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Abstract: SnTe has emerged as a non-toxic and environmentally friendly alternative to the high-
performance thermoelectric material PbTe, attracting significant interest in sustainable energy appli-
cations. In our previous work, we successfully synthesized high-quality SnTe with reduced thermal
conductivity under high-pressure conditions. Building on this, in this work, we introduced indium
(In) doping to further decrease thermal conductivity under high pressure. By incorporating resonance
doping into the SnTe matrix, we aimed to enhance the electrical transport properties while main-
taining low thermal conductivity. This approach enhances the Seebeck coefficient to an impressive
153 µVK−1 at 735 K, marking a notable enhancement compared to undoped SnTe. Furthermore, we
noted a substantial decrease in total thermal conductivity, dropping from 6.91 to 3.88 Wm−1K−1 at
325 K, primarily due to the reduction in electrical conductivity. The synergistic impact of decreased
thermal conductivity and heightened Seebeck coefficient resulted in a notable improvement in the
thermoelectric figure of merit (ZT) and average ZT, achieving approximately 0.5 and 0.22 in the doped
samples, respectively. These advancements establish Sn1−xInxTe as a promising candidate to replace
PbTe in thermoelectric applications, providing a safer and more environmentally sustainable option.

Keywords: thermoelectrics; tin telluride; high pressure and high temperature; In doping

1. Introduction

Thermoelectric materials hold great promise for the advancement of energy-conversion
technologies, as they enable the direct and efficient transformation of waste heat into usable
electrical power, without the need for noisy and environmentally harmful mechanical
components such as turbines or generators [1–5]. This unique capability has sparked signif-
icant interest in the scientific community, with numerous studies exploring the potential
applications of thermoelectric materials in a wide range of fields, from renewable energy to
aerospace [6–8]. A key parameter in assessing this efficiency is the dimensionless figure of
merit, ZT, defined by the equation ZT = (S2σ/κ)T, where S is the Seebeck coefficient, σ is
electrical conductivity, κ is total thermal conductivity, and T is absolute temperature [9–11].
Both S and σ are highly dependent on carrier concentration, which can be precisely con-
trolled through a strategic doping technique [12–14]. Certainly, it is one of the important
means of improving the thermoelectric properties of thermoelectric material. The total ther-
mal conductivity, κ, comprises electronic thermal conductivity (κele) and phonon thermal
conductivity (κph), expressed as κ = κele + κph [15,16]. κele is influenced by the movement
of charge carriers, while κph is associated with the vibrations of the material’s atomic lattice.
κph often exhibits a weaker dependence on other material parameters, making it a prime tar-
get for enhancement strategies [17,18]. Researchers typically focus on reducing κph through
various approaches to improve the ZT value, such as introducing lattice defects to scatter
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phonons [19–21]. By achieving a higher ZT value, thermoelectric materials can operate
with greater efficiency, paving the way for more practical and widespread applications in
energy harvesting, refrigeration, and waste heat-recovery systems.

Despite the remarkable progress in the development of thermoelectric materials,
lead telluride (PbTe) continues to dominate the landscape of power-generation technolo-
gies [22,23]. This dominance is primarily due to PbTe’s exceptional thermoelectric prop-
erties, which include a high Seebeck coefficient and low thermal conductivity. However,
the inherent toxicity of Pb poses significant limitations to the widespread application of
PbTe-based systems [24–26]. This toxicity poses environmental and health risks, making
PbTe unsuitable for certain applications and restricting its use in certain geographical
regions. In this context, tin telluride (SnTe) emerges as a promising substitute for PbTe,
offering a non-toxic, environmentally friendly option by replacing toxic Pb with the more
abundant and eco-friendly Sn [27]. Moreover, SnTe shares a similar crystal structure and
analogous chemical and physical properties with PbTe, which facilitates the transition of
existing PbTe thermoelectric technologies to SnTe-based systems [28], thereby reducing the
cost and time associated with the development of new thermoelectric devices.

