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Abstract: Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly
sensitive method for nucleic acid amplification, thus becoming a focal point of research in the
field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-
stranded DNA synthesis mechanism, rapid amplification efficiency, and capability to operate at room
temperature, among other advantages. In addition, strategies and case studies of RPA in combination
with other technologies are detailed to explore the advantages and potential of these integrated
approaches for virus detection. Finally, the development prospect of RPA technology is prospected.

Keywords: isothermal amplification; recombinant polymerase amplification (RPA); multi-technique
combination; virus detection

1. Introduction

In recent years, several viruses have emerged and spread epidemically, including
the avian influenza virus (AIV) [1] in 2013, the Zika virus (ZIKV) [2] in 2015, the Ebola
virus (EBOV) [3] in 2018, the African swine fever virus (ASFV) [4], COVID-19 [5] in 2019,
and the influenza A virus (IAV) [6] in 2023. Although biosecurity measures and the de-
velopment of new vaccines have significantly contributed to the prevention of these viral
infections, they still pose serious threats to human health and animal and food safety,
resulting in substantial losses in the livestock industry. Isothermal amplification technology
has gained significant attention due to its rapidity, simplicity, and elimination of complex
temperature cycling and instrumentation requirements [7]. Notable techniques in this
category include recombinase polymerase amplification (RPA) [8], recombinase-aided am-
plification (RAA) [9], loop-mediated isothermal amplification (LAMP) [10], nucleic acid
sequence-based amplification (NASBA) [11], strand displacement amplification (SDA) [12],
rolling circle amplification (RCA) [13], and helicase-dependent amplification (HDA) [14].
Among these techniques, RPA is highly valued due to its ease of use, rapid speed, and high
sensitivity, enabling quick detection in the field [15]. Recent studies have shown that com-
bining RPA with other technologies enhances its diagnostic performance, resulting in faster,
more sensitive, and more accurate outcomes compared to traditional RPA alone. These
techniques include fluorescence signal detection [16], lateral flow dipsticks (LFD) [17], clus-
tered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)
systems [18], flocculation assays detection [19], electrochemical detection [20], chemilumi-
nescent detection [21], surface-enhanced Raman scattering (SERS) [22], surface-enhanced
infrared absorption spectroscopy (SEIRA) [23], and microfluidic technology [24].

2. Traditional Virus Detection Techniques

Traditional virus detection techniques include virus isolation and identification, poly-
merase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA). However,
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these techniques often present several drawbacks, including cumbersome procedures,
lengthy detection times, and relatively low sensitivity [25].

2.1. Virus Isolation and Identification

Virus isolation and identification involve processing blood, body fluids, feces, tissues,
and organs from infected animals, followed by the expansion and culture of the virus using
methods such as cell culture, animal inoculation, and chicken embryo inoculation [26].
This method is often regarded as the “gold standard” for most virus detection and has
the advantage of accurate detection [27,28]. However, virus isolation and culture typically
require a significant amount of time, must be performed in a sterile environment [29], and
involve complex procedures. Moreover, the stringent requirements for both personnel and
laboratory conditions render this approach unsuitable for rapid pathogen detection and
impractical for detecting large volumes of samples [30].

2.2. Real-Time Fluorescence Quantitative PCR (qPCR)

In 1992, Higuchi et al. [31] combined PCR technology with closed detection methods
to quantitatively analyze the amount of target nucleic acid, thus introducing the concept of
fluorescence quantitative PCR technology. In 1995, the PE Company in the United States
successfully developed TaqMan technology, and in 1996, Applied Biosystems introduced
the first fluorescence quantitative PCR detection system [32]. Real-time fluorescent quan-
titative PCR involves the addition of fluorescent substances to the PCR reaction system,
allowing for the monitoring of the entire PCR process in real-time through fluorescence
signals. This enables the quantitative analysis of unknown starting templates [33]. How-
ever, real-time fluorescent quantitative PCR necessitates specialized thermal cyclers and
reagents, which can be quite costly. Factors such as the presence of homologous and
heterologous DNA backgrounds [34], the specificity of oligonucleotide hybridization [34],
the ratio of TaqMan probes [34], the concentration of SYBR Green I [35], and the length of
PCR products [35] can all contribute to quantitative deviations in real-time fluorescence
quantitative PCR reactions.

2.3. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was introduced in 1971 [36]. In this method, antigens and antibodies are
adsorbed onto the surface of solid-phase carriers, followed by labeling these antigens and
antibodies with enzymes [37]. The results are then determined through the reaction of
the antigens or antibodies on the solid-phase carriers [38]. Despite its widespread use,
ELISA has several disadvantages, including high costs, lengthy detection times [39], a high
probability of cross-reactivity [40], and its unsuitability for rapid on-site detection [41].

