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Abstract: Urtica dioica L. is one of the most widely utilized medicinal plants commonly applied in
the form of tea, juice, and dietary supplements. This study aimed to assess the effect of the U. dioica
ethanol–water extract (UdE) and polyphenolic fraction isolated from the extract (UdF) on normal
human colon epithelial cells and to evaluate their protective activity against induced oxidative stress.
The cytotoxic potential against human colorectal adenocarcinoma (HT29) and the anti-inflammatory
effects were also investigated. UPLC-MS-DAD analysis revealed that both extracts were abundant in
caffeic acid derivatives, specifically chlorogenic and caffeoylmalic acids, and therefore, they showed
significant protective and ROS scavenging effects in normal human colon epithelial cells. Moreover,
they had no negative impact on cell viability and morphology in normal cells and the extracts,
particularly UdF, moderately suppressed adenocarcinoma cells. Furthermore, UdF significantly
decreased IL-1β levels in HT29 cells. Our research indicates that U. dioica may provide significant
health advantages because of its antioxidant and anti-inflammatory effects.

Keywords: nettle; cytotoxicity; chlorogenic acids; caffeoylmalic acid; interleukins; IL-1β; anti-inflammatory;
antioxidant; adenocarcinoma

1. Introduction

Stinging nettle (Urtica dioica L.) is one of the most widely utilized medicinal plants,
appreciated for its numerous health benefits, lack of toxicity, and widespread accessibility.
Traditionally, U. dioica was applied in the form of tea, juice, and infusion, but currently,
there are also many commercially available dietary supplements derived from nettle [1,2].
Furthermore, in some countries, the plant is used as a food additive and, after cooking
or boiling, is added to soups or salads [2–4]. It is a rich source of various phytochemicals
from the class of secondary metabolites, including terpenes, phenolic acids, flavonoids,
chlorophylls, carotenoids, and fatty acids [1,5–8].

In folk medicine, aqueous and alcoholic preparations from nettle have been used
for the treatment of anemia, nasal and menstrual hemorrhage, rheumatism, skin eczema,
urinary tract disorders, including gout and bladder and kidney problems, and to en-
hance lactation [9–11]. Recent studies have confirmed the health-promoting value of
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the plant and evidenced its antibacterial, anti-inflammatory, analgesic, and anti-diabetic
properties [12–15]. Therefore, nettle supplements, including tea, capsules, and leaf powder
are gaining increasing popularity and are often used to support overall health, boost the
immune system, and alleviate symptoms associated with allergies, such as hay fever. Addi-
tionally, nettle supplements are frequently utilized for their anti-inflammatory properties,
aiding in the management of conditions like arthritis and promoting urinary tract health,
as well as supporting prostate function [16,17].

Furthermore, there are some in vitro investigations indicating the anticancer properties
of U. dioica extracts against diseases including acute myeloid leukemia (water extract) [18],
breast cancer (water and ethanol extract) [19,20], prostate cancer (water extract) [21], and
lung cancer (50% methanol extract) [22]. Scientific studies also show the potential of nettle
in preventing cancers associated with the gastrointestinal tract and what is important in the
context of oral administration of nettle preparations [23]. For example, nettle root water–
ethanol extract was found to be cytotoxic against human colon and gastric cancer cell [24]. In
turn, the dichloromethane extract from the aerial parts inhibited colorectal cancer cells [25]
and the methanol extract from leaves showed cytotoxicity against hepatocarcinoma and
colon cancer cells [26]. However, to the best of our knowledge, there are no studies showing
the impact of nettle on normal colon cells. Thus, this study aimed to assess the effect of
U. dioica extracts on the viability of normal human colon epithelial cells and to evaluate
their protective activity against induced oxidative stress in these cells. Furthermore, their
cytotoxic potential against human colorectal adenocarcinoma and their anti-inflammatory
effects in the neoplastic microenvironment were evaluated. The investigated extracts
were phytochemically characterized using ultra-high performance liquid chromatography
with photodiode array detection and mass spectrometry (UPLC-DAD-MS). The method
was chosen for its superior sensitivity and precision in identifying and quantifying plant
metabolites compared to other techniques. It is particularly useful for analyzing compounds
in complex matrices like plant extracts [27].

Our study focused on polyphenolic components because many biological effects are
associated with compounds from this class. They belong to strong antioxidants and anti-
inflammatory agents and positively influence cellular health by protecting against oxidative
stress and reducing inflammation [28,29]. Nettle is a rich source of polyphenols, mainly
from the phenolic acids group, including caffeic acid and chlorogenic acid derivatives [30].
Some flavonoids, such as quercetin, kaempferol, and isorhamnetin glycosides, were also
found in the aerial parts of nettle [31]. Most of these compounds are known for their
beneficial biological properties [32–34].

2. Results
2.1. Phytochemical Assay of the Extracts

The extract was prepared using ultrasound-assisted extraction (UAE) and 80% ethanol
as a solvent, based on previous studies demonstrating the efficiency of this method in
extracting bioactive compounds from plant materials. UAE is known for enhancing extrac-
tion yields while being time-efficient. In turn, the ethanol–water mixture is effective for
isolating a broad range of polar compounds [35,36].

