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Abstract: Proteins are the foundation of life, and designing functional proteins remains a key challenge
in biotechnology. Before the development of AlphaFold2, the focus of design was primarily on
structure-centric approaches such as using the well-known open-source software Rosetta3. Following
the development of AlphaFold2, deep-learning techniques for protein design gained prominence.
This study proposes a new method to generate functional proteins using the diffusion model and
ESM2 protein language model. Diffusion models, which are widely used in image and natural
language generation, are used here for protein design, facilitating the controlled generation of new
sequences. The ESM2 model, trained on the basis of large-scale protein sequence data, provides a
deep understanding of the context of the sequence, thus improving the model’s ability to generate
biologically relevant proteins. In this study, we used the Protein A-like peptide as a model study
object, combined the diffusion model and the ESM2 model to generate new peptide sequences from
minimal input data, and verified their biological activities through experiments such as the BLI
affinity test. In conclusion, we developed a new method for protein design that provides a novel
strategy to meet the challenges of generic protein generation.

Keywords: protein design; diffusion model; ESM2; peptide screening; biological activity

1. Introduction

Proteins are fundamental molecular building blocks essential to all living organisms.
These biomolecules consist of linear sequences of amino acids that fulfill their functions
through complex three-dimensional structures. It is because the structure of a protein
determines its function that scientists have invented nuclear magnetic resonance (NMR)
techniques, X-ray techniques, and Cryo-ET to determine the structure of proteins [1–4].
This laid the foundation for subsequent protein design. In order to make proteins suitable
for specific scientific applications, engineers have employed a range of experimental and
computational strategies aimed at creating different amino acid sequences to achieve
specific structures and functions [5].

The resolution of protein structure lays a solid foundation for subsequent protein
design. However, experimental techniques alone can no longer meet the demand for rapid
design and engineering. Therefore, scientists have gradually turned to computational
methods in combination with experimental data to explore more efficient protein design
strategies. Computational protein design mainly follows two parallel development paths:
design methods based on evolutionary principles and design methods based on artificial
intelligence. The former is motivated by increasingly faster sequencing and homology
detection methods, which have been developed by creating large sequence databases (e.g.,
UniProt [6] and the Protein Data Bank, or PDB [7]) and further building the databases into

Molecules 2024, 29, 4965. https://doi.org/10.3390/molecules29204965 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29204965
https://doi.org/10.3390/molecules29204965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0009-0006-1229-2583
https://orcid.org/0009-0004-9121-4318
https://orcid.org/0009-0005-5517-4483
https://orcid.org/0009-0006-4375-8462
https://doi.org/10.3390/molecules29204965
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29204965?type=check_update&version=1


Molecules 2024, 29, 4965 2 of 12

evolutionarily relevant protein families (e.g., PFAM [8]). With these databases, the next step
is to retrieve homologous sequences from the sequence databases, starting from amino acid
sequences, in order to retrieve homologous sequences and construct multiple sequence
alignment (MSA) [9]. MSA has a variety of evolutionary models including conservatism
reflecting structural and functional constraints, pairwise co-evolution, and higher-order
co-evolution [10]. There are also early models such as position-specific scoring matrices
(PSSMs) that focus only on capturing the amino acid frequencies of a specific site. Rosetta3
is a traditional protein design software based on physical and energetic functions capable
of designing new proteins by calculating the protein structure and energy optimization [11].
The main limitations of this protein design method are high computational cost, wide search
space, energy function limitations, difficulty in designing proteins with new functions,
and insufficient generalization ability to effectively address the design needs of complex
proteins.