3. Isothermal Amplification Techniques

Since the early 1990s, various isothermal nucleic acid amplification techniques have
emerged, with recombinant polymerase amplification (RPA) technology being one of the
fastest-developing techniques in this field. Despite its relatively late introduction, RPA has
experienced rapid adoption and commercialization.

3.1. Recombinase Polymerase Amplification (RPA)

Recombinase polymerase amplification (RPA) is an isothermal amplification technol-
ogy introduced by the British company Twist DX in 2006 [42]. The principle of RPA is
illustrated in Figure 1. As depicted, the reaction system primarily consists of several key
enzymes, including the recombinase (T4 UvsX), single-stranded DNA-binding protein
(T4 Gp32), and strand-displacing DNA polymerase (Bsu) [43]. During the reaction, the
recombinase binds to the oligonucleotide primer, forming a complex of the enzyme and
primer [44]. This complex facilitates the primer’s localization to the homologous target
sequence of the double-stranded DNA template. The single-stranded DNA-binding protein
(T4 Gp32) aids in unstranding the template DNA [42]. Subsequently, the recombinase
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dissociates from the primer, allowing the Bsu polymerase to bind to the 3′ end of the primer
and initiate the synthesis of a new DNA strand [45]. This process is repeated, achieving the
exponential amplification of the target DNA sequence.
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The reaction process of RPA does not require significant temperature changes and can
be conducted at temperatures ranging from 37 to 42 ◦C. This feature offers clear advantages
over other isothermal amplification techniques [46]. Notably, the RPA primer design does
not have specific annealing temperature requirements [47]. Additionally, the reaction time
is short, allowing for detection within 5 to 20 min [48]. The operation is straightforward, and
RPA does not require specialized instruments, making it suitable for instant detection [49].
Furthermore, RPA exhibits some tolerance to mismatches and inhibitors [44]. Multiple
detections can be performed for different pathogens or genes within a single assay [50],
and RPA can be effectively combined with various detection technologies [51]. Overall,
RPA is a promising nucleic acid amplification technology [52].

RPA has clearly demonstrated its advantages and potential in clinical diagnostics.
Ying et al. [53] proposed a novel recombinase polymerase amplification detection method
(RT-RPA), which is designed for the typing detection of two subtypes of human papillo-
mavirus (HPV), 16 and 18. RPA is also widely utilized in the field of food safety. Li et al. [54]
employed RPA technology for the isothermal amplification of the invA gene of Salmonella,
achieving direct quantitative measurement through photocolorimetry. RPA technology
is also well-suited for detecting pathogens in agriculture and livestock. Chen et al. [55]
optimized the RT-RPA detection method for the identification of wheat yellow mosaic
virus and Chinese wheat mosaic virus. Aebischer et al. [56] developed an RPA method
for the simultaneous detection of bovine viral diarrhea virus and Schmallenberg virus.
Additionally, Amer et al. [57] established an RT-RPA method for the detection of bovine
coronavirus. The application of RPA technology to detect viruses is shown in Table 1.



Molecules 2024, 29, 4972 4 of 19

Table 1. The application of RPA technology in the field of pathogen detection.

Pathogenic Agent Detection Method LOD Ref

Porcine circovirus 2 qRPA 100 copies [58]

Porcine parvovirus qRPA
RPA-LFD

300 copies
400 copies [59]

H5N1 avian influenza RT-qRPA 1 copies [60]
White spot syndrome virus qRPA 10 copies [61]

H7N9 avian influenza qRPA 10~100 copies [62]
Dengue virus qRPA 10 copies [63]

Yellow fever virus LF-RPA 21 copies [64]
Plum pox virus LF-RPA 1 fg [65]

Little cherry virus 2 LF-RPA 100 fg [66]
Yam mosaic virus qRPA 14 pg [67]

Infectious hypodermal and
hematopoietic necrosis qRPA 4 copies [68]

