Anticoagulant Effect of Snow mountain garlic: In Vitro Evaluation of Aqueous Extract
Abstract
:1. Introduction
2. Results
2.1. Snow mountain garlic
2.2. Effect of the Aqueous Extract and the Lyophilized Aqueous Extract of Snow mountain garlic on the PT and APTT in Plasma
2.3. ED50 of the LE on the Plasma Clotting Times
2.4. Stability of the LE and AE
2.5. Stability of the Boiled LE Sample
2.6. Qualitative Phytochemical Profile of the LE of S. mountain garlic
2.7. Percentage of Protein and Carbohydrate of the AE and LE of Snow mountain garlic
2.8. Identification of Polyphenols by Thin-Layer Chromatography (TLC)
2.9. HPLC-QToF-MS Analysis
2.10. Anticoagulant Effect of the IE-LE of Snow mountain garlic
2.11. The ED50 of the IE-LE of Snow mountain garlic
3. Discussion
4. Materials and Method
4.1. Plant Material
4.2. Chemicals
4.3. Obtaining the Aqueous Extract
4.4. Obtaining the Lyophilized Aqueous Extract
4.5. Determination of the Coagulation Times
4.5.1. Volunteers
4.5.2. Obtaining Blood Samples from Volunteers
4.5.3. Testing the PT and APTT with Control Plasma
4.5.4. Testing the Effect of the AE of Snow mountain garlic on the PT and APTT in Plasma
4.5.5. Testing the Effect of the LE of Snow mountain garlic on the PT and APTT in Plasma
4.6. The LE and AE Stability
4.7. Determination of the Stability of the Boiled LE Sample
4.8. Qualitative Phytochemical Profile of the LE of S. mountain garlic
4.9. Protein and Carbohydrate Quantification of the AE and LE of S. mountain garlic
4.10. Isoflavone Extraction from S. mountain garlic LE
4.11. Testing the Effect of the IE-LE of S. mountain garlic on the PT and APTT in Plasma
4.12. HPLC-QToF-MS Analysis of the IE-LE of S. mountain garlic
4.13. Statistical Analysis and Calculation of the ED50
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klemen, N.D.; Feingold, P.L.; Hashimoto, B.; Wang, M.; Kleyman, S.; Brackett, A.; Gross, C.P.; Pei, K.Y. Mortality risk associated with venous thromboembolism: A systematic review and Bayesian meta-analysis. Lancet Haematol. 2020, 7, e583–e593. [Google Scholar] [CrossRef] [PubMed]
- Gobierno de México; Dirección General de Epidemiologia, Secretaría de Salud. Boletín Epidemiológico. Sistema Nacional de Vigilancia Epidemiológica. Sistema Único de Información. Semana Epidemiológica 2024, 2, 41. Available online: https://www.gob.mx/cms/uploads/attachment/file/883562/Bole_calendario.pdf (accessed on 11 June 2024).
- Di Minno, A.; Frigerio, B.; Spadarella, G.; Ravani, A.; Sansaro, D.; Amato, M.; Kitzmiller, J.P.; Pepi, M.; Tremoli, E.; Baldassarre, D. Old and new oral anticoagulants: Food, herbal medicines, and drug interactions. Revew. Blood Rev. 2017, 31, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Fredenburgh, J.C.; Weitz, J.I. New anticoagulants: Moving beyond the direct oral anticoagulants. J. Thromb. Haemost. 2021, 19, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhao, L.; Gao, N.; Yin, R.; Li, S.; Sun, H.; Zhou, L.; Zhao, G.; Purcell, S.W.; Zhao, J. From multi-target anticoagulants to DOACs, and intrinsic coagulation factor inhibitors. Blood Rev. 2020, 39, 100615. [Google Scholar] [CrossRef]
- Gómez-Outes, A.; Alcubilla, P.; Calvo-Rojas, G.; Terleira-Fernández, A.I.; Suárez-Gea, M.L.; Lecumberri, R.; Vargas-Castrillón, E. Meta-analysis of reversal agents for severe bleeding associated with direct oral anticoagulants. J. Am. Coll. Cardiol. 2021, 77, 2987–3001. [Google Scholar] [CrossRef]
- Bentounes, N.K.; Melicine, S.; Martin, A.C.; Smadja, D.M.; Gendron, N. Development of new anticoagulant in 2023: Prime time for anti-factor XI and XIa inhibitors. J. Med. Vasc. 2023, 48, 69–80. [Google Scholar] [CrossRef]
- Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy, 4th ed.; Swedish Pharmaceutical Press: Stockholm, Sweden, 1999. [Google Scholar]
- Kaur, B.; Kumar, N.; Patel, M.K.; Chopra, K.; Saxena, S. Validation of traditional claims of anti-arthritic efficacy of trans-Himalayan snow mountain garlic (Allium ampeloprasum L.) extract using adjuvant-induced arthritis rat model: A comparative evaluation with normal garlic (Allium sativum L.) and dexamethasone. J. Ethnopharmacol. 2023, 303, 115939. [Google Scholar] [CrossRef]
- Batiha, G.-S.; Beshbishy, A.M.; Adeyemi, O.S.; Nadwa, E.H.; Rashwan, E.M.; Alkazmi, L.M.; Elkelish, A.A.; Igarashi, I. Phytochemical screening and antiprotozoal effects of the methanolic Berberis vulgaris and acetonic Rhus coriaria extracts. Molecules 2020, 25, 550. [Google Scholar] [CrossRef]
- Alcántara-Quintana, L.E.; Arjona-Ruiz, C.; de Loera, D.; Gamboa-León, R.; Terán-Figueroa, Y. In vitro inhibitory and proliferative cellular effects of different extracts of Struthanthus quercicola: A preliminary study. Evid. Based Complement. Altern. Med. 2022, 2022, 9679739. [Google Scholar] [CrossRef]
- Zilani, M.N.H.; Islam, M.A.; Biswas, P.; Anisuzzman, M.; Hossain, H.; Shilpi, J.A.; Hasan, M.N.; Hossain, M.G. Metabolite profiling, anti-inflammatory, analgesic potentials of edible herb Colocasia gigantea and molecular docking study against COX-II enzyme. J. Ethnopharmacol. 2021, 281, 114577. [Google Scholar] [CrossRef] [PubMed]
- Arjona-Ruiz, C.; Juarez-Flores, B.; Gamboa-León, R.; de Loera, D. Antidiabetic Activity and Hepatotoxic Effect of Aqueous Extracts of Struthanthus quercicola. Rev. Bras. Farmacogn. 2022, 32, 472–477. [Google Scholar] [CrossRef]
- Mahajan, R. In vitro and cryopreservation techniques for conservation of Snow Mountain Garlic. Methods Mol. Biol. 2016, 1391, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Jasrotia, R.S.; Mahajan, A.; Sharma, D.; Iquebal, M.A.; Kaul, S.; Dhar, M.K. Transcriptome analysis of Snow Mountain Garlic for unraveling the organosulfur metabolic pathway. Genomics 2020, 112, 99–107. [Google Scholar] [CrossRef]
- Guenaoui, C.; Mang, S.; Figliuolo, G.; Neffati, M. Diversity in Allium ampeloprasum: From small and wild to large and cultivated. Genet. Resour. Crop. Evol. 2013, 60, 97–114. [Google Scholar] [CrossRef]
- Figliuolo, G.; Di Stefano, D. Is single bulb producing garlic Allium sativum or Allium ampeloprasum? Sci. Hortic. 2007, 114, 243–249. [Google Scholar] [CrossRef]
- Terán-Figueroa, Y.; de Loera, D.; Toxqui-Terán, A.; Montero-Morán, G.; Saavedra-Leos, M.Z. Bromatological Analysis and Characterization of Phenolics in Snow Mountain Garlic. Molecules 2022, 27, 3712. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kumar, N.; Chawla, S.; Sharma, D.; Korpole, S.; Sharma, R.; Patel, M.K.; Chopra, K.; Chaurasia, O.P.; Saxena, S. A comparative study of in-vitro and in-silico anti-candidal activity and GC–MS profiles of snow mountain garlic vs. normal garlic. J. Appl. Microbiol. 2022, 133, 1308–1321. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K.; Lowe, G.M. Garlic and cardiovascular disease: A critical review. J. Nutr. 2006, 136, 736s–740s. [Google Scholar] [CrossRef]
- Liu, M.; Wang, G.; Xu, R.; Shen, C.; Ni, H.; Lai, R. Soy isoflavones inhibit both GPIb-IX signaling and αIIbβ3 outside-in signaling via 14-3-3ζ in platelet. Molecules 2021, 26, 4911. [Google Scholar] [CrossRef]
- Waizel-Bucay, J.; Waizel-Haiat, S.; Revilla-Peñaloza, F. Los productos herbolarios, la coagulación sanguínea y la cirugía otorrinolaringológica. An. De Otorrinolaringol. Mex. 2017, 62, 115–142. [Google Scholar]