In response to the limitations of experimental techniques, computational and artificial
intelligence methods are rapidly emerging in protein design. These models are capable
of predicting proteins’ properties from their sequence, structure, or both to further guide
protein design [12]. Examples include the emergence of Alphafold2, which is capable of
predicting a protein’s structure from its sequence [13], and Alphafold3, which not only
predicts protein structure but also performs protein docking tasks [14]. However, despite
the remarkable progress these technologies have made in protein structure prediction
and interaction understanding, designing or generating proteins on demand still faces
complex challenges. In recent years, a series of important works in David Baker’s lab have
successfully realized generative protein design [5]. For example, proteinMPNN surpassed
Rosetta in terms of sequence recovery rate, multi-strand coupled design, and success rate
of experimental validation, demonstrating its excellence in a wider range of protein design
applications [15]. One of the most significant contributions is the construction of protein
generation models through deep learning.

Early generative models such as variational autoencoders (VAEs) efficiently construct
and infer complex data distributions by learning the latent properties of the input data [16],
which are widely used in the field of unsupervised learning, including protein sequence
design. Hawkins Hooker utilized variational autoencoders (VAEs) trained on nearly
70,000 luciferase-like oxidoreductases to generate functional luxA bacterial luciferase vari-
ants, successfully demonstrating their utility [17]. Both aligned (MSA-VAE) and original
sequence (AR-VAE) models reproduced family-specific amino acid patterns, with MSA-
VAE capturing long-range dependencies associated with 3D structures. Experimentally
validated variants showed that 21 out of 23 variants of MSA-VAE and 18 out of 24 variants
of AR-VAE retained measurable luminescence, confirming the validity of the models in
protein design.

VAE penalizes the model by learning the probability distribution of the data and
minimizing the KL dispersion so that the generated data points are close to the distribution
of real data points. And another generative model, the Generative Adversarial Network
(GAN) [18], learns the probability distribution of the data through an adversarial game
between the generator and the discriminator. ProteinGan is morphed from GAN and also
consists of a generator and a discriminator [19]. ProteinGan learns how a protein can evolve
from a multidimensional amino acid sequence space and creates new sequence variants
with natural physical properties. Using malate dehydrogenase as a model, experiments
show that 24% of the protein is soluble. This shows that ProteinGan can rapidly generate
completely new proteins with functionality. As you can see, scientists have begun to use
generative models in the protein field to generate the proteins they want. Although the
positional entropy of the set of sequences generated by ProteinGan matches the positional
entropy of the initial input fairly well, these sequences have been extended to new structural
domains in CATH classification [20], showing the structural diversity of the results.

Although MSA-VAE and ProteinGan show great potential in protein design, they still
face challenges in handling complex protein structure generation, especially in protein gen-
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eration tasks that require the precise control of protein 3D structures. Therefore, researchers
have developed the diffusion-based RfDiffusion model (denoising diffusion probabilistic
models, DDPM) [21,22]. RfDiffusion combines structure prediction (RoseTTAFold) with
diffusion model generation [23] to design proteins from scratch. This approach allows the
creation of protein structures with complex functional properties. The model excels at a
variety of protein design challenges, including the design of monomers, binders, and sym-
metric oligomers. It also allows for specific scaffolds and unconditional protein generation,
meeting a wide range of research and practical applications in biomedicine and chemistry.

To design proteins more efficiently, it is not enough to generate sequences. We also
need to gain insight into how sequence determines protein structure and function, and
protein language models provide insight into sequence–structure–function associations
by learning from a large amount of known protein data. An example is ESM2, a protein
language model based on the Transformer structure [24–26]. ESM2 utilizes unsupervised
learning to train deep-language models directly on a huge dataset containing 250 million
natural protein sequences, including 8.6 billion amino acids. This approach allows the
model to capture rich, biologically relevant features without the need for labeling data.
The model learns a multi-scale representation of the protein sequence, capturing details of
a wide range of patterns from biochemical properties of amino acids to distal homology.
This comprehensive learning contributes to a deeper understanding of protein functions
and relationships. ESM2 addresses this problem by learning contextual representations,
analogous to how natural language processing models infer word meanings from context.
This analogy has proven useful in understanding complex protein biodata [27,28].