However, RPA also has its limitations and challenges. In the process of nucleic acid
extraction and sample addition, repeated sample addition or open-cap shock reaction tubes
are prone to produce aerosol contamination [69]. To address this issue, Arizti-Sanz et al. [70]
integrated the RPA and Cas13 systems into a single reaction tube, allowing reactions to
proceed without opening the tube, thereby minimizing aerosol contamination. Currently,
there is no specialized software available for designing RPA primers, making the primer
and probe design process a significant challenge. To tackle this problem, Higgins et al. [71]
proposed the development of primer design software (PrimedRPA), which automatically
selects RPA primers and probes. This software compares multiple pairs of primers and
probes to identify conserved sequences while filtering out regions that may cross-react with
background organisms, thus addressing the issue of mismatching between primers and probes.
Since RPA amplifies nucleic acids at a single temperature, it cannot avoid binding between
primers through heating cycles, which can lead to the amplification of non-target bands. This
is particularly problematic in scenarios with no-template or low-template concentrations, as it
may reduce reaction efficiency and negatively impact experimental outcomes. To mitigate
this issue, Sharma et al. [72] developed a self-avoiding molecular recognition system (SAMRS)
designed to prevent the formation of primer dimers. Despite these challenges, the unique
advantages of RPA make it highly suitable for field testing in resource-limited environments,
and it is expected to become a powerful tool for on-site diagnostics.

3.2. Other Isothermal Amplification Techniques

Other isothermal amplification technology include RAA, LAMP, NASBA, SDA, RCA,
HDA. And the differences between RPA and other isothermal amplification techniques are
shown in Table 2.

3.2.1. Recombinase-Aided Amplification (RAA)

Recombinase-aided amplification (RAA) is a nucleic acid isothermal amplification
technology developed by Chinese scholars in 2010 [73]. This technique primarily relies on
the action of three proteins: a recombinase, a single-stranded binding protein, and DNA
polymerase [74]. During the RAA process, the recombinase and the single-stranded binding
protein bind to the primer in the presence of ATP, forming a recombinase-single-stranded
binding protein–primer complex. This complex then scans the template DNA strand; when
a complementary sequence is identified, a stable D-loop is formed. Under conditions
of sufficient deoxyribonucleoside triphosphates (dNTPs) and ATP, DNA completes the
extension of the DNA chain at constant temperature and forms a new DNA chain [75].
The entire amplification process typically occurs at 37 ◦C for 15 to 30 min [73], yielding a
significant number of amplified products that increase exponentially. However, designing
primers remains a challenge, as there is currently no dedicated software for RAA primer
and probe design, which limits the widespread application of this technology [76].
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3.2.2. Loop-Mediated Isothermal Amplification (LAMP)

Among isothermal amplification techniques, loop-mediated isothermal amplifica-
tion (LAMP) is one of the most extensively studied methods, originally designed by
Notomi et al. [77]. Four special primers were designed for six regions of the target gene [78],
employing Bst DNA polymerase with chain-displacing activity for efficient amplification
at a constant temperature of 60 to 65 ◦C [78]. The LAMP process includes three stages: tem-
plate synthesis, cyclic amplification, and prolonged recirculation [79]. It is characterized by
its high sensitivity, strong specificity, and ease of product detection [80]. However, LAMP
requires stringent primer design [81], and false positives can occur during operation [82].

3.2.3. Nucleic Acid Sequence-Based Amplification (NASBA)

Nucleic acid sequence-based amplification (NASBA) was first reported by Compton
in 1991 [83]. This technique operates using three enzymes: AMV reverse transcriptase,
ribonucnase H (RNase H), and T7 RNA polymerase [84]. NASBA employs RNA as a
template for reaction with two specific primers, achieving sensitivity down to a single
copy of the target molecule [85,86]. Although NASBA is primarily designed for detecting
RNA sequences, it can also be adapted for DNA detection by introducing two denaturation
steps [87]. However, the complexity of its reaction composition and the requirement for
three enzymes contribute to higher costs [82].

3.2.4. Strand Displacement Amplification (SDA)

Strand displacement amplification (SDA) was first proposed by Walker et al. in 1992
as a method for isothermal DNA amplification through enzymatic reactions [88]. The
SDA process consists of three stages: preparation of a single-stranded DNA template,
generation of a target DNA fragment, and a strand displacement reaction [89]. Under
isothermal conditions, the method can amplify the target sequence by factors of 109 to
1010 in a relatively short amount of time [90]. However, SDA requires costly enzymes and
non-standard nucleotides, and endonuclease recognition sequences are present at both
ends of the amplified products [91].

3.2.5. Rolling Circle Amplification (RCA)

Rolling circle amplification (RCA) was first utilized in the mid-1990s to synthesize
copies of circular nucleic acid molecules, such as plasmids [92]. This technique employs a
circular template along with phi29 DNA polymerase to convert dNTPs into single-stranded
DNA using a short DNA primer [93]. RCA can directly amplify both DNA and RNA [94],
and it can also facilitate signal amplification of the target nucleic acid, achieving sensitivity
down to a single copy of the nucleic acid molecule [95]. While RCA requires nucleic acid
extraction, its steps are complex, involving extensive sample pretreatment and a longer
detection time, which limits its application range [96].

