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Abstract: Catalytic DNA has gained significant attention in recent decades as a highly efficient and
tunable catalyst, thanks to its flexible structures, exceptional specificity, and ease of optimization.
Despite being composed of just four monomers, DNA’s complex conformational intricacies enable
a wide range of nuanced functions, including scaffolding, electrocatalysis, enantioselectivity, and
mechano-electro spin coupling. DNA catalysts, ranging from traditional DNAzymes to innovative
DNAzyme hybrids, highlight the remarkable potential of DNA in catalysis. Recent advancements in
spectroscopic techniques have deepened our mechanistic understanding of catalytic DNA, paving
the way for rational structural optimization. This review will summarize the latest studies on
the performance and optimization of traditional DNAzymes and provide an in-depth analysis of
DNAzyme hybrid catalysts and their unique and promising properties.
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1. Introduction

Nucleic acid catalysts have long intrigued scientists, bridging the fields of kinetics and
supramolecular systems [1,2]. While protein enzymes were once considered the primary
biological catalysts, Woese et al. proposed the idea of catalytically active RNA in the late
1960s [3]. This theory led to the discovery of ribozymes [4], with the key studies conducted
by Thomas R. Cech and Sidney Altman, who demonstrated that RNA sequences could
catalyze reactions without proteins [5]. These ribozymes are also referred to as “RNAzymes”
to highlight the catalytic role of RNA. These early RNAzymes, capable of splicing and
modifying phosphodiester bonds, paved the way for new research opportunities [6]. Over
time, artificial selection and studies of native RNAs have expanded the number of known
ribozymes [7–12]. Today, catalytic nucleic acids can be designed to selectively cleave RNA
molecules, offering promise for gene expression control, infection prevention, and related
therapies [13–16].

Since RNAzymes initially proved to be successful and modifiable nucleic acid catalysts,
their existence sparked intriguing theories about the potential for DNA-based catalysts [7].
Unlike RNA, which typically exists as short, single-stranded segments with accessible
active sites due to unpaired nucleotides folding into helical structures [17,18], DNA was
initially considered less suitable for catalysis. This skepticism stemmed from DNA’s
structural characteristics: the absence of the 2′-OH group, which limits the formation of
certain catalytically active conformations, and its common double-stranded form with
fewer unpaired nucleotides [19]. Moreover, the lack of naturally occurring DNAzymes
presents further challenges in designing DNA catalysts. However, these very structural
differences have since proven advantageous, enabling DNAzymes to compete impressively
with their RNAzyme counterparts in versatility and effectiveness [20].
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Following the initial expansion of RNAzyme research, G. F. Joyce and R. R. Breaker lever-
aged the existing theoretical framework of ribozyme behavior to synthetically create the first
known RNA-cleaving DNAzyme [21]. This DNAzyme, now known as the 10–23 DNAzyme,
has since been applied in various contexts [22]. As anticipated, the list of known DNAzymes
has grown substantially, with the universal database “DNAmoreDB” now containing hun-
dreds of entries [23]. Currently, DNAzymes go beyond cleaving oligonucleotides at specific
sites [24–26]. They can facilitate reactions such as ligation [27–29], phosphorylation [30,31],
deglycosylation [32], and acylation [33]. They serve as effective mimics of many natu-
ral enzymes, including esterases [34,35], laccases [36], photolyases [37–39], phosphoserine
lyases [40], phosphatases [41], tyrosine kinases [42], chelatases [43–46], and particularly per-
oxidases [47,48]. In addition, DNAzymes have shown promise in modifying peptide chains
through side-chain modifications, linkages, and elimination reactions [49–51], offering signifi-
cant potential for targeted protein editing.

Beyond these functions, DNAzymes have been shown to catalyze a variety of chemical
reactions, including the cleavage of anilides and aromatic amides [35], thymine dimer
photoreversion [52], acylation of amines and lysines [53], oxidation of L-tyrosine and
amyloid β [54], reductive amination [55], enantioselective Diels–Alder reactions [56],
Friedel–Crafts alkylation [57], Michael addition [58], metal oxide degradation [59], aldol
reactions [60], and others [61]. Even more intriguing is the emerging practice of combin-
ing DNAzymes with other types of materials, successfully integrating both organic and
inorganic components [62].