Two extracts were prepared for the investigation: an ethanol–water extract from U.
dioica (UdE) and an extract obtained by dissolving the polar fraction isolated from nettle
(UdF). The phytochemical composition was determined using UV-DAD and MS detection,
and the results were calculated per gram of dried extract. From the main peaks visible after
chromatographic separation, the UV-Vis and mass spectra were extracted. The identification
was carried out using chemical formulas established by the MassHunter software (Version
3.3.2 SP2 build 3.3.2.1037). The identity was further confirmed using commercially available
standards or by tentatively identifying the components through comparison of spectral
data with the literature [30]. An example of the base peak chromatogram (BPC), along with
the mass and UV-Vis spectra of the main components, is shown in Figure 1.
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Different caffeic acid derivatives with a fragment ion typical for aglycone (m/z-H = 
179) and a maximum absorption in the region of 322–326 nm were the main phenolic 
components of the ethanol–water extract from U. dioica (UdE) and the polyphenolic 
fraction (UdF). The main peaks at retention times 13.8 and 16.8 min were identified as 
chlorogenic acid (m/z = 353), which is the ester of caffeic and quinic acid, and caffeoylmalic 
acid (m/z = 295), respectively. Furthermore, free caffeic acid, four isomers of 
caffeoylglucaric acid, caffeoylshikimic acid, and crypto- and neochlorogenic acids were 
found in the extracts. In addition to caffeic acid derivatives, glucoside of 
dihydroxybenzoic acid, p-coumaroylquinic, p-coumaroylmalic, feruloylquinic, and 
ferulic acid were also identified. From the flavonoid class, a few quercetin derivatives, 
including a derivative with m/z = 609, rutin, quercetin glucoside and acetylglucoside, and 
kaempferol rutinoside were detected. The detailed chromatographic and mass data, along 
with the estimated formulas, are included in the Supplementary Materials (Table S1). 

Although the polyphenolic profile was similar, significant differences in the quantity 
of the metabolites were observed between the extract and the fraction. As expected, the 
number of polyphenols in UdF increased approximately 7–8 times for phenolic acid and 
approximately 2–3 times for flavonoids compared to UdE as a result of the SPE procedure. 
In SPE, the matrix was reduced: water-soluble components such as simple carbohydrates 
were eluted in the prewash step, and hydrophobic components (e.g., fatty acids and 
chlorophylls) were retained on the SPE column. This is visible when comparing the 

Figure 1. Base peak chromatogram of the polyphenolic fraction isolated from ethanol–water extract
of U. dioica (a); mass and UV-Vis spectrum of chlorogenic acid (b); mass and UV-Vis spectrum of
caffeoylmalic acid (c).

Different caffeic acid derivatives with a fragment ion typical for aglycone (m/z-H = 179)
and a maximum absorption in the region of 322–326 nm were the main phenolic compo-
nents of the ethanol–water extract from U. dioica (UdE) and the polyphenolic fraction (UdF).
The main peaks at retention times 13.8 and 16.8 min were identified as chlorogenic acid
(m/z = 353), which is the ester of caffeic and quinic acid, and caffeoylmalic acid (m/z = 295),
respectively. Furthermore, free caffeic acid, four isomers of caffeoylglucaric acid, caffeoyl-
shikimic acid, and crypto- and neochlorogenic acids were found in the extracts. In addition
to caffeic acid derivatives, glucoside of dihydroxybenzoic acid, p-coumaroylquinic, p-
coumaroylmalic, feruloylquinic, and ferulic acid were also identified. From the flavonoid
class, a few quercetin derivatives, including a derivative with m/z = 609, rutin, quercetin
glucoside and acetylglucoside, and kaempferol rutinoside were detected. The detailed
chromatographic and mass data, along with the estimated formulas, are included in the
Supplementary Materials (Table S1).

Although the polyphenolic profile was similar, significant differences in the quantity
of the metabolites were observed between the extract and the fraction. As expected, the
number of polyphenols in UdF increased approximately 7–8 times for phenolic acid and
approximately 2–3 times for flavonoids compared to UdE as a result of the SPE procedure.
In SPE, the matrix was reduced: water-soluble components such as simple carbohydrates
were eluted in the prewash step, and hydrophobic components (e.g., fatty acids and
chlorophylls) were retained on the SPE column. This is visible when comparing the profiles
in the region of 60–90 min on the chromatograms of the extract and the fraction (Figure S1).
The predominant components, namely chlorogenic and caffeoylmalic acid, constituted
above 85% of the polyphenolic components. Their amounts were 3.17 and 3.86 mg/g in
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UdE and 22.3 and 33.2 mg/g in UdF, calculated per gram of dried extract. The results of
the quantitative analysis are presented in Table 1.

Table 1. The results of the quantitative analysis of the main components found in the U. dioica extracts
expressed as mg/g ± standard deviation of dried extract.

Component Ethanol–Water Extract
(mg/g ± SD)

Polyphenolic Fraction
(mg/g ± SD)

Caffeoylglucaric acids (total) 1 0.21 ± 0.02 6.35 ± 0.41
Chlorogenic acids (total) 3.17 ± 0.21 22.32 ± 1.11

Caffeoylmalic acid 1 3.86 ± 0.24 33.21 ± 1.89
Caffeoylshikimic acid 1 0.07 ± 0.00 0.50 ± 0.04

p-Coumaroylmalic 1 0.88 ± 0.07 6.20 ± 0.52
Feruloylquinic acids (total) 1 0.08 ± 0.01 0.67 ± 0.05

Ferulic acid 0.07 ± 0.00 0.60 ± 0.06
Quercetin derivatives with m/z-H = 609 0.34 ± 0.02 0.73 ± 0.06

Quercetin acetylglucoside 1 0.07 ± 0.01 0.20 ± 0.02
1 Quantification based on calibration curve for appropriate aglycone.

2.2. Impact of U. dioica Extracts on Normal Human Colon Epithelial Cells (841 CoTr)
2.2.1. Cells Viability and Cells Morphology

To establish the impact of different concentrations of the tested extracts on cell viability,
two complementary tests were carried out. The neutral red (NR) test shows the ability
of living cells to uptake and accumulate the neutral red dye in lysosomes. The MTT test
reflects cell metabolic activity and is based on the conversion of yellow tetrazolium salt by
NAD(P)H-dependent cellular oxidoreductase in viable cells to purple formazan crystals.
The results are shown in Figure 2.
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After 24 h of incubation, it was found that in the concentration range of 25–200 
µg/mL, both the ethanol extract from U. dioica (UdE) and the polyphenolic fraction (UdF) 
had no negative impact on the viability and metabolism of normal colon epithelial cells 
(841 CoTr). Additionally, UdE at concentrations above 100 µg/mL slightly stimulated 
metabolism by an average of 10% compared to the control (Figure 1a). This indicates a 
lack of toxicity. 