3.2.6. Helicase-Dependent Amplification (HDA)

Helicase-dependent amplification (HDA) is an isothermal amplification technology
introduced by the New England Biolabs (NEB) in 2004 [97]. This process involves the
dissociation of the DNA double-strand by helicase at a constant temperature, followed by
the stabilization of the single-stranded DNA by single-stranded binding protein, which
provides a template for primers [98]. Subsequently, DNA polymerase synthesizes comple-
mentary double strands [99], and this cycle is repeated continuously, resulting in exponen-
tial amplification of the target sequence. The amplification reaction typically takes 75 to
90 min [100] and is conducted at a constant temperature of 60 to 65 ◦C [101]. However,
the reaction system of this method is relatively complex, and method optimization is con-
strained by this system. Most of the reaction process needs to be completed in two steps at
two different temperature conditions, with reaction times typically ranging from 1 to 2 h,
which may limit its usefulness for certain applications [102].
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Table 2. Differences between RPA and other isothermal amplification techniques.

Reaction Reactive
Enzymes LOD Primers Reaction

Temperature
Reaction

Time Template Ref

RPA

recombinase (T4 UvsX),
single-stranded DNA-binding

protein (T4 Gp32),
strand-displacing DNA

polymerase (Bsu)

10 copies/µL 1 pair 37~42 ◦C 5~20 min DNA [15]

RAA recombinase, single-stranded
binding protein, DNA polymerase High 1 pair 37 ◦C 15~30 min DNA [103]

LAMP Bst DNA polymerase 10 copies/µL 2~3 pairs 60~65 ◦C 30~60 min DNA [104]

NASBA
AMV reverse transcriptase,

ribonucnase H (RNase H), T7
RNA polymerase

100 CFU/mL 1 pair 40~55 ◦C 90~120 min DNA/RNA [105]

SDA restriction endonuclease enzymes,
DNA polymerase High 2 pairs 40~55 ◦C 15~20 min DNA [106]

RCA phi29 DNA polymerase High 1 primer or 1 pair 37 ◦C 60 min DNA/RNA [93,95]

HDA helicase, single-stranded binding
protein, DNA polymerase High 1 pair 60~65 ◦C 75~90 min DNA [107]
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4. Combined Application of RPA with Other Techniques
4.1. Real-Time Fluorescent RPA

Real-time fluorescence RPA integrates exonuclease III (exo) and an exonuclease fluo-
rescent probe into the basic RPA reaction system, enabling real-time monitoring of template
amplification [108]. The exo-fluorescent probe is composed of a fluorescence reporter
group, a fluorescence quenching group, and an abasic site (typically a tetrahydrofuran
site) [109]. When the probe binds to the amplified target DNA, exonuclease III cleaves
at the cleavage site, separating the fluorophore from the quenching group. This reaction
generates a fluorescence signal that is proportional to the amount of amplified target DNA,
with fluorescence intensity increasing as amplification progresses [110]. Yang et al. [111] de-
veloped a novel fluorescent probe based on RPA for detecting Orf virus (ORFV). Their assay
demonstrated the capability to detect as low as 102 copies of ORFV DNA per reaction and
exhibited high specificity, showing no cross-reaction with closely related viruses. Further-
more, the results correlated well with quantitative PCR (qPCR) outcomes. Wang et al. [112]
combined RPA with real-time fluorescence detection to establish a method for detecting
porcine parvovirus (PPV), achieving results within 20 min. This method had a detection
limit of 103 copies, found to be 100% consistent with results from real-time fluorescence
quantitative PCR. One significant advantage of the real-time fluorescent RPA process is
that it eliminates the need to open the reaction lid, thereby reducing the risk of aerosol
contamination and false positives [113]. Additionally, fluorophore labeling on the primer
helps prevent false-positive signals caused by primer dimers [114], significantly improving
detection accuracy.