The rapid expansion of available DNAzymes can be largely attributed to the develop-
ment of the in vitro selection method (also known as directed evolution or SELEX) method
in the 1990s [63–66]. This process typically involves multiple rounds of selection followed
by amplification, ensuring the precise identification of the most effective DNAzymes [67].
According to DNAzyme expert Silverman, the success of in vitro selection features a key
advantage of DNA catalysts over proteins: their sizes [68]. DNA consists of just four
chemically similar bases—guanine (G), thymine (T), adenine (A), and cytosine (C)—while
proteins are composed of a much larger and more diverse array of amino acids. This
vast diversity in proteins, while potentially offering numerous catalytic functions, makes
them practically impossible to evaluate and select through random methods like in vitro
selection [69–71].

Despite the utility of in vitro selection, it has limitations, particularly in the develop-
ment of large, complex DNAzymes. Some reactions may be too complicated for DNAzymes
selected through in vitro techniques [61,66,72,73]. Nevertheless, in vitro selection remains
a valuable method for discovering new DNAzymes, and more targeted approaches, such
as chemical evolution, have emerged to refine and improve existing DNAzymes rather
than restarting the selection process [24,74,75]. In recent years, research on catalytically
active DNA has become more advanced and specialized, making the design, function, and
optimization of DNAzymes essential for further development. One of the main challenges
in improving DNAzymes is the limited understanding of their sequence-specific activity,
conformational dynamics, and behavior within larger molecular complexes. Recent break-
throughs have begun to address these gaps, but few review articles focus on comparing the
attributes of DNAzymes, particularly in the context of supramolecular complexes.

The purpose of this review is to systematically organize catalytic DNA research,
starting with a focus on DNA-based catalysts that function primarily due to their inherent
DNA structure, without the influence of additional materials. This subgroup allows for the
exploration of sequential, environmental, conformational, and mechanical modifications
without the confounding effects of hybrid structures. Subsequent sections will delve into
the design, function, and optimization of DNAzyme hybrid structures. First, we will
explore the integration of DNA with inorganic materials, creating DNA–nanocore hybrids.
Later, we will examine hybrids that incorporate soft matter or biopolymers like DNA, RNA,
and proteins.
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Notably, metal nanoparticles such as gold (Au), platinum (Pt), and silver (Ag); metal
oxides like iron oxide (Fe2O3/Fe3O4), manganese oxide (Mn2O3), and titanium dioxide
(TiO2); and carbon-based materials like graphene oxides, carbon nanotubes, and fullerenes
have been combined with DNA to generate hybrid catalysts [76–87]. These inorganic
nanoparticles, known as nanozymes, often exhibit catalytic activities on their own [88–91].
When assembled with DNA, these nanozymes can achieve enhanced catalytic performance
through complex and sometimes unexpected interactions. This synergy not only comple-
ments the existing strengths of DNA catalysts but also mitigates undesirable behaviors,
highlighting the importance and accessibility of modern DNAzyme applications.

2. DNA-Dominant Catalysts

The complete mechanism of activity for the 10–23 DNAzyme—from its unbound
aptamer state to the pre-dissociation activated complex—is now available as a theoretical
framework for designing, understanding, and optimizing DNAzymes. Like other catalysts,
DNAzymes must perform multiple tasks during each catalytic cycle: substrate binding,
catalysis, and product release [92]. Different regions of the DNAzyme structure are typically
responsible for each of these steps [93–95]. Most DNAzymes exhibit two key features:
binding arms and a catalytic “motif” or active sequence [1,96]. Figure 1a illustrates the
two-dimensional structure of a basic RNA-cleaving DNAzyme, with the cleavage site
indicated by an arrow. The binding arms are represented by the 5′ to 3′ strand, while the
loop of bases below the structure shows the active catalytic sequence [21]. Binding arms
are particularly adept at interacting with oligonucleotide substrates, primarily serving to
“capture” and orient the substrate in the ideal position for catalysis [1]. The catalytic motifs,
on the other hand, are often used as broader categories for comparing the mechanisms of
different DNAzymes [97]. The binding arms surrounding each motif can be strategically
altered to modify the DNAzyme’s substrate specificity [32].
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Several variants of the RNA-cleaving 10–23 DNAzyme have been developed to im-
prove catalytic performance. Figure 1b illustrates the two-dimensional structure of the 
most effective variant, Dz46. In this study, Nguyen et al. incorporated 2′-OMe, 2′-MOE, 
LNA, and phosphorothioate modifications into Dz46’s catalytic core [98]. These modifica-
tions enabled Dz46 to perform over sixty catalytic turnovers within 30 min in conditions 