- Sarao, L.; Kaur, S.; Malik, T.; Ajay Singh, A. Genistein and daidzein. In Nutraceuticals and Health Care; Kour, J., Nayik, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; Chapter 19; pp. 331–341. [Google Scholar] [CrossRef]
- Gottstein, N.; Ewins, B.A.; Eccleston, C.; Hubbard, G.P.; Kavanagh, I.C.; Minihane, A.M.; Weinberg, P.D.; Rimbach, G. Effect of genistein and daidzein on platelet aggregation and monocyte and endothelial function. Br. J. Nutr. 2003, 89, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Canete, N.; Duran Agüero, S. Isoflavonas de soya y evidencias sobre la protección cardiovascular. Nutr. Hosp. 2014, 29, 1271–1282. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- World Health Organization. WHO Strategy on Traditional Medicine 2014–2023. WHO Editions. 2013. Available online: https://iris.who.int/bitstream/handle/10665/95008/9789243506098_spa.pdf (accessed on 24 June 2024).
- Souza, G.A.; Ebaid, G.X.; Seiva, F.R.; Rocha, K.H.; Galhardi, C.M.; Mani, F.; Novelli, E.L. N-acetylcysteine an Allium plant compound improves high-sucrose diet-induced obesity and related effects. Evid. Based Complement. Altern. Med. 2011, 2011, 643269. [Google Scholar] [CrossRef]
- Cavagnaro, P.F.; Camargo, A.; Galmarini, C.R.; Simon, P.W. Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. J. Agric. Food Chem. 2007, 55, 1280–1288. [Google Scholar] [CrossRef]
- Bordia, T.; Mohammed, N.; Thomson, M.; Ali, M. An evaluation of garlic and onion as antithrombotic agents. Prostaglandins Leukot. Essent. Fat. Acids 1996, 54, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Bordia, A.; Sharma, K.D.; Parmar, Y.K.; Verma, S.K. Protective effect of garlic oil on the changes produced by 3 weeks of fatty diet on serum cholesterol, serum triglycerides, fibrinolytic activity, and platelet adhesiveness in man. Indian Heart J. 1982, 34, 86–88. [Google Scholar] [PubMed]
- Manzoor, S.; Ganie, M.A.; Majid, S.; Shabir, I.; Kawa, I.A.; Fatima, Q.; Jeelani, H.; Yousuf, S.D.; Rashid, F. Analysis of intrinsic and extrinsic coagulation pathway factors in OCP treated PCOS women. Indian J. Clin. Biochem. 2021, 36, 278–287. [Google Scholar] [CrossRef]
- Bordia, A. Effect of garlic on human platelet aggregation in vitro. Atherosclerosis 1978, 30, 355–360. [Google Scholar] [CrossRef]
- Musubika, B.; Domínguez, M.; Betancourt, V.; NkwanguI, D. Antihaemostatic effect of the combination of Allium sativum L. ethanol extract and warfarin in Wistar rats. Rev. Cuba. De Plantas Med. 2015, 20, 301–312. [Google Scholar]
- Abbas, H.; Ghorbanoghli, S.; Manouchehri, A.; Hatkehlouei, M. Pharmacological effect of Allium sativum on coagulation, blood pressure, diabetic nephropathy, neurological disorders, spermatogenesis, antibacterial effects. Agric. Food 2019, 4, 386–398. [Google Scholar] [CrossRef]
- Vaijayanthimala, P.; Amutha, K.; Anu, M.; Archana, S.; Bhuvaneswari, S.; Balamurugan, S.; Sangameswaran, B. In vitro anticoagulant activity of Allium sativum plant extract. WJPPS 2017, 6, 1256–1261. [Google Scholar] [CrossRef]
- Hamal, S.; Cherukuri, L.; Birudaraju, D.; Matsumoto, S.; Kinninger, A.; Bhanu, T.; Flores, F.; Shaikh, K.; Roy, S.; Budoff, M. Short-term impact of aged garlic extract on endothelial function in diabetes: A randomized, double-blind, placebo-controlled trial. Exp. Ther. Med. 2019, 19, 1485–1489. [Google Scholar] [CrossRef]
- Narsimha, R.; Srividya, L.; Swamy, T.; Prasad, V. Effect of Allium sativum (Garlic) extract on blood coagulation and fibrinolysis. Adv. Pharmacol. Clin. Trials 2017, 2, 120. [Google Scholar]
- Bordia, A.; Verma, S.; Srivastava, K. Effect of garlic (Allium sativum) on blood lipids, blood sugar, fibrinogen, and fibrinolytic activity in patients with coronary artery disease. Prostaglandins Leukot. Essent. Fat. Acids 1998, 58, 257–263. [Google Scholar] [CrossRef]