4.2. RPA-LFD

RPA-LFD is an innovative technique that combines the amplification principle of RPA
with the detection capabilities of lateral flow assays. This method incorporates exonuclease
IV (nfo) and a nfo probe into the basic RPA reaction system [115]. The Twist Amp nfo
kit, developed by Twist DX in the UK, is widely utilized in this research area [116]. The
detection principle, illustrated in Figure 2, involves several key components: the 5′ end
of the downstream primer is labeled with biotin, the 5′ end of the probe is labeled with
carboxyfluorescein (FAM), and the 3′ end of the probe is modified with a blocking group (C3-
spacer) [109]. During the RPA-LFD reaction, target nucleotides are specifically amplified
using the FAM-labeled probes and biotin-labeled primers, resulting in the production
of amplification products that carry both labels (FAM and biotin). These amplification
products subsequently diffuse and form a ternary complex with colloidal gold-labeled anti-
FAM antibodies. This complex then binds to the detection line of the LFD, which contains
biotin antibodies, generating a visible red signal. In contrast, probes that are not amplified
by the primers will form a binary complex (lacking biotin) with the colloidal gold-labeled
anti-FAM antibodies, which cannot bind to the biotin antibodies on the detection line [117].

Several studies have utilized RPA-LFD for specific pathogen detection. For instance,
Hou et al. [118] designed RPA primers and probes targeting the conserved UL52 region of
the infectious bovine rhinotracheitis virus (IBRV). This method enables detection at 38 ◦C
within 25 min, achieving a detection limit of five copies per reaction and no cross-reactivity
with other viruses causing gastrointestinal or respiratory infections in cattle. Wu et al. [119]
established an RPA-LFD approach for the detection of Epizootic hemorrhagic disease virus
(EHDV) and the Palyam serogroup viruses (PALV), achieving analytical sensitivities of 7.1
and 6.8 copies/µL, respectively. Yang et al. [120] developed an RPA-LFD method for Orf
virus (ORFV) detection, which can be completed within 25 min, demonstrating a detection
limit of 80 copies per reaction and high specificity without cross-reactivity with the capripox
virus, foot-and-mouth disease virus and peste des petits ruminants virus. Gao et al. [121]
utilized RPA-LFD technology to create a highly sensitive and specific detection method for
Porcine Deltacoronavirus (PDCoV), capable of completing detection within 10 min at 37 ◦C.
This method exhibited a sensitivity that is 10 times greater than traditional PCR, with a
detection limit of 102 copies/µL. Miao et al. [122] detected the African swine fever virus
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(ASFV) using the RPA-LFD approach, attaining a sensitivity of 150 copies in under 10 min
and showcasing high specificity toward ASFV.
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DNA Amplification Kits, Scarborough, NY, USA). (a) Schematic diagram of the Twist Amp® RPA-
LFD probe. (b) Schematic representation of the reaction between the Twist Amp® RPA-LFD probe
and primer.

4.3. RPA-CRISPR/Cas

CRISPR is a defense system that bacteria or archaea developed during evolution.
It was named in 2002 by a team led by Jansen, who also discovered CRISPR-associated
proteins (Cas) that are closely related to CRISPR [123]. Gasiunas et al. [124] demonstrated
the capability of the CRISPR/Cas system to achieve gene editing in bacteria, viruses, and
human cells, significantly increasing interest in this technology. In 2016, a research team led
by Feng Zhang at the Massachusetts Institute of Technology identified that the Cas13 protein
possesses the ability to cut RNA in a nonspecific manner [125], leading to the development
of nucleic acid molecular diagnostic technologies based on the CRISPR/Cas13 system [126].
As a result, the application of the CRISPR/Cas system in molecular detection has expanded
considerably. Currently, Cas9, Cas12a/12b, and Cas13a are the most commonly used
proteins in conjunction with CRISPR [127]. Additionally, Cas13b and Cas14a can also
facilitate nucleic acid detection, although their applications are still relatively limited.
When using the CRISPR/Cas system in isolation, the detection results may be inaccurate
due to off-target effects or misidentification of Cas proteins [128]. However, integrating
the CRISPR/Cas system with amplification technologies can enhance the accuracy of
target gene identification, improve sensitivity and specificity, and reduce the likelihood of
off-target effects.