Although the previously mentioned models have successfully enabled sequence-based
and structure-based protein design and generation, they typically rely on large datasets
and often utilize structure-based information such as multiple sequence alignment (MSA)
or RoseTTAFold for protein generation. In this paper, we propose an innovative approach
to optimizing the functional properties of proteins by using fewer protein sequences for
protein generation through diffusion modeling and then parameterizing the generated
proteins in combination with ESM2 modeling. Next, we screen these proteins and validate
their biological activities by laboratory wet experiments. To ensure the validity of our
approach, a specific target Protein A was selected as the prototype of the generated proteins
in this study. With this strategy, we aim to reduce the dependence on large-scale datasets
while improving the accuracy and utility of the generated proteins, bringing new research
ideas and application possibilities to the field of protein engineering.

2. Results

We converted the protein into a picture, and by inputting the picture into the model
for the diffusion process, each time step corresponds to a result of the diffusion process.
Then, we can obtain a new picture, convert the new picture into a new protein sequence,
and successfully obtain a new sequence. Since we used the Protein A protein design as the
basis, the protein picture we input is Protein A, so the generated protein sequences will all
have the same sequence length as Protein A. As for the number of Protein A-like protein
sequences generated each time, it completely depends on the length of the time step we set
in the algorithm, because a new result will be output for each time step.

For a series of protein sequences generated by the diffusion model mimicking Protein
A, we used the AlphaFold2 technique to obtain the tertiary structures of these new protein
sequences and screened a batch of protein sequences based on the characteristic distances,
computed from the protein-embedding vectors obtained using the ESM2 model (The
greater the characteristic distance, the smaller the similarity between the two proteins is
likely to be.); the skeleton distances, predicting the tertiary structure of the proteins using
Alphafold2 and then using the PyMol for calculation (The smaller the distance between the
backbones, the greater the structural similarity between the two proteins.); and solubility,
using the online program made public by NovoPro, an online website for protein solubility
prediction (Solubility is a predicted value that ranges from 0 to 1. A value closer to 1 means a
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higher predicted solubility. Therefore, we used the solubility of Protein A as our benchmark
here.). A batch of protein sequences was screened as shown in the Table 1.

Table 1. Mimicking PA computer-generated protein sequences.

Number Sequence Characteristic Distance Skeleton Distance (Å) Solubility

PA
ADNKFNKEQQNAFYEIL

HLPNLNEEQRNGFIQSLKDDP
SQSANLLAEAKKLNDAQAPK

- - 0.814

Z1
VDNKFNKEQQNAFYEIL

HLPNLTEEQRNAFIQALKDDP
SQSANLLAEAKKLNDAQAPK

0.02584 0.131 0.814

Z2
VDNKFNKEQQNAFYEILHL
PNLTEEQRNAFIQDLKDDP

SQSANLLAEAKKLNDAQAPK
0.02262 0.138 0.864

Z3
VDAKFDKEAQEAFYEIL

HLPDLTEEQRNAFIQDLKDDPSVSKAILAEAKKL
NDAQAPK

0.02832 0.198 0.878

Z4
VDAKFDKEAQEAFYEIL

HLPDLTEEQRNAFIQNLKDDPSVSKAILAEAKKL
NDAQAPK

0.02733 0.197 0.878

Z5
GPLGS

SAEAQQARQEIQNLPNLQSQQLRQQFLQQLQQQ
PQQAQQLLQQAQQLNQQLQPP

0.03998 0.571 0.548

Z6 APDAFDPAARAAEAEIRALPHLRDPALRDA
FLAALRADPAAAAALLAEARALNAALAPR 0.05185 0.596 0.565

Z7
PDPAALAELQNAFYEIL

HLPSATSPALRAAVLAALALPIDEA
LAFFRALRAALAAAAAA

0.04992 7.482 0.565

In addition to this, we used state-of-the-art protein generation models for sequence
generation in the Protein A-like generation stage. These include the ESMIF [29] model
based on the Facebook institute, which is a protein design model based on the ESM protein
language model; the proteinMPNN model from David Baker’s lab, which is a backbone-
based protein design model; and the RfDiffusion model from David Baker’s lab, which is
a structure-based denoising model. Z5 is the sequence generated with the ESMIF model,
Z6 is the sequence generated with proteinMPNN, and Z7 is the sequence generated with
RfDiffusion.