Figure 2. Effect of different concentrations of ethanol extract from U. dioica (UdE) and isolated
polyphenolic fraction (UdF) on the viability of normal human colon epithelial cells (841 CoTr)
assessed by (a) MTT and (b) NR assays. The results are expressed as a percentage of the control (0.5%
DMSO in medium). The red line was set at 100%. * indicates a statistically significant difference at
p < 0.05 using one-way ANOVA followed by Dunnett’s post hoc test.

After 24 h of incubation, it was found that in the concentration range of 25–200 µg/mL,
both the ethanol extract from U. dioica (UdE) and the polyphenolic fraction (UdF) had no
negative impact on the viability and metabolism of normal colon epithelial cells (841 CoTr).
Additionally, UdE at concentrations above 100 µg/mL slightly stimulated metabolism by
an average of 10% compared to the control (Figure 1a). This indicates a lack of toxicity.

The observation of the cells after May–Grünwald–Giemsa staining confirmed no
negative effect of the extracts on the cells. After 24 h of treatment, the investigated extracts
did not affect the morphology of normal human colon epithelial cells. The cells maintained
stable contact and no detachment of cells was observed after incubation with the tested
extracts. Moreover, normal cells retained the elongated, spindle-shaped characteristic of
this culture. Figure 3 presents pictures of 841 CoTr cells treated with 200 µg/mL extract
concentration versus the control.
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Figure 3. May–Grünwald–Giemsa (MGG) staining of normal human colon epithelial cells: (a) control;
(b) cells after 24 h of treatment with ethanol extract of U. dioica at a concentration of 200 µg/mL;
(c) cells after 24 h of treatment with the phenolic fraction at a concentration of 200 µg/mL. Magnifica-
tion 100×. Bar = 20 µm.

2.2.2. Flow Cytometry Assay

The quantitative analysis of extract-induced cell death was performed using an An-
nexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI). The plot of annexin V
versus PI was divided into four regions in a clockwise manner. UL represents necrotic
cells with annexin V− and PI+; UR represents late-stage apoptotic cells with annexin V+
and PI+; LR represents early apoptotic cells with annexin V+ and PI−; and LL represents
healthy cells with annexin V− and PI−.

No differences between the control and U. dioica ethanol–water extract were noted
after 24 h of treatment in the tested concentration range. However, incubation with the
polyphenolic fraction at 200 µg/mL caused a decrease in the number of living human in-
testinal epithelial cells, and the number of cells in late apoptosis and necrotic cells increased
compared to the control. No negative effects were observed at lower concentrations of UdF.
Flow cytometry results for the control, UdE, and UdF at a concentration of 200 µg/mL are
shown in Figure 4.
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Figure 4. Flow cytometry results obtained in normal human colon epithelial cells (841 CoTr) for
(a) control; (b) after 24 h of treatment with ethanol extract of U. dioica at a concentration of 200 µg/mL;
(c) after 24 h of treatment with the phenolic fraction at a concentration of 200 µg/mL; (d) apoptosis
rate shown by bar graph. * indicates a statistically significant difference at p < 0.05 using one-way
ANOVA followed by Dunnett’s post hoc test.

2.2.3. Cell Cycle

The influence of extracts on the distribution of cells in the particular phases of the
cell cycle, including G0 (a resting stage), G1 (the stage of cell preparation for division),
S (the phase of DNA synthesis), and G2 (the stage of genetic material condensation and
preparation for division), was further examined. Cell cycle analysis showed that both nettle
extracts at the concentration of 200 µg/mL after a 24 h incubation increased the number
of normal human colon epithelial cells in the sub-G1 phase of the cell cycle compared to
the control. This suggests a probable increase in the number of cells entering apoptosis.
The polyphenolic-rich fraction was much more active than the U. dioica ethanol–water
extract and had a lowering effect on the number of cells in the G1 phase of the cycle (cycle
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inhibition at the border of the G1 phase). The number of normal cells in the S phase
increased after incubation with both extracts, while the number of cells in the G2 phase
decreased. This suggests an inhibition of the S phase of the cycle. The results are shown
in Figure 5.
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of 200 µg/mL; (c) after 24 h of treatment with the phenolic fraction at a concentration of 200 µg/mL;
(d) distribution rate shown by bar graph. * indicates a statistically significant difference at p < 0.05
using one-way ANOVA followed by Dunnett’s post hoc test.

2.2.4. Protective and ROS Scavenging Activity

The protective effect against oxidative stress and ROS scavenging activity of the extracts
were assessed using cell viability assays (NR, MTT) and the fluorogenic H2DCFDA, which,
after deacetylation in the cells, is oxidized by ROS to fluorescent 2′,7′-dichlorofluorescein
(DCF). The results are shown in Figure 6.
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Figure 6. Effect of different concentrations of ethanol extract from U. dioica (UdE) and isolated
polyphenolic fraction (UdF) on the viability of normal human colon epithelial cells (841 CoTr) in
H2O2-stimulated cells assessed by (a) MTT, (b) NR assays, and (c) relative fluorescence of 2′,7′-
dichlorodihydrofluorescein (DCF) in the cells calculated as a percentage in comparison to untreated
control cells. The data are means (n = 3) ± SD. * indicates statistically significant difference vs. H2O2-
stimulated cells and # indicates statistically significant difference vs. untreated control. One-way
ANOVA followed by Dunnett’s post hoc test was used (p < 0.05). AA—ascorbic acid.