Figure 1. (a) The initial structure of an RNA-cleaving DNAzyme [6]. (b) A more modern ren-
der of the specific augments applied by Nguyen et al. in order to optimize 10–23 DNAzyme
activity [98]. R-groups describe the chemical additions to the sugar backbone that create each re-
spective DNA/RNA/OMe/MOE monomer. (c) The innovative spatially and temporally resolved
mechanism of 10–23 DNAzyme activity proposed by Borggräfe et al. [99]. (d) A schematic illus-
tration published by Borggräfe et al. Roman numerals show Sites I, II, and III [99]. Adapted from
Refs. [6,98,99] with permission.

Several variants of the RNA-cleaving 10–23 DNAzyme have been developed to im-
prove catalytic performance. Figure 1b illustrates the two-dimensional structure of the most
effective variant, Dz46. In this study, Nguyen et al. incorporated 2′-OMe, 2′-MOE, LNA,
and phosphorothioate modifications into Dz46’s catalytic core [98]. These modifications
enabled Dz46 to perform over sixty catalytic turnovers within 30 min in conditions closely
resembling physiological environments. The authors further demonstrated that Dz46 is
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highly effective as an allele-specific gene-silencing agent, even against targets previously
considered undruggable.

The 10–23 DNAzyme exemplifies the use of SELEX or chemical evolution in the
informed optimization of catalysts. Figure 1c depicts the stepwise model provided by
Borggräfe et al., with the DNA catalyst and RNA substrate shown in red and black,
respectively [99]. To validate the accuracy and significance of this structural model,
Borggräfe et al. employed a “rationally selected” single-atom replacement mutation, which
led to a six-fold increase in catalytic activity. This simple yet strategic modification signifi-
cantly enhanced the DNAzyme’s performance, highlighting the potential of well-informed
design adjustments.

Many DNAzyme species rely heavily on cofactors to adopt proper global folding
patterns necessary for their active conformations [100,101]. Common cofactors include
metals such as lead, magnesium, sodium, potassium, and lithium, or combinations of
these [22]. Modifications to a DNAzyme can also affect its cofactor preferences, potentially
shifting from a dependency on two metals to a reliance on just one. Larger molecules like
hemin [59], serotonin [52], histidine [36], and even lanthanides [102] have also been found
to enhance catalytic activity.

Despite their importance, cofactors are challenging to study due to their weak and
dynamic interactions with DNA catalysts. However, recent advancements in DNAzyme
imaging, such as those by Borggräfe et al., have shed light on these interactions [99]. Specif-
ically, the roles and locations of cofactors within the 10–23 DNAzyme system have been
identified with a fair degree of accuracy. NMR titration studies have revealed a structure,
shown in Figure 1d, that highlights three metal-binding sites within the DNAzyme. The
ion at Site I reduces repulsion between the phosphate backbones in the binding arm re-
gion. The ion at Site II triggers “conformational activation” on the 5′ side of the catalytic
loop, while the ion at Site III aligns the 3′ side of the catalytic loop with the scissile bond,
promoting cleavage.

Furthermore, various environmental factors, such as temperature, solvent, and pH, can
be adjusted to influence DNAzyme activity [103–108]. For instance, Li et al. demonstrated
that adding butanol enhances NaA43T DNAzyme activity [103]. Other studies have shown
that DNAzymes can function effectively across a range of temperatures, from high to
room temperature [104–106]. Additionally, pH plays a crucial role in regulating DNAzyme
function [107], with some DNAzymes operating in highly acidic conditions even in the
absence of cofactors [108]. These environmental adjustments work because the correct
positioning of DNA’s active sites is essential for catalytic activation. As illustrated in
Figure 1c,d, the three-dimensional structure of the catalytic motif must be properly oriented
for a DNAzyme to function.