In terms of feature distance, skeleton distance, and solubility compared, the protein
sequences generated by the other three models (Z5–Z7) and the sequences generated by
our current experiment (Z1–Z4) are all very different. The solubilities of Z5–Z7 are all much
lower than the solubility of the original Protein A; from the feature distances and backbone
distances, we can also see that they are very different from the original Protein A; and the
backbone distances of Z7 are very different from Protein A. There is a difference of 7 Å units,
in fact. From the protein structure diagram in Figure 1, we can also see that the structure of
Z7 is far from Protein A (PA), so Z5–Z7 would not be our candidates, and we decided to
send our generated protein sequences (Z1–Z4) to the lab for the next experiments.

The experimental data showed that the binding and dissociation of the Protein A
parental sequence, Protein A-Z1, and mAb1 were almost the same, and the affinity of
Protein A-Z1 was almost the same as that of the Protein A parental sequence, reaching
E-10, which is a great help for the subsequent study. Table 2 displays the test results, and
Supplementary Material Figure S1 plots the kinetic curves for Protein A with Z1–Z4.
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Figure 1. Tertiary structure of Protein A (PA) and the newly generated protein sequences Z1–Z4.
Z5, Z6, and Z7 are from the ESMIF, proteinMPNN, and RfDiffusion models, respectively. Using
AlphaFold2 to predict the tertiary structure of proteins, we display the tertiary structure of the protein
using PyMOL for the resulting PDB files and perform alignment operations.

Table 2. KD values of Protein A and its mutants.

Number KD (M) Kon (1/Ms) Koff (1/s) Full R2

Protein A-parental 2.57 ± 0.15 × 10−10 5.49 × 105 1.41 × 10−4 0.9981

Protein A-Z1 2.58 ± 0.11 × 10−10 1.15 × 106 2.95 × 10−4 0.9916

Protein A-Z2 3.35 ± 0.14 × 10−10 1.15 × 106 3.84 × 10−4 0.9873

Protein A-Z3 1.77 ± 0.30 × 10−9 5.49 × 105 9.71 × 10−4 0.9936

Protein A-Z4 7.31 ± 0.23 × 10−10 5.20 × 105 3.80 × 10−4 0.9966

As can be seen from the data in Table 2 and the kinetic curves in Supplementary
Material Figure S1, the Kd values of Protein A-Z1, Protein A-Z2, and Protein A-Z4 are
in the same order of magnitude as those of Protein A-parental, and all of them reach the
impressive picomolar (pM) level. Among them, Protein A-Z1 was particularly impressive,
with a Kd value of 2.58 × 10−10 M, which is almost comparable to Protein A-parental.
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In contrast, the affinity performance of Protein A-Z3 was inferior, with a Kd value of
1.77 × 10−9 M, which is an order of magnitude different from Protein A-parental and
shows a lower binding capacity. Based on the comparison of these Kd values, Protein
A-Z1 is undoubtedly the closest candidate to Protein A-parental, exhibiting extremely high
affinity and thus being more suitable for subsequent in-depth research and application
development, whereas Protein A-Z3 may require further optimization.

3. Discussion

Johnson et al. have done a lot of basic and pioneering research work in this field; in the
literature [30], they performed three rounds of model optimization, completed 500+ protein
expression and purification experiments of natural and generated sequences, and finally
obtained a filtering standard, which increased the experimental success rate by at least
50%. As for our research, one of the important ideas is to use natural proteins as the target
sequences, which mainly stems from our latest understanding of generative modeling:
the essence of generative modeling is mimicry, the highest level of mimicry is the limit
approximation, and the natural proteins as the target sequences are our limit. Based on
this idea, we found synthetic proteins Z1 and Z2 with similar functions to parental Protein
A among the four selected generative sequences, and their effectiveness can be compared
with Johnson et al.’s experiments.