The viability of the cells subjected to H2O2 treatment decreased significantly to 50.2%
(NR) and 59.0% (MTT) compared to the control; however, the addition of the extract in-
hibited the adverse effect of H2O2. UdE was less active, and only at a concentration of
200 µg/mL, it partially protected the cells against oxidative stress (cell viability was ap-
proximately 17–19% higher compared to H2O2-stimulated cells). In contrast, preincubation
of the cells with UdF at 100 and 200 µg/mL maintained cell viability at control levels. These
effects were correlated with the impact on ROS production in the cells. UdE effectively
reduced ROS at the highest tested concentration, while UdF showed activity at all inves-
tigated doses, with the effect being concentration-dependent. At 200 µg/mL of the UdF,
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ROS levels returned to control levels, and its antioxidant capacity was comparable to that
of ascorbic acid.

2.3. Impact of U. dioica Extracts on Human Colorectal Adenocarcinoma (HT29)

The NR assay showed that both nettle extracts reduced the number of viable cells in
the HT29 cell line. Moreover, UdF suppressed the activity of NAD(P)H-dependent cellular
oxidoreductase (MTT assay) (Figure 7).
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Figure 7. Effect of different concentrations of ethanol–water extract from U. dioica (UdE) and isolated
polyphenolic fraction (UdF) on the viability of human colorectal adenocarcinoma cells (HT29) deter-
mined by the (a) MTT and (b) NR assays. The results are expressed as a percentage of the control
(0.5% DMSO in medium). The red line was set at 100%. * indicates a statistically significant difference
at p < 0.05 using one-way ANOVA followed by Dunnett’s post hoc test.

However, similarly to normal cells, no effect on the morphology of human colon cancer
cells was observed. The cells remained in stable assemblies without showing a tendency to
loosen (Figure 8).
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Figure 8. May–Grünwald–Giemsa (MGG) staining of human colorectal adenocarcinoma cells.
(a) control; (b) cells after 24 h of treatment with ethanol–water extract of U. dioica at a concen-
tration of 200 µg/mL; (c) cells after 24 h of treatment with the phenolic fraction at a concentration of
200 µg/mL. Magnification 100×. Bar = 20 µm.

Flow cytometry assay showed a decrease in the number of live HT29 cells by ap-
proximately 7% compared to the control after treatment with UdF at a concentration of
200 µg/mL (no effect was observed for lower concentrations). The number of cells in late
apoptosis and necrotic cells increased by approximately 2% and 6%, respectively, compared
to the control. No statistically significant differences were observed between UdE and the
control (Figure 9).
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Figure 9. Flow cytometry results obtained in human colorectal adenocarcinoma cells (HT29) for
(a) control; (b) after 24 h of treatment with ethanol–water extract of U. dioica at a concentration of
200 µg/mL; (c) after 24 h of treatment with the phenolic fraction at a concentration of 200 µg/mL;
(d) apoptosis rate shown by bar graph. * indicates a statistically significant difference at p < 0.05 using
one-way ANOVA followed by Dunnett’s post hoc test.

Cell cycle analysis showed that both nettle extracts at the concentration of 200 µg/mL
after a 24 h incubation significantly increased the population of human colorectal cancer
cells in the sub-G1 phase, which may suggest an increase in the number of cells in the
initial phase of apoptosis and cycle limitation at the border of the G1 phase (Figure 10). The
number of cells in the G1 phase was significantly reduced compared to the control. The
number of cells in the S and G2 phase did not change quantitatively after being exposed to
the tested extracts compared to the control.

Molecules 2024, 29, 5000 8 of 19 
 

 

  
(a) (b) (c) (d) 

Figure 9. Flow cytometry results obtained in human colorectal adenocarcinoma cells (HT29) for (a) 
control; (b) after 24 h of treatment with ethanol–water extract of U. dioica at a concentration of 200 
µg/mL; (c) after 24 h of treatment with the phenolic fraction at a concentration of 200 µg/mL; (d) 
apoptosis rate shown by bar graph. * indicates a statistically significant difference at p < 0.05 using 
one-way ANOVA followed by Dunnett’s post hoc test. 

Cell cycle analysis showed that both nettle extracts at the concentration of 200 µg/mL 
after a 24 h incubation significantly increased the population of human colorectal cancer 
cells in the sub-G1 phase, which may suggest an increase in the number of cells in the 
initial phase of apoptosis and cycle limitation at the border of the G1 phase (Figure 10). 
The number of cells in the G1 phase was significantly reduced compared to the control. 
The number of cells in the S and G2 phase did not change quantitatively after being 
exposed to the tested extracts compared to the control. 

(a) (b) (c) (d) 

Figure 10. Distribution of human colorectal adenocarcinoma cells (HT29) in the particular cell cycle 
phases: (a) control; (b) after 24 h of treatment with ethanol–water extract of U. dioica at a 
concentration of 200 µg/mL; (c) after 24 h of treatment with the phenolic fraction at a concentration 
of 200 µg/mL; (d) distribution rate shown by bar graph. * indicates a statistically significant 
difference at p < 0.05 using one-way ANOVA followed by Dunnett’s post hoc test. 

2.4. Anti-Inflammatory Activity 
Neoplastic changes disrupt the microenvironment and lead to the release of 

cytokines and chemokines; therefore, anti-inflammatory activity is important in the 
context of cancer development. As shown in Table 2, UdF at a concentration of 200 µg/mL 
significantly reduced the release of IL-1β by cancer cells after a 24 h incubation, but none 
of the tested extracts affected the release of IL-6 and IL-10 in human colon tumor cells. 

Table 2. Cytokine concentration (pg/mL) in human colon tumor cells (HT29) after 24 h of incubation 
with ethanol–water extract from U. dioica (UdE) and polyphenolic fraction from U. dioica (UdF) at 
200 µg/mL concentration. 