In 2017, Professor Feng Zhang’s team developed a method known as specific high-
sensitivity enzymatic reporter unlocking (SHERLOCK) for detection purposes. The de-
tection principle, illustrated in Figure 3, involves the exponential amplification of target
nucleic acids via RPA or reverse transcription RPA (RT-RPA), followed by reverse tran-
scription into RNA. Guided by CRISPR RNA (crRNA), the Cas13a protein specifically
identifies the target RNA, which activates the collateral cleavage activity of Cas13a. Di-
nucleotide motifs labeled with fluorescence and quenching groups are cleaved, resulting
in the emission of fluorescence from the reaction system. This emitted fluorescence signal
is captured to enable the detection of target genes [127]. The SHERLOCK methodology
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successfully identified viral particles from Zika virus (ZIKV) and dengue virus (DENV)
at concentrations as low as 2 attomolar (aM), allowing for differentiation between the
two viruses [126]. Ren et al. [129] developed an RPA-CRISPR/Cas13a assay for detect-
ing African swine fever virus (ASFV), demonstrating sensitivity down to a single copy
and superior sensitivity compared to traditional qPCR, with no cross-reactivity to other
swine viruses. Li et al. [130] employed RPA-CRISPR/Cas13a to detect the vp7 gene of
grass carp reovirus (GCRV) type 1, achieving a detection limit of 7.2 × 101 copies/µL.
The detection process can be completed within one hour, and results are consistent with
those of real-time fluorescence quantitative PCR, exhibiting no cross-reactivity with other
common aquatic pathogens. Furthermore, the Doudna research team at the University
of California demonstrated that Cas12a can be effectively combined with RPA for highly
sensitive and specific diagnostic applications [131]. Ma et al. [132] successfully established
a diagnostic platform for Senecavirus A (SVA) using RPA-CRISPR/Cas12a technology,
achieving a minimum detection limit of 10 copies, with results showing 100% agreement
with RT-qPCR data. Wang et al. [133] developed a highly specific detection method utilizing
RPA-CRISPR/Cas12a for three viral pathogens: SARS-CoV-2, influenza A, and influenza
B. This detection method can be completed within one hour, making it faster than many
standard methods, and demonstrates a detection limit of approximately 102 copies/µL,
exhibiting no cross-reactivity with other common respiratory pathogens.
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4.4. RPA Combined with Flocculation Assay Detection

Flocculation assay detection is based on a bridging flocculation phenomenon in colloid
chemistry [134]. The fundamental principle of bridging flocculation involves utilizing long
polymers to cross-link multiple particles, leading to their precipitation from a solution un-
der specific buffering conditions [135], as illustrated in Figure 4. Healy and La Mer initially
observed that long polymers could bind to multiple particles, triggering precipitation [136].
Later, in 1994, researchers discovered that carboxyl polymers could adsorb nucleic acids
when utilized in a polyethylene glycol/sodium chloride (PEG/NaCl) solution [137]. In
this context, magnetic beads can capture RPA products in a PEG/NaCl solution and gather
under magnetic force. Wee et al. [138] were among the first to establish a method that
combines flocculation detection with the RPA reaction, demonstrating its effectiveness.
Flocculation is triggered by the presence of amplicons that are 100 nucleotides or longer.
Specifically, RPA amplicons are incubated with magnetic beads in a low pH-buffered en-
vironment, resulting in a total detection time of just 10 min. When the amplified DNA
fragment is equal to or greater than 100 bp, its binding to the magnetic beads facilitates
cross-linking behavior, inducing flocculation. In contrast, short DNA primer pairs or lim-
ited amounts of DNA templates are insufficient for effective cross-linking with magnetic
beads [139]. Hu et al. [19] combined the RPA reaction with polymer flocculation precipita-
tion to develop a rapid, sensitive, specific, and user-friendly visual detection method for
Staphylococcus aureus, achieving the capability to detect genomic DNA as low as 13 fg.
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Figure 4. RPA in combination with flocculation assay detection. (1) RPA amplification; (2) RPA
product capture by magnetic beads; (3) Magnetic beads adsorption; (4) Flocculation sedimentation.
The RPA amplicons are incubated with magnetic beads in a low-pH buffer. Consequently, the
precipitated RPA amplicons on the surfaces of the magnetic bead cross-link with multiple other
RPA-magnetic bead conjugates, leading to flocculation and precipitating out of the solution, causing
a sharp transition between solution phase and flocculate. In contrast, RPA reactions that lack a target
template or contain non-target templates do not produce long DNA polymer segments.