However, SnTe exhibits challenges such as a high concentration of Sn vacancies, lead-
ing to a reduced Seebeck coefficient and increased thermal conductivity [29]. Additionally,
SnTe’s narrow band gap of approximately 0.18 eV and the substantial energy disparity
(0.3–0.4 eV) between its light and heavy hole bands diminish the contribution of heavy
holes to electronic transport, thereby compromising its thermoelectric performance relative
to PbTe [30,31]. To address these challenges, doping with appropriate elements such as
Mg [32], Mn [33], Hg [34], and Ca [35] has been proposed to optimize band structure and
carrier concentration, enhancing the Seebeck coefficient and reducing thermal conductivity.
In our previous studies, we found and confirmed that high pressure as an independent vari-
able from temperature and composition can enhance the solubility limits and effectiveness
of dopants, thereby tuning the band structure and improving thermoelectric performance
without forming impurity phases [36,37]. Furthermore, high pressure can induce the forma-
tion of lattice defects, such as lattice distortion and dislocations, which can scatter phonons
and reduce thermal conductivity.

In this study, we introduce an innovative and expedited fabrication process for high-
quality SnTe compounds, leveraging the transformative potential of high-pressure tech-
niques. This method not only ensures the structural integrity and compositional uniformity
of the SnTe samples but also enables precise control over the material’s properties, which
is crucial for enhancing its thermoelectric performance. Moreover, a pivotal aspect of
our research involves the strategic doping of SnTe with indium (In) under high pressure.
The introduction of In effectively modulates the Seebeck coefficient, particularly at room
temperature, by creating resonant energy levels near the Fermi level in the valence band.
This modification results in a notable enhancement of the power factor to approximately
1.6 mW m−1 K−2. Concurrently, the thermal conductivity is significantly reduced, achiev-
ing an exceptionally low value of approximately 2.16 W m−1 K−1 at 735 K in SnTe doped
with 0.25 at.% In. The balance between an improved power factor and reduced thermal
conductivity culminates in a figure of merit, ZT, of approximately 0.5 at 735 K. This investi-
gation not only demonstrates the effectiveness of high-pressure fabrication and In doping
in enhancing the thermoelectric properties of SnTe but also elucidates the underlying
mechanisms responsible for these improvements.