Cytokine Control UdE UdF 
IL-1β 1835.6 ± 109.1 1843.9 ± 127.9 1514.9 ± 96.4 * 
IL-6 1677.5 ± 148.5 1670.0 ± 175.2 1735.0 ± 138.2 

IL-10 1140.6 ± 117.0 1343.0 ± 124.6 1180.0 ± 142.5 
* indicates a statistically significant difference at p < 0.05 using one-way ANOVA followed by 
Dunnett’s post hoc test. 

Figure 10. Distribution of human colorectal adenocarcinoma cells (HT29) in the particular cell cycle
phases: (a) control; (b) after 24 h of treatment with ethanol–water extract of U. dioica at a concentration
of 200 µg/mL; (c) after 24 h of treatment with the phenolic fraction at a concentration of 200 µg/mL;
(d) distribution rate shown by bar graph. * indicates a statistically significant difference at p < 0.05
using one-way ANOVA followed by Dunnett’s post hoc test.

2.4. Anti-Inflammatory Activity

Neoplastic changes disrupt the microenvironment and lead to the release of cytokines
and chemokines; therefore, anti-inflammatory activity is important in the context of cancer
development. As shown in Table 2, UdF at a concentration of 200 µg/mL significantly
reduced the release of IL-1β by cancer cells after a 24 h incubation, but none of the tested
extracts affected the release of IL-6 and IL-10 in human colon tumor cells.

Table 2. Cytokine concentration (pg/mL) in human colon tumor cells (HT29) after 24 h of incubation
with ethanol–water extract from U. dioica (UdE) and polyphenolic fraction from U. dioica (UdF) at
200 µg/mL concentration.

Cytokine Control UdE UdF

IL-1β 1835.6 ± 109.1 1843.9 ± 127.9 1514.9 ± 96.4 *
IL-6 1677.5 ± 148.5 1670.0 ± 175.2 1735.0 ± 138.2
IL-10 1140.6 ± 117.0 1343.0 ± 124.6 1180.0 ± 142.5

* indicates a statistically significant difference at p < 0.05 using one-way ANOVA followed by Dunnett’s post hoc test.
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3. Discussion

A lot of studies have shown that U. dioica is a valuable plant with a broad range of
biological activities and, therefore, may be a promising dietary supplement for complemen-
tary or alternative therapy in many disorders [1,2,23]. Various groups of phytochemicals
are believed to be responsible for the plant’s activity; however, among them, polyphenols
are of particular interest due to their well-established biological effects [37,38]. One of the
most desirable features of plant phenolics is their ability to neutralize free radicals because
excessive ROS accumulation in cells causes oxidative stress and negatively affects cell
structures, leading to lipid and protein oxidation, as well as DNA damage. Compounds
with antioxidant activity may support the endogenous antioxidant enzyme system and
contribute to reducing the negative effects of oxidative stress [39–41].

Our study showed that U. dioica (UdE) is a rich source of recognized antioxidants,
namely caffeic acid derivatives, and the SPE procedure allowed us to effectively concen-
trate them while simultaneously reducing the matrix of lipophilic constituents. Both the
ethanol–water extract from U. dioica (UdE) and the polyphenol-enriched extract (UdF)
showed ROS scavenging effects in in vitro H2DCFDA assays, and they reduced the ROS
production in H2O2-treated cells. The activity of UdF was significantly higher due to
the higher polyphenol concentration, which confirms the leading role of this group of
compounds in the antioxidant properties of nettle. The strong antioxidant properties of
U. dioica have also been demonstrated previously in chemical tests, including ferric reduc-
ing/antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), and free
radical scavenging tests (DPPH, ABTS) [14,42,43]. Antioxidant action brings many health
benefits, including slowing the aging process, preventing chronic diseases, supporting
immune function, and protecting against inflammation [44–46]. Therefore, it is a desirable
property of dietary supplements and food additives. In this context, U. dioica is a valuable
plant species that may offer many health advantages.

Further, our investigation showed no negative impact of U. dioica extract on normal
human colon epithelial cells, as it was not cytotoxic and did not affect cell morphology or
the cell cycle. The lack of cytotoxicity of U. dioica has also been reported for other normal
cell lines including human skin fibroblast and normal bronchial epithelial cells [22,24,42].
The polyphenolic fraction also did not affect cell viability, metabolism, or morphology, as
assessed by NR, MTT assays, and microscopic observation, respectively. However, at the
highest tested concentration, it increased the number of late apoptotic and necrotic cells
and slightly disrupted the cell cycle compared to the control.

While a few studies indicate cytotoxicity of U. dioica against gastrointestinal cancer cell
lines, our investigation showed only a minor effect of the tested extracts on adenocarcinoma.
The extracts, particularly UdF, moderately suppressed the proliferation of cancer cells
without impacting cell morphology. Similar to the results observed in normal cells, only
slight disruptions in the apoptosis rate and cell cycle were noted. The differences observed
compared to the literature data are likely due to varying experimental conditions. For
example, Mohammadi et al. found that an extract from the aerial parts of nettle inhibited
colorectal cancer, but they used the dichloromethane as the extracting solvent [25]. In
their paper, they monitored not only cell viability (MTT assay and trypan blue) and the
cell cycle, but also the expression of proteins involved in apoptosis regulation, including
Caspase-3, Caspase-9, and Bcl-2. In turn, Kardan et al. used methanol for the extraction of
bioactive molecules from nettle and analyzed cell viability (MTT) and the cell cycle [26].
Therefore, it should be noted that the chemical composition of these extracts differed from
the ethanol–water extract used in our study, and consequently, the activity of the extracts
was different.

