogels, the diffusion of the drugs in the superficial layer of the hydrogels
accelerated the release rate. Subsequently, the drug release rate decreased gradually, until
the hydrogels were largely degraded and ~90% of the drug was released. In this stage, the
drug release rate was mainly controlled by the degradation rate. The S1N2–I and S2N1–I
samples exhibited similar release profiles, with 80% of the drug released within 8 h and
complete drug release (~90%) after 24 h. In contrast, the sustained release duration for
S1N1–I, S1N1–II, and S1N1–III was prolonged: they released 70–80% of the drug after 24 h,
subsequently entering the sustained release phase, with 90% CFD being released after
40, 48, and 72 h, respectively. The increase in crosslinking degree and solid content in
hydrogels could extend their drug release time, and the drug-release profiles were con-
sistent with their degradation curves. Santi groups also found a similar phenomenon of
degradation-controlled drug release in PEG-based hydrogel [52].

In order to detect the influence of network parameters (crosslinking degree and
solid content) on the release kinetics of the SnNm hydrogels, the release profiles were
approximated using several mathematical models, including zero-order, first-order, Higuchi
and Ritger–Peppas, to determine the release behavior of CFD from the hydrogels. The data
analysis is described in the supporting information. It can be seen that the CFD release
data showed the best fit to the first-order equations in all the cases (the release parameters
are shown in Figures S1–S5), suggesting that the transport rate of CFD within the matrix of
hydrogels was proportional to the concentration of the drug where it was located. Thereby,
we can see that the network parameters of hydrogels, including crosslinking degree and
solid content, played an important role in the sustained drug release. It seems that a
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high crosslinking degree is a prerequisite for hydrogels for controlled drug release, as the
hydrogels with a low crosslinking degree degrade too quickly. As expected, the release rate
of the hydrogels can be controlled by changing their solid content. From the perspective of
practical application, the mechanical properties, thermal stability, and chemical stability
of hydrogels also need to be considered. Thus, a high crosslinking degree and high solid
content in the gelatin–PEG hydrogels are advantageous for sustained CFD release.
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3.10. Cytocompatibility and Cell Viability

Biocompatibility is also a critical factor for the evaluation and selection of medical
materials. In this section, cytocompatibility was used as a primary method for assessing
biocompatibility. L929 cells and the MTT assay were adopted to evaluate the cytotoxicity
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of the prepared hydrogels. The cell survival rates (CSRs) of SnNm hydrogels after 72 h of
incubation are shown in Figure 11. All the samples exhibited >95% CSR values, meaning
they achieved desirable results in comparison with the control. The high cell viability
should be attributed to the introduction of gelatin, which was a bioderived polypeptide and
possessed excellent biocompatibility [53]. Similar results have been reported in PEG–gelatin
hydrogels based on the thiol-ene click reaction [34]. Based on the standard of ISO 10993-
6:2016 [54], the cytotoxicity was grade 1, which indicated that the prepared hydrogels were
nontoxic and met the requirements of in vivo materials. The morphologies of the cells on
the S1N1–I hydrogel surface were observed, and the micrographs are shown in Figure 12a.
It is evident that most of the cells were in close contact with one another and displayed
spread morphologies, indicating a favorable growth condition [55]. In addition, the cell
viability in the S1N1–I hydrogel extracts was observed using a live/dead assay (Figure 12b).
It was found that a large number of cells remained viable, and almost no dead cells were
observed. Similar results were also observed for other hydrogels, like S2N1–I and S1N2–I
(Figures S6 and S7). These tests indicated that the hydrogels exhibited minimal cytotoxicity
and excellent cytocompatibility.
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4. Conclusions

In summary, a series of novel hybrid gelatin–PEG hydrogels (SnNm) with different
solid contents and crosslinking degrees were prepared through in situ crosslinking between
4-arm-PEG–SG and gelatin. The successful crosslinking of gelatin–PEG hydrogels was
confirmed by 1H NMR and FT–IR spectra. The resultant hydrogels were characterized by
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SEM, TGA, and DSC, and their properties, including thermal stability, mechanical stability,
compressive resistance, and degradation, were investigated. The effects of solid content
and crosslinking degrees on the properties of SnNm hydrogels were intensively detected.
The results indicated that the increase in the crosslinking degree and solid content enhanced
the thermal stability and compressive resistance, and they extended the degradation time
of the hydrogels. The drug release capacity was mainly controlled by the degradation
properties of the hydrogels, and the sustained drug-release time could be modulated by
adjusting the crosslinking degree or solid content. The cytotoxicity of the hydrogels was
evaluated using the MTT assay, and the CSR values exceeding 95% demonstrated excellent
cytocompatibility. This study offers new insights and methodologies for the development
of hydrogels as biomedical materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29204952/s1. Figure S1: The release kinetics of S1N1-III;
Figure S2: The release kinetics of S1N1-II; Figure S3: The release kinetics of S1N1-I. Figure S4: The
release kinetics of S2N1-I; Figure S5: The release kinetics of S1N2-I; Figure S6: Left: Cell morphologies
on S2N1-I hydrogel surface; right: live/dead cells in S2N1-I extracts (37 ◦C, 72 h); Figure S7: Left: Cell
morphologies on S1N2–I hydrogel surface; right: live/dead cells in S1N2–I extracts (37 ◦C, 72 h).
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