2. Results and Discussion

Figure 1a meticulously displays the powder X-ray diffraction (XRD) patterns for
InxSn1−xTe samples with varying In concentrations (x = 0, 0.25 at.%, 0.5 at.%, 0.75 at.%,
1 at.%). These patterns are pivotal in characterizing the crystallographic structure of the
synthesized samples. The well-defined diffraction peaks observed in the patterns are
in excellent agreement with the NaCl-type crystal structure (space group Fm3m, SnTe:
PDF#36-1452; a = b = c = 6.328 Å) [32], indicating that the substitution of Sn with In does
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not alter the fundamental crystal structure. Importantly, no secondary phases detected
within the resolution limits of the XRD apparatus suggest a high degree of phase purity
in the samples, which is crucial for achieving optimal thermoelectric performance. In
Figure 1b, an SEM image of the In0.0025Sn0.9975Te sample provides a detailed morphological
view of the material’s surface. The image reveals a dense polycrystalline structure, indica-
tive of the successful synthesis of the sample under the high-pressure conditions of 4.0 GPa.
The fine-grained structure of the polycrystalline material is expected to facilitate enhanced
phonon scattering due to the presence of numerous grain boundaries. This scattering is
a key factor in reducing phonon thermal conductivity, which is essential for improving
the ZT value. To further corroborate the composition and uniformity of the samples, EDS
elemental mapping was performed. Figure 1c–f illustrates the EDS mapping results for
the In0.0025Sn0.9975Te sample, revealing the distribution of In, Sn, and Te elements. The
mapping data confirm the homogeneous distribution of these elements throughout the
polycrystalline SnTe structure, which is vital for ensuring consistent material properties
and reliable thermoelectric performance. The even distribution of In dopants is particu-
larly significant, as it confirms the effectiveness of the doping process in modifying the
material’s electronic and thermal transport properties. The combination of XRD, SEM, and
EDS analyses provides a comprehensive understanding of the structural and composi-
tional integrity of the InxSn1−xTe samples, underpinning the subsequent thermoelectric
performance evaluations.
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Figure 1. (a) Room temperature powder X-ray diffraction patterns for InxSn1−xTe (x = 0, 0.25 at.%,
0.5 at.%, 0.75 at.%, 1 at.%). (b) SEM image for In0.005 Sn0.995Te; (c–f) the EDS elemental mapping of
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In order to thoroughly evaluate the electrical transport properties of the InxSn1−xTe
(x = 0, 0.25 at.%, 0.5 at.%, 0.75 at.%, 1 at.%), a systematic investigation of the Hall coefficient
(RH), carrier concentration (nH), and Hall mobility (µH) was conducted at room temperature.
The findings from these measurements are meticulously documented and summarized in
Table 1, providing a comprehensive overview of the charge transport characteristics within
the material system. The measurement of the RH revealed consistently positive values
across all samples, which is indicative of hole-dominated charge transport in InxSn1−xTe.
This observation is consistent with the material’s p-type semiconducting nature. A notable
trend observed in the nH as a function of In content is its non-monotonic variation. Initially,
at approximately 0.25 at.% In doping, there is a decrease in nH. This can be explained by
the high concentration of Sn vacancies in the undoped SnTe, which act as effective hole
generators, thus increasing the hole concentration. As In is introduced into the lattice,
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it preferentially occupies these Sn vacancies. While In is indeed a p-type dopant, its
contribution to hole generation is less effective than that of the Sn vacancies. Consequently,
the nH decreases as the In atoms begin to fill these vacancies. However, as the In doping
concentration increases beyond the point of saturation for Sn vacancy filling, the excess
In atoms start to replace Sn atoms within the lattice. This substitution leads to an increase
in the p-type charge carrier concentration, which aligns with the observations reported
in the literature [38]. This transition from vacancy filling to atom substitution is a pivotal
factor in the material’s electronic behavior and its potential for thermoelectric applications.
Concurrently, µH of the In-doped samples exhibits a significant decline from ~933 to
124 cm2 V−1 s−1 as the In content increases. This reduction in mobility can be attributed
to a combination of factors, including the increased nH and enhanced impurity scattering.
The increased nH leads to more frequent carrier–carrier interactions, which in turn impede
the flow of charge and reduce mobility. Additionally, the presence of impurities introduced
by the doping process increases scattering events, further hindering the carriers’ movement
and contributing to the decreased mobility. The interplay between nH and scattering
mechanisms is a critical aspect of optimizing the thermoelectric performance of doped
semiconductor materials.

Table 1. Hall coefficient (RH), carrier concentration (nH), and Hall mobility (µH) of InxSn1−xTe
synthesized by high temperature and high pressure.

Content of In
x (at.%)

Hall Coefficient
RH (cm3 C−1)

Carrier
Concentration

n (cm−3)

Hall Mobility
µ (cm2 V−1 s−1)

0.00 0.09 6.96 × 1019 933
0.25 0.11 5.72 × 1019 490
0.50 0.07 8.97 × 1019 212
0.75 0.06 1.00 × 1020 154
1.00 0.06 9.74 × 1019 124