Although our study did not show significant anticancer effects of U. dioica extracts on
HT29 cells, it is worth mentioning that UdF significantly decreased IL-1β, which belongs to
the group of pro-inflammatory cytokines that stimulate neoplastic growth. IL-1β mediates
many processes occurring in the body. This cytokine connects the intrinsic, oncogene-driven
and the extrinsic, inflammatory-disease-driven pathways that link the development of
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inflammation and the progression of neoplastic disease [47,48]. The level of IL-1β depends
on both the stage of cancer development and its primary location. This indicates a number
of connections not only with regulation at the level of oncogenes but also with interactions
in the tumor microenvironment [49]. This relationship also translates into the dualistic
role of IL-1β. It has been shown that it can also exert a protective role and cause the
regression of some tumors. It is indicated that the induction of T helper lymphocytes by
IL-1β, specifically Th1 and Th17, may play an important role [50]. On the other hand, this
cytokine is still an inducer of carcinogenesis, immunosuppression, angiogenesis, and cancer
metastases. This may result from the promoting effect of IL-1β on supporting the expression
of adhesion molecules, facilitating endothelial permeability, or activation of genes encoding
antiapoptotic proteins. In the tumor microenvironment, it significantly affects stromal
cells, including TAM macrophages, myeloid suppressor cells (MDSC), Th17 lymphocytes,
or B lymphocytes. This increases local inflammation, stimulates tumor progression, and
increases drug resistance, as was found in the case of colorectal cancers [51].

IL-1β can induce inflammation through the activation of the NF-κB factor mediated
by the IL-1RI receptor. IL-1β affects the disintegration of the NF-κB-IκB complex, leading
to the release of NF-κB and its migration from the cytoplasm to the nucleus, where it
binds to DNA and activates the transcription of specific genes [52]. IL-1β can also act
through the STAT pathway, causing its phosphorylation in a manner dependent on NF-
κB [53]. Additionally, the IL-1/JAK/STAT pathway also influences the development of
tumor stroma, particularly tumor-associated fibroblasts (CAFs). Limiting the level of IL-
1β may have indirect effects related to its influence on the NF-κB pathway and tumor
development [54].

Our study showed that nettle polyphenols may exert the potential anticancer effects
indirectly through their anti-inflammatory action, as anti-inflammatory activity plays a cru-
cial role in preventing the development of cancer by inhibiting the production of cytokines
and growth factors that promote tumor growth. Moreover, reduction of inflammation
alleviates the oxidative stress and lowers the levels of reactive oxygen species (ROS), which
are responsible for DNA damage and subsequent genetic mutations. Consequently, anti-
inflammatory and antioxidant compounds have great significance due to their potential in
cancer prevention [55]. Some reports also indicate the anti-inflammatory effects of nettle. It
has been found that U. dioica extracts inhibit TNF-kappa activation in human T lymphocytes,
macrophages, and epithelial cells [56], suppresses cyclooxygenase (COX) and lipoxygenase,
which stimulate the pro-inflammatory mediators—prostaglandins and leukotrienes—and
decreases the levels of pro-inflammatory cytokines TNF-α and IL-1 [57]. Furthermore,
nettle leaf extract decreased IL-1β-induced NF-κB activation and downregulated NF-κB tar-
gets, including COX-2 and MMPs, in canine articular chondrocytes [58]. It also reduced NO
levels triggered by LPS in macrophages [59]. Also, clinical trials show the anti-inflammatory
effect of U. dioica in inflammatory bowel disease [60] and rheumatoid arthritis [61].

The biological activity of U. dioica extracts is attributed to the abundance of chlorogenic
acid (ChA) and caffeic acid (CA) derivatives, which are the predominant polyphenolic
constituents of the extracts. Their anti-inflammatory and antioxidant effects have been
demonstrated in many studies [62,63]. It has been shown that chlorogenic acid may act
directly by reacting with hydroxyl radicals and superoxide anions, as it contains five active
hydroxyl groups [64]. Furthermore, it may affect the cellular enzyme system and promote
the activation of antioxidant enzymes including superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GSH-Px) [65,66]. It is believed that the Nrf2/ARE path-
way (Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element) is one
of the key mechanisms responsible for the antioxidant action of these compounds [67–69].
Nrf2 is a redox-sensitive transcription factor that regulates the expression of antioxidant
enzymes. During oxidative stress, Nrf2 is released from Keap1, translocates from the
cytoplasm to the nucleus, and binds to the ARE in the DNA, triggering the transcription
of various antioxidant proteins [70]. Additionally, there are reports that chlorogenic acid
activates the Mitogen-Activated Protein Kinases (MAPK) signaling pathway, particularly
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p38 and ERK1/2, which further modulate the expression of antioxidant enzymes [71].
Activation of antioxidant enzymes plays a crucial role in cancer prevention. By neutralizing
ROS, which contributes to damage of cellular components such as DNA, proteins, and
lipids, these enzymes help prevent mutations and genomic instability, thereby inhibiting
the initiation and progression of cancer. Furthermore, the regulation of ROS levels by
antioxidant enzymes can suppress pro-inflammatory signaling pathways, reducing chronic
inflammation—a known contributor to cancer development [72].

Anti-inflammatory activity of caffeic acid derivatives is also well documented. For
example, it has been found that ChA effectively decreases IL-1β and IL-6 in TNF-α-induced
pre-adipocyte 3T3-L1 cells [65], IL-8 in Caco-2 cells stimulated with IFN-γ and myris-
tate [73], and improves symptoms of inflammation in bowel disease [74]. Caffeic acid also
shows strong antioxidant effects, as evidenced by chemical tests and cell line assays [75–77].
Furthermore, it is able to modulate the expression of mediators of inflammation, including
cyclooxygenase, prostaglandins, and interleukins [75,78,79]. Both compounds, in high
concentrations, also show a cytotoxic effect on colon cancer cells [76,80] and are likely
responsible for the decrease in the viability of colorectal adenocarcinoma cells observed in
our study.