The protein sequences (Z5–Z7) generated by the other models show the differences
between the sequences generated by our calculations and those generated by this exper-
iment. These models (ESMIF, proteinMPNN, RfDiffusion) have actually achieved good
performance in the field of general protein design, but they may not be able to achieve a
more controllable step-by-step generation for a specific protein sequence simulation. The
RfDiffusion model is also a protein generation model based on protein structure diffusion,
which is different from our diffusion model in this design in that we use a sequence-based
diffusion model, where we convert the sequence into a grayscale map first, and then carry
out the diffusion process for denoising and generating the protein sequence. And because
we use sequence-based design, each time we obtain a new sequence, although the difference
between the original sequence and the new sequence is relatively small, we can still verify
its biological activity through the wet test. However, we cannot be as good as the other
model, which instantly generates the biological activity of the protein sequence, and then
goes to the verification of its biological activity. But our model can guarantee that each
time the result will be more or better bioactivity than the previous sequence (this statement
is similar to the gradient descent in deep learning), and then find the optimal solution.
Finding that optimal protein sequence, we use a similar idea.

Despite the remarkable results achieved in this experiment, we also acknowledge
the limitations of the existing models and methods, which need to be further optimized
and improved. The functions of proteins are closely related to their structures, and their
functions can be inferred from their affinities; therefore, in our subsequent studies, we will
continue to explore how to analyze and design protein sequences more deeply from both
structural and functional dimensions. It is hoped that we can find synthetic sequences with
affinities beyond PA, which will help us to accurately design and predict proteins with
specific functions and structures, and thus, play a greater role in the biomedical field.

4. Materials and Methods
4.1. Diffusion Denoising Probabilistic Model (DDPM)

The DDPM model mainly consists of a forward process, which continuously adds noise
to the original image, and a backward process, which recovers the image by continuously
denoising it.

It should be declared here that Figure 2 illustrates only the process of adding and
denoising the diffusion model from the point of view of image visualization, and the real
protein sequence diffusion model is built on the one-hot image:
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process, that is, from Xt to Xt−1. Xt−1 follows a Gaussian distribution with a mean of µθ(Xt, t)
calculated by a neural network (parameter θ) and a variance of σ2

t I.

The diffusion process takes DDPM in the previous step xt−1 and applies random noise
to get the result of the next step xt, that is, xt =

√
αtxt−1 +

√
1 − αtεt (For the detailed

formula, see Supplementary Material Table S1). This process is equivalent to the process of
obtaining a randomized noise from an ensemble with a mean of

√
αtxt−1, and the variance

is (1 − αt)I of the Gaussian distribution sampled. Eventually, the formula for adding noise
can be obtained:

q(xt|x0) = N
(

xt;
√

αtx0, (1 − αt)I
)

U-Net is used as the model structure, and the Kullback–Leibler (KL) scatter loss
function is used to train the model. The training algorithm is as follows:

In the inverse process, given noisy samples, the image is recovered by predicting the
noise level and denoising. (For the detailed formula, see Supplementary Material Table S2.)
Assuming that the conditional probability distribution for the inverse is also Gaussian and
that the Gaussian distribution actually has only two parameters, mean and variance, the
neural network needs to compute, in effect,

q(xt−1|xt) ∼ N
(

xt−1;µt(xt),σ2
t

)
= N

(
xt−1;

1√
αt

(
xt −

1 − αt√
1 − αt

ϵ

)
,
(1 − αt−1)(1 − αt)

1 − at
I
)

This inverse process cannot be derived directly, so we use a neural network to fit this
distribution. Using an understanding of the inverse process, a model trained with forward
diffusion is used to predict the noise added to the image. Having real and predicted noise
turns this into a supervised machine learning problem.