Figure 2 provides a detailed illustration of the temperature-dependent electrical trans-
port properties of the InxSn1−xTe samples, measured over a broad temperature range from
325 to 735 K. The data presented in this figure offer valuable insights into the behavior
of these materials as thermoelectric converters. As shown in Figure 2a, the resistivity
(ρ) of all the samples exhibits an upward trend with increasing temperature, which is
characteristic of degenerate semiconductors. This behavior indicates that the charge car-
riers’ concentration is high enough to maintain a significant population of electrons in
the conduction band even as the temperature rises, leading to increased scattering events
that impede electrical conductivity. A notable observation is that the resistivity of the
In-doped samples is consistently higher than that of the undoped SnTe throughout the
entire temperature range. This increase in resistivity can be rationalized by considering
the relationship ρ = 1/(nHeµH), where nH is the carrier concentration and µH is the Hall
mobility. The data in Table 1 suggest that the reduction in µH has a more pronounced effect
on ρ than the increase in nH. This is contrary to the typical expectation that an increase in
nH would lead to a decrease in resistivity. In a surprising turn, the Seebeck coefficient (S) of
all samples increases with In doping, contrary to the common expectation that increased nH
would lead to a decrease in S. Specifically, at room temperature, the S increases dramatically
from 13 to 66 µV K−1 with 1.0 at.% In doping, it reaches a peak value of 153 µV K−1 at
735 K. This corresponds to enhancements of ~408% and 34% for In0.1Sn0.9Te at 325 K and
735 K, respectively. This significant enhancement in S can be primarily attributed to the
introduction of resonant energy levels in the valence band by In doping, which alters
the electronic structure and enhances the effective mass of the charge carriers. To gain a
deeper understanding of the electrical transport mechanism in the InxSn1−xTe samples, we
calculated the modified density of states (m*DOS) based on the single parabolic band (SPB)
model [39], as presented in Figure 2c. The enhanced m*DOS for the In-doped samples is a
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key factor contributing to the increased S, indicating substantial modifications to the band
structure of SnTe following the doping process. The combination of a high S and a relatively
low ρ results in an improved power factor (PF), as depicted in Figure 2d. The PF remains
elevated across all samples from room temperature to elevated temperatures, indicating a
robust thermoelectric performance. Notably, the PF for the x = 0.75 at.% sample reaches
approximately 0.75 mW m−1 K−2 at 325 K, which is significantly higher than the value
for undoped SnTe (~0.1 mW m−1 K−2). This superior PF correlates with enhanced output
power [40], making the In-doped SnTe samples promising candidates for thermoelectric
applications where high power output is required. The elevated average power factor
(PFavg) over the measured temperature range underscores the potential of these materials
for practical use in converting waste heat into electricity.
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Figure 2. Temperature dependence of electrical transport properties: (a) Electrical resistivity (ρ);
(b) Seebeck coefficient (S); (c) the relationship of Seebeck coefficient with carrier concentration;
(d) power factor (PF) for InxSn1−xTe (x = 0, 0.25 at.%, 0.5 at.%, 0.75 at.%, 1 at.%).