In summary, our study shows that U. dioica extracts, particularly the polyphenol-
enriched extract (UdF), possess strong antioxidant properties and exhibit ROS scavenging
effects, which can protect against oxidative stress and related cellular damage. The lack
of cytotoxicity on normal human colon epithelial cells further highlights their safety for
potential use as dietary supplements or food additives. Although the anticancer effects of U.
dioica extracts on HT29 cells were not significant, their ability to decrease pro-inflammatory
cytokines like IL-1β suggests that they may exert anticancer effects indirectly through
anti-inflammatory pathways. Therefore, U. dioica could offer potential health benefits due
to its antioxidant and anti-inflammatory properties, which are critical in cancer prevention
and the mitigation of inflammation-associated chronic diseases.

However, it should be mentioned that in vitro models, though valuable for study-
ing biological effects, lack the complexity of in vivo systems, making it difficult to fully
replicate the dynamic interactions that occur within living organisms, such as metabolism,
absorption, and tissue distribution [81]. Furthermore, the bioavailability of polyphenols is
of great significance to their effectiveness in organisms, as it can vary depending on factors
such as their chemical structure, food matrix, and the individual’s gut microbiota [82]. This
variability can further complicate the translation of in vitro findings to practical application.
As a result, the health benefits of polyphenols observed in vitro may not always be fully
realized in vivo. Therefore, further research on the activity of U. dioica should focus on
investigating its effects on colorectal cancer in animal models. Exploring its synergistic
effects with other anticancer agents could also be an interesting direction for future studies.

4. Materials and Methods
4.1. Reagents and Equipment

Solvents including LC-MS-grade methanol, acetonitrile, and formic acid, and analytical
standards were from Merck (Sigma-Aldrich Co., St. Louis, MO, USA). Deionized water was
obtained using Ultrapure Milipore DirectQ 3UV-R (Merck KGaA, Darmstadt, Germany).
Spectrometric analysis was carried out using a microplate reader (BioTek Instruments,
Winooski, VT, USA). FACS Calibur (BD PharmingenTM) with CellQuest Pro Version 6.0
software for the Macintosh operating system (BD Pharmingen™) was used for the flow
cytometric assay. Ultra-high performance liquid chromatograph (UPLC) Infinity Series
II with a photodiode (DAD) and mass spectrometry (MS) detector (Agilent Technologies,
Santa Clara, CA, USA) was used to investigate the polyphenolic composition.

4.2. Plant Material and Extracts Preparation

Urtica dioica L. plants were collected in August 2023 from a botanical garden in Lublin
(Figure 11). The leaves were washed under running water and freeze-dried (0.001 mbar)
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for 48 h using a Christ Alpha 2–4 LDplus dryer (Martin Christ Gefriertrocknungsanlagen,
GmbH, Osterode am Harz, Germany). The freeze-dried leaves were pulverized and
accurately weighed. The extraction of plant material was carried out using 80% ethanol
and ultrasound (3 times with a fresh portion of solvent) [83]. The combined extracts were
evaporated to dryness (UdE). For the isolation of the polyphenolic-rich fraction (UdF),
the obtained extract was subjected to an SPE procedure using LiChrolut® RP-18 SPE
tubes (Merck).
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4.3. Biological Activity Assays
4.3.1. Cell Cultures

The HT29 cell line (ATCC® No. HTB-38™) is a human colorectal adenocarcinoma cell
line (grade I), derived from a 44-year-old female adult. The cells were cultured in an RPMI
1640 medium supplemented with 10% fetal calf serum (FCS) (GibcoTM, Paisley, UK) and
antibiotics (100 U/mL penicillin, 100 g/mL streptomycin, and 0.25 g/mL amphotericin B)
(GibcoTM, Paisley, UK) at 37 ◦C in a humidified atmosphere of 95% air with 5% CO2. The
CCD 841 CoTr cell line (ATCC® No. CRL-1807™) is a normal human colon epithelial cell
line (SV40-transformed), derived from a female at 21 weeks of gestation. The cells were
cultured in an RPMI 1640 + DMEM (1:1) medium (Sigma-Aldrich) supplemented with 10%
FCS and antibiotics at 37 ◦C in a humidified atmosphere with 5% CO2 [84].

4.3.2. Cell Viability Assays

MTT assay: The cells were grown for 24 h in 96-well multiplates in 100 µL of culture
medium supplemented with different concentrations of extracts (25–200 µg/mL). Subse-
quently, the medium was discarded and a new one enriched with MTT solution (5 mg/mL)
(25 µL/well) was added. The incubation was conducted for the next 3 h. The formed for-
mazan crystals were solubilized overnight in a 10% sodium dodecyl sulfate in a 0.01 M HCl
mixture. The product was quantified spectrophotometrically by absorbance measurement
at 570 nm.

Neutral red (NR) uptake assay: Cells were grown for 24 h in 96-well multiplates in
100 µL of culture medium with appropriate concentrations of tested extracts (25–200 µg/mL).
Subsequently, the medium was discarded and a 0.4% NR solution medium was added
to each well. The plate was incubated for 3 h at 37 ◦C in a humidified atmosphere with
5% CO2. After incubation, the dye-containing medium was removed and the cells were
fixed with 1% CaCl2 in 4% paraformaldehyde (200 µL). Afterwards, the incorporated dye
was solubilized using 1% acetic acetate in a 50% ethanol solution (100 µL). The plates were
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gently shaken for 20 min. at room temperature, and the absorbance of the extracted dye
was measured at 540 nm.

4.3.3. Cytometric Analysis of the Cell Cycle

To examine the influence of extracts on the distribution of cells in the cell cycle phases,
the human tumor colon cells (HT29) and normal human colonic epithelial cells (CCD 841
CoTr) were incubated with the tested extracts at a concentration of 200 µg/mL. Floating
and adherent cells were harvested, centrifuged (3000 rpm/5 min.), rinsed in PBS w/o Ca2+

and Mg2+ ions, once again centrifuged, and fixed in 70% ethanol. The control consisted of
the untreated cells. The samples were stored for 1 week in −20 ◦C. Afterwards, the samples
were subjected to further steps of the PI staining procedure (PI/RNase Staining Buffer,
BD Pharmingen™, BD Biosciences, San Jose, CA, USA). The PI fluorescence intensity was
measured using FACS Calibur (BD Pharmingen™), and the obtained data were analyzed
using Cell Quest Pro Version 6.0. for the Macintosh operating system (BD Pharmingen™).
The results were calculated as a percent of cells in the respective cell cycle phases (sub-G1,
G0/G1, S and G2) among all the analyzed cells. In total, 10.000 events were measured
per sample.