- Fukao, H.; Yoshida, K.; Tazawa, Y.; Hada, T. Antithrombotic effects of odorless garlic powder both in vitro and in vivo. J. Biosci. Biotechnol. Biochem. 2007, 71, 84–90. [Google Scholar] [CrossRef]
- Chan, K.-C.; Yin, M.-C.; Chao, W.-J. Effect of diallyl trisulfide-rich garlic oil on blood coagulation and plasma activity of anticoagulation factors in rats. Food Chem. Toxicol. 2007, 45, 502–507. [Google Scholar] [CrossRef]
- Bijak, M.; Saluk, J.; Szelenberger, R.; Nowak, P. Popular naturally occurring antioxidants as potential anticoagulant drugs. Chem. Biol. Interact. 2016, 257, 35–45. [Google Scholar] [CrossRef]
- Lopez, J.J.; El Haouari, M.; Jardin, I.; Alonso, N.; Regodon, S.; Diez-Bello, R.; Redondo, P.C.; Rosado, J.A. Flavonoids and Platelet-Derived Thrombotic Disorders. Curr. Med. Chem. 2019, 26, 7035–7047. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Ouma, S.; Kagia, R.; Kamakia, F. Determination of pharmacological activity of bioactives in Allium sativum using computational analysis [version 1; peer review: 2 approved with reservations]. F1000Research 2023, 12, 151. [Google Scholar] [CrossRef]
- Carrier, E.; Brochu, I.; de Brum-Fernandes, A.J.; D’Orléans-Juste, P. The inducible nitric-oxide synthase modulates endothelin-1-dependent release of prostacyclin and inhibition of platelet aggregation ex vivo in the mouse. Pharmacol. Exp. Ther. 2007, 323, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Ngukuran Jikah, A.; Iruoghene Edo, G. Mechanisms of action by sulphur compounds in Allium sativum. A review. Pharmacol. Res. Mod. Chin. Med. 2023, 9, 100323. [Google Scholar] [CrossRef]
- Briggs, W.H.; Xiao, H.; Parkin, K.; Shen, C.; Goldman, I.L. Differential inhibition of human platelet aggregation by selected Allium thiosulfinates. J. Agric. Food Chem. 2000, 48, 5731–5735. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.J.; Nam, G.S.; Nam, K.S. Daidzein inhibits human platelet activation by downregulating thromboxane A2 production and granule release, regardless of COX-1 activity. Int. J. Mol. Sci. 2023, 24, 11985. [Google Scholar] [CrossRef]
- Applová, L.; Karlíčková, J.; Říha, M.; Filipský, T.; Macáková, K.; Spilková, J.; Mladěnka, P. The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. Phytomedicine 2017, 35, 11–17. [Google Scholar] [CrossRef]
- Lee, B.K.; Jee, H.J.; Jung, Y.S. Aβ1-40-induced platelet adhesion is ameliorated by rosmarinic acid through inhibition of NADPH Oxidase/PKC-δ/Integrin αIIbβ3 signaling. Antioxidants 2021, 10, 1671. [Google Scholar] [CrossRef]
- Sabha, D.; Hiyasat, B.; Grötzinger, K.; Hennig, L.; Schlegel, F.; Mohr, F.W.; Rauwald, H.W.; Dhein, S. Allium ursinum L: Bioassay-guided isolation and identification of a galactolipid and a phytosterol exerting antiaggregatory effects. Pharmacology 2012, 89, 260–269. [Google Scholar] [CrossRef]
- Ceccanti, C.; Rocchetti, G.; Lucini, L.; Giuberti, G.; Landi, M.; Biagiotti, S.; Guidi, L. Comparative phytochemical profile of the elephant garlic (Allium ampeloprasum var. holmense) and the common garlic (Allium sativum) from the Val di Chiana area (Tuscany, Italy) before and after in vitro gastrointestinal digestion. Food Chem. 2021, 338, 128011. [Google Scholar] [CrossRef]
- Genetic Alliance; The New York-Mid-Atlantic Consortium for Genetic and Newborn Screening Services. Understanding Genetics: A Guide for Patients and Medical Professionals in the New York and Mid-Atlantic Region; Genetic Alliance: Washington, DC, USA, 2009; Annex M, Pharmacogenomics and Pharmacogenetics. Available online: https://www.ncbi.nlm.nih.gov/books/NBK132199/ (accessed on 17 June 2024).