Figure 3 delineates the temperature-dependent thermal transport properties of the
InxSn1−xTe samples, showcasing a notable trend of significant reductions in thermal con-
ductivity (κ) with increasing temperature. This behavior is particularly noteworthy as it
suggests that the material’s thermal conductivity is not influenced by bipolar transport
effects, which are often observed in materials with high carrier concentrations. The incorpo-
ration of In into the SnTe lattice has a pronounced impact on the thermal conductivity across
the temperature range of 325–735 K. For instance, the In0.0025Sn0.9975Te sample experiences
thermal conductivity reductions of approximately 33% at 325 K and 17% at 735 K compared
to the undoped SnTe. This result can be compared with our previous results of nanostruc-
tured SnTe synthesized by high-energy ball milling and hot compression techniques [41].
This substantial reduction in thermal conductivity is a significant advantage for thermoelec-
tric materials, as it contributes to a higher thermoelectric figure of merit (ZT) and improved
energy-conversion efficiency. To elucidate the mechanisms underlying this decrease in
thermal conductivity, a comprehensive analysis of the contributions from electronic thermal
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conductivity (κele) and phonon thermal conductivity (κph) was conducted. As illustrated
in Figure 3c, κele was calculated using the Wiedemann–Franz law, expressed as κele = LσT,
where L represents the Lorenz constant. The Lorenz constant was determined using the
formula L = 1.5 + exp(−|S|/116) [42], as depicted in Figure 3b. This method allows for
the quantification of the electronic contribution to thermal conductivity, which is highly
dependent on the carrier concentration and electrical conductivity. The κph was derived
by subtracting κele from the κ [28,43], as shown in Figure 3d. The reduction in electrical
conductivity due to doping with In diminishes the electronic contribution to thermal con-
ductivity, leading to a decrease in κ. Additionally, the observed κph values for InxSn1−xTe
in this study are lower than those previously reported for SnTe with nanostructured archi-
tectures [38], underscoring the effectiveness of the high pressure in modulating thermal
transport properties. The high-pressure conditions during synthesis are known to enhance
phonon scattering, which can effectively reduce phonon thermal conductivity [44]. The
results presented in Figure 3 highlight the synergistic effects of In doping and high-pressure
synthesis on the thermal conductivity of SnTe. These modifications, combined with the
enhanced electrical transport properties observed in the previous sections, contribute to a
significantly improved thermoelectric performance of the InxSn1−xTe samples.
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The microstructural analysis of the synthesized InxSn1−xTe samples was a critical step
in understanding the phonon scattering mechanisms that underpin their thermoelectric
properties. Low-magnification TEM images, presented in Figure 4a, offer a glimpse into the
polycrystalline morphology within the sample area. The corresponding energy-dispersive
X-ray spectroscopy analysis in Figure 4b proved the existence of In in the SnTe matrix.
Figure 4c provides a visual representation of the impact of high-pressure treatment on the
sample morphology. It illustrates that the high-pressure synthesis leads to samples enriched
with well-defined nanograins. These nanograins are known to enhance phonon scattering,
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which is crucial for reducing the thermal conductivity of the material. Inverse fast Fourier
transform (IFFT) images, as shown in Figure 4d,e, reveal notable lattice distortions and
dislocations within the structure. These lattice distortions and dislocations are a direct
result of the high-pressure synthesis process and are instrumental in scattering both charge
carriers and short-wavelength phonons. The presence of In2Te3 nanoregions within the
high-pressure-synthesized samples, as identified in Figure 4c, further contributes to the
scattering mechanisms. The combined effects of nanograins, secondary nanophases, and
the high density of dislocations are responsible for the scattering of charge carriers and
phonons. This scattering results in a decrease in µH and κph, which are both beneficial for
enhancing the thermoelectric performance of the material. Notably, the mean free path
of phonons typically exceeds that of electrons, suggesting that phonon scattering is more
pronounced. The microstructural analysis presented in Figure 4 provides a comprehensive
understanding of the factors that influence the thermoelectric properties of the synthesized
samples. These insights are crucial for guiding future material design and synthesis
strategies aimed at optimizing thermoelectric performance.
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Figure 5a presents a comprehensive overview of the temperature-dependent figure
of merit (ZT) for the InxSn1−xTe samples with varying In concentrations (x = 0, 0.25 at.%,
0.5 at.%, 0.75 at.%, and 1 at.%). The figure illustrates a clear trend of enhanced ZT values
across the entire temperature range, attributed to the combined effects of an increased See-
beck coefficient and decreased thermal conductivity. Notably, the sample with x = 0.25 at.%
In achieves a maximum ZT of approximately 0.5 at 735 K, representing a significant en-
hancement of nearly 30% compared to the undoped SnTe. This peak ZT value is a testament
to the effectiveness of In doping in improving the thermoelectric performance of SnTe.
Beyond the peak ZT value, the average ZT (ZTavg) across a broad temperature range serves
as a critical metric for evaluating the practical feasibility of thermoelectric devices. The
ZTavg provides a more representative measure of the material’s thermoelectric performance
over a range of operating temperatures, which is crucial for practical applications. The
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In0.0075Sn0.9925Te and In0.01Sn0.99Te sample exhibits the highest ZTavg of approximately 0.22
over the temperature interval of 325–735 K, signifying an impressive 83% improvement
relative to the undoped SnTe. This substantial enhancement underscores the promising
potential of In-doped SnTe for high-efficiency thermoelectric applications. The results
presented in Figure 5a,b highlight the significant advancements achieved through the
In doping and high-pressure synthesis of SnTe. In conclusion, the microstructural and
thermoelectric analyses presented in this study demonstrate the effectiveness of In doping
and high-pressure synthesis in enhancing the thermoelectric properties of SnTe. These
advancements pave the way for the development of high-performance thermoelectric
materials that could play a significant role in sustainable energy technologies.
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3. Experimental Section