4.5. RPA Combined with Electrochemical Detection

By integrating RPA with an electroactive medium, this electrochemical method en-
ables accurate detection of DNA in the field using a low-cost, portable electrochemical
analyzer. Tsaloglou et al. [140] successfully employed [Ru(NH3)6]3+ as the electroactive
medium for electrochemical detection of DNA, demonstrating the effective coupling of
electrochemical detection and RPA within the same device. This method achieved the
detection of genomic DNA at concentrations as low as 0.04 ng/µL in each sample. Chen
et al. [141] labeled the upstream primers with electrochemiluminescence reagent (Ru-NHS
ester) and the downstream primers with biotin to facilitate RPA amplification. The ampli-
fied products were then enriched using avidin-magnetic microspheres under a magnetic
field. This system allowed for the detection of human papillomavirus 16 DNA through
paper-based electrochemiluminescence detection technology, achieving a minimum detec-
tion limit of 0.05 copies/µL, which is 16 times more sensitive than real-time fluorescent PCR.
Xia et al. [142] utilized the plasmid, including the hepatitis B virus (HBV) gene fragment, as
a template, labeling the upstream primers with tripyridine ruthenium and the downstream
primers with biotin to yield double-labeled amplicons via RPA. These amplicons were
separated using streptavidin magnetic microspheres, and the tripyridine ruthenium signal
was detected via paper-based electrochemiluminescence (ECL), achieving a detection limit
of 1.2 pg/mL. Kim et al. [143] utilized reaction conditions for RPA near body temperature
to develop a wearable detection device based on a multi-microelectrode array electrochem-
ical biosensor. This device successfully detected the SARS-CoV-2 genome with limits of
0.972 fg/µL for the RdRP gene and 3.925 fg/µL for the N gene within 40 min. Despite these
advancements, the main challenges associated with electrochemical technology include
poor stability and limitations in field applicability. However, the use of microprocessing
and nanoprocessing technologies presents an opportunity to miniaturize electrochemical
biosensors, making them more suitable for field testing [144].

4.6. RPA Combined with Chemiluminescent Detection

The chemiluminescent detection converts chemical energy into the emission of visible
light (luminescence) as the result of an oxidation or hydrolysis reaction [42]. For instance,
the conversion of energy from oxidation between luminol and peroxide is catalyzed by
horseradish peroxidase to give off luminescent signals detected by a charge-coupled device
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(CCD) camera. This principle is shown in Figure 5. Several researchers have successfully
integrated RPA with chemiluminescent detection for applications in microbial detection using
flow microarrays. Kunze et al. [145] employed RPA on a chip to facilitate the simultaneous
amplification and detection of viral and bacterial DNA through flowing chemiluminescence
microarrays. This method enabled the spatial isolation of DNA amplification responses
for two water hygiene-associated viruses (Human adenovirus 41 and Phi X 174) and the
bacterium Enterococcus faecalis, achieving detection limits of 35 GU/µL, 1 GU/µL, and
5 × 103 GU/µL (genomic units), respectively. The sensitivity of this approach was compa-
rable to that of qPCR analysis. Chen et al. [146] developed a rapid detection method for
SARS-CoV-2 that combines RPA with DNA–protein crosslinking chemiluminescence (DPCL),
termed RPADPCL. In this method, the modified product was captured using streptavidin
(SA)-labeled magnetic beads, followed by analysis with a chemiluminescence detector and
a smartphone after the addition of a fluorescent substrate. This setup achieved a detection
limit as low as six copies, highlighting its potential for rapid and sensitive diagnosis.
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4.7. RPA Combined with Surface-Enhanced Raman Scattering (SERS) Detection

SERS relies on two primary mechanisms: electromagnetic enhancement, which in-
volves the local electric field enhancement on metal surfaces, and chemical enhancement,
referring to electron transfer between metals and molecules [147]. SERS has emerged as
a widely utilized technique for inelastic light scattering sensing. When molecules are
adsorbed onto roughened metal surfaces, such as silver or gold nanoparticles (AuNPs),
SERS signals can be amplified by factors of 108 or more, facilitating the detection of even
single molecules [148]. The detection principle is shown in Figure 6. Zhuang et al. [149]
designed a microfluidic paper-based analytical device that integrates RPA with SERS and
CRISPR/Cas12a, achieving a detection limit of approximately 3 to 4 CFU/mL for Salmonella
typhimurium (S. typhi). Lau et al. [150] applied RPA-SERS to detect plant pathogens, suc-
cessfully identifying as few as two copies of B. cinerea DNA. Additionally, Liu et al. [151]
developed a novel SERS-based lateral flow (LF) strip biosensor combined with RPA, en-
abling the simultaneous detection of Salmonella enterica serotype Enteritidis and Listeria
monocytogenes, with detection limits of 27 and 19 CFU/mL, respectively. Koo et al. [152]
utilized isothermal reverse transcriptase polymeric amplification (RT-RPA) to amplify
TMPRSS2-ERG transcripts, which are recurrent biomarkers for prostate cancer (PCa), and
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combined this with SERS for direct detection of the amplicons. This methodology success-
fully detected 103 copies of TMPRSS2-ERG transcripts and has been effectively applied to
clinical PCa urinary samples.
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4.8. RPA Combined with Surface-Enhanced Infrared Absorption Spectroscopy (SEIRA)

SEIRA is an infrared spectroscopy technique that enhances the infrared signal of
target molecules through molecular vibration coupled with surface equivalent excitation
resonance. This enhancement can increase the infrared signal by factors ranging from
103 to 106 [153]. Gold and silver nanomaterials are commonly employed in SEIRA due to
their high stability and favorable dielectric properties [154–157]. Yao et al. [23] utilized the
SEIRA effect of gold nanoparticles to develop an RPA-based infrared spectral biosensor
capable of detecting as few as 2.98 copies/µL of SARS-CoV-2 within 30 min. However, a
notable limitation of this method is the requirement for the purification of RPA products,
which introduces additional steps in the detection process [7].