In the classical diffusion model, the object of processing is usually an image, and
in this experiment, we applied this process to the generation of proteins. When dealing
with protein sequences, it is first necessary to encode the protein sequences uniquely and
thermally in order to be able to represent the protein sequences in a binary image, as shown
in Figure 3.

The diffusion model’s forward process is to train a neural network that is intended to
be used to predict noise. To obtain such a noise-prediction network, we intentionally use
noisy images as inputs and noise as outputs and limit the noise to Gaussian noise, which
ensures perfect mathematical derivation.

In the inverse process of the diffusion model, after adding noise, we use the gray map
of the protein sequence and the time step t as inputs to the U-Net model for noise prediction.
This predicted noise is then used in the denoising process. However, the nonlinearity and
complexity of the neural network prevent the model from completely removing the noise.
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In the final stage of denoising, the model often retains a portion of the noise in the input.
This part of the noise can be regarded as the “modification” of the original protein sequence
to generate a new protein sequence.
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4.2. ESM2 Model

Protein language modeling evolutionary scale modeling, or ESM2, is a model that was
created by the FAIR Institute (Facebook AI Research) to predict the structure and function
of proteins. It is pre-trained for biological sequences like amino acid sequences of peptides
or proteins. The model is based on the Transformer architecture and is unsupervised and
pre-trained on a large-scale database of protein sequences. By learning the evolution law of
protein sequences and the sequence–structure–function relationship, the ESM2 model can
generate its corresponding hidden vectors according to the protein sequences to represent
its structure and function; it can also utilize the hidden vectors to accomplish a variety of
bioinformatics downstream tasks, such as protein structure prediction, protein function
annotation, protein sequence alignment, interaction analysis, etc. The ESM2 truly achieves
the goal of using a deep learning model to learn protein sequences like a natural language,
which is a powerful and universal protein language model that provides unique vision
and new tools for protein science research. In order to better understand the generation
process of ESM2, we retrace the history of generators from the early variational self-coding
VAE [16], to the adversarial generative network GAN [18] in 2014, to the diffusion model
DDPM [21] in 2020.

As shown in Figure 4A, it is a VAE model with a long drum structure in North Korea.
The waist is thinner because the encoder at the bottom compresses and encodes the input
sequences, and the decoder at the top completes the decoding recovery function so that
the output is equal to the input, i.e., reconstruction. The right side of the hourglass shows
a detailed unfolding structure diagram of the structure, which, after being trained and
stabilized on large-scale databases, is generally used with the decoder part as the generator,
the input noise type hidden vector Z, and then through the decoder network to obtain the
generated sequence with specific semantics.

As shown in Figure 4B, for a diamond-shaped structure of the Transformer pre-
training model, the waist is thickened because the encoder at the bottom upscales the input
considering the multi-head attention mechanism, and then reconstructs it by downscaling
the decoder at the top. Please keep in mind that the Transformer model is essentially
an upgraded version of the VAE model, which includes only details such as positional
embedding and self-attention mechanisms compared with the VAE model. The input part
can be with or without a mask, and the output is a sequence without a mask, so that the
pre-trained Transformer model has a prediction function. If we take the encoder alone,
we can obtain the ESM2 model. When the input sequence passes through the encoder
network, we can obtain the important features of that sequence. Especially after the pre-
training of the 250 million protein databases, the ESM2 model obtained already contains the
structural and functional features of the protein after evolution. For detailed parameters of
the ESM2 model, see Supplementary Material Table S3. Supplementary Material Table S3
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lists the number of layers in the ESM2 model and the corresponding parameter sizes and
embedding dimensions. For example, when the protein sequence length is 65 amino acids,
the embedding dimension of ESM2-650M is 1280, and the embedding dimension of ESM2-
3B is 2560. The ESM2 model used in this paper is ESM2_t12_35M_UR50D, with the number
of layers being 12, the parameter size being 35 M, and the embedding dimension being 480.
This embedding representation captures the important protein sequence properties and
also reveals the contextual relationships of the protein sequence.
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Figure 4. Methodology model structure. (A) is the VAE structure, and (B) is the Transformer and
ESM2 structure. (A) This panel demonstrates a variational autoencoder structure where the input
sequence is encoded into a latent space with mean (µ) and standard deviation (σ) parameters, which
are then sampled to generate new sequences via the decoder. (B) The bottom left panel showcases a
sequence-to-sequence model with attention, where an encoder processes a protein sequence, and a
decoder reconstructs the input sequence, leveraging multi-head attention mechanisms to enhance
feature extraction.