4.3.4. Flow Cytometry

The Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis kit
(BD Biosciences, BD Pharmingen™, San Jose, CA, USA) was used for the flow cytometry
method. The HT29 or CCD 841 CoTr cells were seeded into 6-well plates at a density of
1 × 105 cells/well. After cells adhesion (the next day), the growth medium was replaced
with a fresh one containing extracts at the concentration of 200 µg/mL. After 24 h of
incubation, the floating and adherent cells were harvested, washed with PBS w/o Ca2+ and
Mg2+ ions, and suspended in 1 × binding buffer. The cells were stained with 5 mM of FITC-
Annexin V and 5 mM of PI. After 15 min of incubation in the dark at room temperature, the
cells were immediately analyzed.

4.3.5. May–Grünwald–Giemsa (MGG) Staining

The cells were incubated in 24-well plates in 1 mL of culture medium supplemented
with the tested extracts. After 24 h of incubation (37 ◦C in a humidified 5% CO2/95% air),
the medium was discarded and the cell cultures were rinsed with culture medium and
stained with the May–Grünwald (MG) stain for 5 min followed by staining for another
5 min in MG diluted in an equal quantity of water. The MG was removed and Giemsa
reagent (diluted 1:20 in water) was added to the cells, which were next incubated at room
temperature for 15 min. Thereafter, the cells were rinsed three times with water, dried, and
subjected to microscopic observations (Olympus, BX51; Olympus, Tokyo, Japan).

4.3.6. Intracellular Levels of Reactive Oxygen Species (ROS)

The cells were grown for 24 h in 96-well multiplates in 100 µL of culture medium
supplemented with different concentrations of extracts (25–200 µg/mL). After 30 min of
treatment with H2O2 solution, the cells were incubated with the fluorogenic H2DCFDA
in the dark for 45 min. The fluorescence of 2′,7′-dichlorofluorescein (DCF) was measured
using the excitation wavelength λ = 485 nm and the emission wavelength λ = 530 nm.
Ascorbic acid (50 µg/mL) was a positive control [42].

4.3.7. ELISA Assay

The levels of human IL-1β, IL-6, and IL-10 (Elabscience, Houston, TX, USA) were
measured immunoenzymatically (ELISA) using commercially available kits according to
the manufacturer’s instruction. Briefly, 100 µL of extracts at the concentration of 200 µg/mL
were added to the appropriate plate wells. After incubation (2 h) and a series of washings,
enzyme-conjugated secondary antibodies (100 µL) were added to the wells and incubated
for 1 h. After washing, detection was performed by adding 100 µL of the enzyme substrate
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to the wells. After 30 min of incubation, the color reaction was stopped by adding 2 M
H2SO4 to each well. The optical density of the end product was determined at 450 nm. The
concentrations of the cytokines in the analyzed supernatant samples were calculated on
the basis of a standard curve. The detection limit was 4.69 pg/mL (IL-1β, IL-6 and IL-10).

4.4. Extract Profiling and Quantitative Analysis

Separation of the extracts were carried out using a Titan column (10 cm length, 2.1 mm
i.d., 1.9 m particle size) (Supelco, Sigma-Aldrich, Burlington, MA, USA), a mobile phase
composed of water (A) and acetonitrile (B), both acidified with 0.1% formic acid at the
flow rate of 0.2 mL/min and thermostat temperature of 30 ◦C. The elution program was as
follows: 0–8 min from 98% A to 93% A; 8–15 min from 93% A to 88% A; 15–29 min from
88% A to 85% A; 29–40 min from 85% A to 80% A; and 40–60 min from 80% A to 65% A.
DAD and MS working parameters were as previously described [42].

4.5. Statistical Analysis

The results are presented as means ± SD from the three experiments. Data were
analyzed using one-way ANOVA with Dunnett’s post hoc test. Differences of p < 0.05 were
considered significant. All tested statistics were at the α = 0.05 level.

5. Conclusions

Our study shows that U. dioica extracts, particularly the polyphenol-enriched extract
(UdF), possess strong antioxidant properties and exhibit ROS scavenging effects, which
can protect against oxidative stress and related cellular damage. The lack of cytotoxicity
on normal human colon epithelial cells further highlights their safety for potential use as
dietary supplements or food additives. Although the anticancer effects of U. dioica extracts
on HT29 cells were not significant, their ability to decrease pro-inflammatory cytokines like
IL-1β suggests that they may exert anticancer effects indirectly through anti-inflammatory
pathways. Therefore, U. dioica could offer potential health benefits due to its antioxidant
and anti-inflammatory properties, which are critical in cancer prevention and the mitigation
of inflammation-associated chronic diseases.

To gain deeper insights into the role of nettle extracts, future studies could investigate
the induction or suppression of specific proteins involved in various signaling pathways
(western blotting). Furthermore, determining the expression of selected genes related to the
molecular pathways responsible for metabolic activity (rPCR) could be helpful in under-
standing the mechanisms underlying nettle’s effects. Additionally, studies on the activity of
enzymes involved in maintaining redox balance in the cell, such as superoxide dismutase,
catalase, and glutathione, would provide insights into the mechanisms associated with
mitigating oxidative stress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29215000/s1, Table S1: Mass data of the compounds
found in the extracts from Urtica dioica; Figure S1: Overlapped base peak chromatograms (BPC) of
ethanol–water extract of U. dioica (red line) and the polyphenolic fraction isolated from ethanol–water
extract (blue line).
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