4.9. RPA Combined with Microfluidic Technology

Due to its rapid reaction time, high sensitivity, and ability to operate under mild
and constant temperature conditions, RPA is particularly well-suited for integration with
microfluidic chips to develop point-of-care testing (POCT) technologies for pathogenic
microorganisms [24]. The microfluidic chip integrates a microfluidic network composed of
a micro-valve, micro-pump, micro-reactor, micro-channel, and other functional units, which
can automatically perform multiple reaction steps such as the pretreatment, enrichment,
reaction, labeling, and detection of test samples. This setup facilitates the closed, automated
testing process of “sample input—result output” and significantly enhances testing effi-
ciency. It also supports high-throughput, parallel and even multipath detection of multiple
targets, greatly improving the overall detection capability [158]. Liu et al. [159] established
a microfluidic-integrated lateral flow recombinase polymerase amplification (MI-LF-RPA)
method that executes isothermal reverse transcription, amplification, labeling, and anti-
body binding of target genes directly on the chip. This method successfully demonstrated
rapid and sensitive detection of SARS-CoV-2, achieving a detection limit of 1 copy/µL.
The performance of the chip was further validated using clinically diagnosed COVID-19
cases, showing a sensitivity of 97% and a specificity of 100%. Additionally, a RPA chip
developed by Tae Seok Seo’s research team at the Korea Institute of Science and Technology
facilitates the simultaneous detection of multiple pathogens from a single sample, success-
fully identifying Salmonella enterica, Escherichia coli, and Vibrio parahaemolyticus [113].
Chen et al. [160] created a dish RPA chip specifically designed for the detection of common
pathogenic microorganisms in urine. This chip can analyze two samples simultaneously,
and each sample can screen for nine targets. It effectively detected Escherichia coli, Proteus
mirabilis, Pseudomonas aeruginosa, and Staphylococcus aureus within 40 min, with a
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detection limit of 102 CFU/mL. The detection limit for Salmonella typhimurium was found to
be 103 CFU/mL. Kim et al. [161] integrated lateral flow strips with the dish chip, enabling
direct interpretation of results by the naked eye. The detection limits for Salmonella in
phosphate-buffered saline (PBS) and dairy products were 101 CFU/mL and 102 CFU/mL,
respectively, with detection achieved in just 30 min.

5. Conclusions and Future Prospects

RPA technology addresses several limitations of fluorescence quantitative PCR (qPCR),
including the need for complex instrumentation and high costs. As a novel nucleic acid
amplification technique, RPA offers significant advantages such as simple equipment,
rapid reaction times, and high sensitivity. Currently, TwistDx™ provides a variety of
RPA reaction kits designed for the detection of specific foodborne pathogens, including
Listeria monocytogenes, Campylobacter, and Salmonella enterica. The company offers RPA
reagents not only in liquid format but also in lyophilised pellet format, allowing field
application. In addition, tailor-made devices and accessories for RPA reactions were
developed. These devices and accessories enable incubation, dispensing, mixing, detection,
power, and portability [44]. Research conducted both domestically and internationally
indicates that RPA technology is poised for substantial advancement in POCT and in
conjunction with other technologies over the coming years. A key feature of POCT is its
simplified preprocessing methods, which enable the rapid acquisition of diagnostic results.
To enhance its clinical application, the development of multiple detection platforms capable
of simultaneously identifying various pathogens or biomolecules will be essential. With
ongoing advancements in microfluidics and portable analytical devices, RPA is expected
to see broader applicability, especially in field settings or resource-limited environments,
facilitating expedited detection. In conclusion, RPA represents a promising technology
with significant practical value following the advent of PCR. It is anticipated that through
continuous exploration and innovation in RPA technology, diagnostic products based on
isothermal nucleic acid amplification will proliferate. RPA will carve out its unique niche in
medical diagnostics, leading to more frequent use in routine testing and making valuable
contributions to the healthcare industry.
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