- United States of Mexico. Regulations of the General Health Law on Research for Health. Off. J. Fed. 2014, 5–31. Available online: https://www.diputados.gob.mx/LeyesBiblio/regley/Reg_LGS_MIS.pdf (accessed on 18 June 2024).
- World Medical Assembly. Helsinki Declaration. Ethical Principles for Medical Research in Humans. 18. World Medical Assembly. 2023. Available online: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/ (accessed on 18 June 2024).
- United States of Mexico. Ministry of Environment and Natural Resources the Management of Biological Waste Will Be Carried out as Established by the Official Mexican Standard NOM-087-ECOL-SSA1-2002, Environmental Protection-Environmental Health-Biological-Infectious Hazardous Waste-Classification and Management Specifications. Off. J. Fed. 2003, 10–23. Available online: https://www.cndh.org.mx/sites/default/files/doc/Programas/VIH/Leyes%20y%20normas%20y%20reglamentos/Norma%20Oficial%20Mexicana/NOM-087-SEMARNAT-SSA1-2002%20Proteccion%20ambiental-salud.pdf (accessed on 17 June 2024).
- Bruneton, J. Elementos de Fitoquímica y de Farmacognosia; Acriba: Zaragoza, Spain, 1991; p. 594. [Google Scholar]
- Domínguez, X.A. Métodos de Investigación Fitoquímica; Limusa: Ciudad de México, México, 1985; pp. 1–281. [Google Scholar]
- Trease, G.E.; Evans, W.C. Tratado de Farmacognosia; Interamericana: Ciudad de México, México, 1987; p. 844. [Google Scholar]
- Le BaoDuy, N.; Trang, D.T.D.; Trang, N.P.M. Preliminary phytochemical analysis of leaf extracts Ofthuja orientalis (L.) Endl. Int. J. Res. Sci. Mang. 2015, 2, 21–25. [Google Scholar]
- Sánchez Cubides, Y.; Santacruz García, Y.A.C.; Téllez Chacón, N.A.; Villa Jiménez, D.Y.; De Antonio Rincón, M.A.; Mateus Gómez, A.; Corzo Gualdrón, A.M.; Moreno Ospina, A.A.; Cortés Santana, M.; Martínez Cárdenas, L.E.; et al. Fitoquímica De Cinco Especies Del Género Baccharis (B. boyacensis Cuatr, B. lehmannii Klatt, B. macrantha Kunth, B. bogotensis Kunth, B. mutisiana Cuatrec) Endémicas del Altiplano Cundiboyacense. Bachelor Degree Thesis, Universidad Distrital Francisco José de Caldas, Facultad de Ciencias y Educación, Bogotá, Colombia, 2010. Available online: http://hdl.handle.net/11349/910 (accessed on 29 June 2024).
- Clavijo Moreno, N.; Cruz Jaramillo, B. Análisis fitoquímico preliminar de Pachira quinata (Jacq.) W.S. Alverson, Bogotá, Colombia. Boletín Semillas Ambient. Bogotá Colomb. 2017, 11, 30–39. [Google Scholar]
- AOAC (Association of Official Agricultural Chemists). Official Methods of Analysis 954.01, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- United States of Mexico, Ministry of Economy, Undersecretary of Competitiveness and Regulations. General Directorate of Standards. Mexican Standard NMX-F-312-NORMEX-2016, Food-Determination of Reducing Sugars in Foods and Non-Alcoholic Beverages-Test Method. Off. J. Fed. 2017. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5495910&fecha=01/09/2017#gsc.tab=0 (accessed on 19 June 2024).