In order to assess the characteristic properties of the newly obtained proteins, we input
the generated sequences into the ESM2 model and calculate the characteristic distances
between the two relatives to the target sequence. Of course, it is also possible to use the
AlphaFold2 technique to obtain the backbone distances between the new sequence and the
target sequence, thus ensuring their similarity in terms of physicochemical properties and
structure, which is beneficial for our stemming screening of the synthesized sequence.

4.3. Purification and Expression of Proteins

Affinity assay of Protein A parents and predicted derivatives.
The parental sequence of Protein A and the Protein A-like derivatives obtained from

the virtual prediction screening were repeated in tandem four times. The His tag was added
at the C-terminal end, cloned into pET28a, and the expression plasmid was transformed
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into BL21(DE3) expression bacteria, which were cultured at 220 rpm on a shaking table,
and the OD of the bacterial liquid was reduced to 0.6 by the addition of IPTG (the final
concentration of which was 2 mmol/L) at 37 ◦C. After centrifugation and ultrasonication,
the bacteria were collected and crushed, and the samples were sent to a Ni-NTA column,
eluted by PBS + 500 mM imidazole. The purified proteins were dialyzed into 1 × PBS,
and the purity of SDS-PAGE was more than 95%, so we performed subsequent affinity
experiments using purified protein samples.

4.4. Affinity Determination

The affinity between purified Protein A and its derivatives Z1–Z4 and the human IgG4
monoclonal antibody mAb1 was tested using ForteBio Octet K2. It was specifically purified
Protein A and its derivatives, Z1–Z4, that were fixed with a His sensor (Item No. 18-0038)
at a concentration of 4 µg/mL for 120 s. After letting the sensor settle in PBST for 120 s, it
was put into mAb1 solutions with concentrations of 50 nM, 25 nM, 12.5 nM, and 6.25 nM.
The binding lasted for 120 s, and then the sensor was put back into PBST for 180 s to break
the bond. The sensor was regenerated in glycine solution at pH = 1.7 for the next round of
measurement.

5. Conclusions

In this paper, we first used the diffusion network model to simulate the generation
of protein sequences and then encoded these sequences into hidden vectors using the
ESM2 protein language model to calculate the distances between the protein backbones.
Moreover, we also carried out solubility prediction and tertiary structure prediction of
the screened proteins, which were used as an important basis for the screening. These
steps not only improved our screening efficiency but also verified the effective binding
of the screened proteins to the human IgG4 monoclonal antibody mAb1 by the ForteBio
Octet K2 affinity test. The experimental data showed that these proteins showed striking
similarities to the Protein A parental sequences in terms of key performance indicators
such as affinity, binding rate, and dissociation speed. The traditional screening process
requires people to randomly mutate sequences, and for all mutated sequences, affinity
validation needs to be performed from scratch. However, this work is considered a waste
of a lot of manpower, money, and time costs in the laboratory. If we use our generation
and screening methods, it will greatly increase the efficiency and save manpower, money,
and time costs in the laboratory. Because our experiments do not require a large number of
context-specific protein datasets and are based on the diffusion model, rapid experiments
can be realized, and more desirable protein sequences can be obtained in a short period of
time. This highlights the potential of these proteins in biomedical applications. The success
of this experiment not only confirms the effectiveness of the design and screening strategy
adopted but also provides a solid technical foundation for future protein engineering and
drug development.
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www.mdpi.com/article/10.3390/molecules29204965/s1, Figure S1: Kinetic Association-Dissociation
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of the ESM2 model.
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