Samples of InxSn1−xTe (x = 0, 0.25, 0.5, 0.75, 1.0 at.%) were synthesized using high-
purity indium (In, powder, 99.99%), tin (Sn, powder, 99.99%), and tellurium (Te, ingot,
99.999%) as starting materials, adhering to the specified stoichiometric ratios. The pre-
cursor mixtures were ground for 30 min at ambient temperature in the glove box and
then transferred into quartz tubes. These tubes were sealed under vacuum (10−4 Torr)
and subsequently heated to 923 K, where they were held for 40 h. The samples were
then sintered at 1173 K for 10 h and cooled to room temperature naturally. The ingots
were crushed, shaped, and fabricated into cylinders with a diameter of approximately
12 mm and a thickness of about 5 mm for high-pressure and high-temperature (HPHT)
experiments. These experiments were carried out using a sophisticated high-pressure
apparatus (ZN-460, China), which provided the conditions of 4 GPa and 1473 K. Each
HPHT run lasted approximately 30 min, which was sufficient for the sample molding
under extreme conditions. After the HPHT treatment, the cylindrical ingots were removed
from the apparatus and cut and polished into bars and disks. The bars were intended for
subsequent measurements of electrical transport properties, while the disks were prepared
for the evaluation of thermal properties.

After HPHT synthesis, the phase structure of all samples was characterized using X-
ray diffraction (XRD) with Cu-Kα radiation (λ = 1.5406 Å, Rigaku SmartLabSE, Japan). The
XRD analysis provided crucial information about the presence of any secondary phases,
lattice parameters, and the overall phase purity of the samples, which are all vital for
understanding the thermoelectric performance. The microstructural morphology of the
bulk samples was examined via scanning electron microscopy (SEM, Carl Zeiss Sigma
500 VP, Carl Zeiss, Oberkochen, Germany) equipped with energy-dispersive spectroscopy
(EDS), and the transmission electron microscopy (TEM) images were obtained on a JEM-
2100plus (Japan Electron Optics Laboratory, Tokyo, Japan) at an acceleration voltage of
200 kV, which provided high-resolution images that revealed the sample’s grain size, grain
boundaries, and porosity. These morphological features are directly related to the material’s
thermal and electrical transport properties. Hall effect measurements were performed using
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the van der Pauw method with a Hall measurement setup (Lake Shore 8400, Lake Shore,
Columbus, OH, USA), which is capable of providing accurate measurements of the Hall
coefficient, carrier concentration, and mobility. These measurements were crucial for
understanding the electronic behavior of the doped SnTe samples and for assessing the
effectiveness of the doping strategy. The electrical resistivity (ρ) and Seebeck coefficient
(S) were measured concurrently using a CTA-3s apparatus (Cryoall, Peking, China) over a
temperature range of 325 K to 735 K, with a temperature step of 50 K and a heating rate
of 5 K min−1. The thermal conductivity (κ) was calculated using the equation κ = DCPρ,
where D is the thermal diffusivity coefficient obtained via the laser flash method using a
Netzsch LFA457 instrument, ρ is the pellet density measured by the Archimedes method,
and CP is the specific heat capacity estimated using the Dulong–Petit law, assuming it to be
temperature-independent. Both of these are fundamental for calculating the power factor
and, ultimately, the figure of merit (ZT) of the thermoelectric materials. The uncertainties
in κ and ρ are ±5–7%, while the uncertainty in S is ±5%.

4. Conclusions

In summary, this study comprehensively investigates the impact of In doping on the
thermoelectric properties of SnTe under high pressure. We have successfully fabricated
high-quality polycrystalline InxSn1−xTe (x = 0, 0.25 at.%, 0.5 at.%, 0.75 at.%, 1 at.%) samples
through an HPHT method. These results indicate that the incorporation of In significantly
improves the power factor of SnTe. The In0.0075Sn0.9925Te composition exhibits power factor
enhancements of approximately 6.5 times at 325 K compared to the pristine SnTe. This
improvement is attributed to the increase in the Seebeck coefficient. In addition, the thermal
conductivity of In0.0025Sn0.9975Te samples decreased by about 33% at 325 K and 17% at
735 K. Furthermore, we observe an overall improvement in the ZT for SnTe across a broad
temperature range from 325 K to 735 K, with the In0.01Sn0.99Te sample achieving a ZTavg
of 0.22. The results presented in this study contribute to a deeper understanding of the
fundamental mechanisms governing thermoelectric performance and provide a roadmap
for the optimization of SnTe-based materials for practical thermoelectric applications.
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