- Wang, H.; Murphy, P. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location. J. Agric. Food Chem. 1994, 42, 1674–1677. [Google Scholar] [CrossRef]
- Sabha, D. Pharmaceutical and chemical analysis of the components carrying the antiplatelet activity of extracts from Allium ursinum and Allium sativum. Doctoral Thesis, Medical Faculty the University of Leipzig, Leipzig, Germany, 2011. Available online: https://katalog.slub-dresden.de/en/id/0-682964964api (accessed on 29 June 2024).
Metabolite | Reaction | Result |
---|---|---|
Carbohydrates | Molisch reaction | + |
Flavones | Flavone heterosides | + |
Saponins | Foam test | +++ |
Tannins | Condensed tannins: differentiation between hydrolyzable and condensed tannins with iron salts. | + |
Catechin tannins: oxidation of catechin tannins | +++ | |
Cardiotonic heterosides | Baljet reaction, Legal, Raymond | + |
Alkaloids | Wagner, Dragendorff, and Sonnenchein precipitate | ++ |
tR (min) | Compound (Metabolite) | Formula | [M-H]− |
---|---|---|---|
1.76 | Alliin (organosulfur compound) | C6H11NO3S | 176.0387 |
2.17 | Ajoene (organosulfur compound) | C9H14OS3 | 233.0134 |
11.70 | Genistein (isoflavone) | C15H10O4 | 253.0506 |
12.65 | Glycitein (isoflavone) | C16H12O5 | 283.0612 |
12.88 | Rosmarinic acid (polyphenol) | C18H16O8 | 359.0772 |
15.60 | Ethyl methane thiosulfate (organosulfur compound) | C3H8O3S | 123.0121 |
15.64 | Ethyl ethane- thiosulfinates (organosulfur compound) | C4H10O3S | 137.0278 |
16.54 | Daidzein (isoflavone) | C15H10O4 | 253.0506 |
26.22 | β-si-tosterol-3-O-β-D-glucopyranoside (steroid glycoside) | C35H60O6 | 575.4317 |
Kingdom | Plantae |
---|---|
Phylum | Magnoliophyta |
Class | Liliopsida |
Order | Asparagales |
Family | Amaryllidaceae |
Genus | Allium |
Species | Ampeloprasum |
Common name | Snow mountain garlic, Himalayan garlic, Kashmiri garlic |
Voucher | 70,262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark-Montoya, I.; Terán-Figueroa, Y.; de Loera, D.; Gaytán-Hernández, D.; Alegría-Torres, J.A.; Milán-Segovia, R.d.C. Anticoagulant Effect of Snow mountain garlic: In Vitro Evaluation of Aqueous Extract. Molecules 2024, 29, 4958. https://doi.org/10.3390/molecules29204958
Clark-Montoya I, Terán-Figueroa Y, de Loera D, Gaytán-Hernández D, Alegría-Torres JA, Milán-Segovia RdC. Anticoagulant Effect of Snow mountain garlic: In Vitro Evaluation of Aqueous Extract. Molecules. 2024; 29(20):4958. https://doi.org/10.3390/molecules29204958
Chicago/Turabian StyleClark-Montoya, Isabel, Yolanda Terán-Figueroa, Denisse de Loera, Darío Gaytán-Hernández, Jorge Alejandro Alegría-Torres, and Rosa del Carmen Milán-Segovia. 2024. "Anticoagulant Effect of Snow mountain garlic: In Vitro Evaluation of Aqueous Extract" Molecules 29, no. 20: 4958. https://doi.org/10.3390/molecules29204958
APA StyleClark-Montoya, I., Terán-Figueroa, Y., de Loera, D., Gaytán-Hernández, D., Alegría-Torres, J. A., & Milán-Segovia, R. d. C. (2024). Anticoagulant Effect of Snow mountain garlic: In Vitro Evaluation of Aqueous Extract. Molecules, 29(20), 4958. https://doi.org/10.3390/molecules29204958