An intriguing 2022 study by Li et al. used a magnetic bead to cyclically toggle a
DNAzyme’s activity manually and repeatedly [109]. In the experimental design shown
in Figure 2a, a magnetic bead was attached to the binding region of either a lead- or
magnesium-dependent DNAzyme. By applying an upward magnetic field, the DNAzyme
was activated or deactivated continuously or intermittently. The resulting fluorophore-
labeled product detection provided the data shown in Figure 2b,c. This study highlights
that distortion of a DNAzyme’s active sequence can hinder or completely block catalytic
reactions. When the key bases of a DNAzyme are stretched into an inaccessible position,
substrate molecules are either unable to bind or unable to react as they would with an
undistorted DNA sequence.
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Apart from external modifications, internal changes to DNA structures can be achieved
through chemical evolution. These changes may include sequence mutations or chemical
modifications, such as introducing functional groups to the bases [61,66,92,110–122]. The
synthesis of modified nucleoside triphosphates (dNTPs) has gained considerable interest
due to its numerous advantages. Hollenstein described this approach as “elegant” for
enhancing DNA-based enzyme-mimicking catalysts [117]. Modifications to dNTPs can
involve alterations to the sugar, base, or phosphate groups of nucleotides. These enhance-
ments are often designed to improve the properties of DNA catalysts or to introduce new
functionalities, such as incorporating non-standard bases or sugar analogs [123]. For exam-
ple, phosphorothioate bonds, which replace a non-bridging oxygen atom in the phosphate
backbone with sulfur, have been used to increase stability.

G-quadruplex DNAzymes primarily function as peroxidase mimics and exemplify
sequence-dependent catalysis [124]. In a 2016 study by Li et al., the guanine-rich DNAzyme
Dz-00 was modified to assess the impact of adjacent adenine on its catalytic activity.
Figure 3a shows that adding adenine to the 3′ end, forming Dz-11, significantly enhanced
activity, while Dz-14, with an adjacent cytosine, showed a slight increase, likely due to its
chemical similarity to adenine. Li noted that adenine’s effect is similar to distal histidine in
peroxidase enzymes (Figure 3b). When a spacer chain was introduced between adenine
and Dz-11’s active site, activity decreased dramatically, indicating that even small sequence
changes can greatly improve turnover rates.

Despite the lack of a fully resolved 3D structure, sequence modifications have revealed
the key roles of specific bases in DNAzyme function. Li et al.’s work suggests the unpro-
tonated form of adenine’s N1 likely optimizes Dz-00’s performance. Their modifications
imply that Dz-00 and Dz-11 operate via a general acid–base mechanism, a theory supported
by other studies [125]. Beyond refining known mechanisms, sequence modifications also
raise the potential for altering a DNAzyme’s function and its activity conditions [126].

This versatility highlights the complexity of DNAzymes. In the realm of RNA-
cleaving DNAzymes, the 8–17 motif has drawn attention alongside the well-known 10–23
DNAzyme [127]. The NaA43 DNAzyme, introduced in 2015 by Lu et al., likely cleaves sub-
strates via a general base mechanism (Figure 3c). Remarkably, Ma et al. discovered that a
single-point mutation in NaA43 produced NaH1, a species that operates through a general
acid mechanism under different pH conditions [113]. Ma et al. conducted point mutations
on a four-base segment of NaH1 (Figure 3d), revealing the importance of specific bases in
its catalytic activity. They also demonstrated NaH1’s ability to match NaA43’s cleavage rate
but at a much higher pH, with only one base change near the catalytic sequence (Figure 3e).



Molecules 2024, 29, 5011 6 of 20

Molecules 2024, 29, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. (a) Modifications to the 3′ and 5′ ends of Dz-00 and the activity variation for the mutated 
species (Dz-11 to Dz-18). (b) Decrease in activity due to increase in spacer length. (c) A mechanism 
for DNAzyme-catalyzed cleavage of oligonucleotide monomers. (d) Single point mutations to the 
four main catalytic bases of NaH1 (left) and their respective rates. (e) A comparison of NaA43T to 
NaH1 at different pH values, including other mutations showing less significant results. Adapted 
from Refs. [113,124] with permission. 

The introduction of functional groups to the active sites or adjacent bases of a 
DNAzyme can significantly influence its catalytic behavior. In a recent study published 
by Zhang et al., researchers reported an impressive 700-fold increase in the efficiency of 
the 10–23 DNAzyme after adding two small functional groups to its catalytic motif, gen-
erating the CaBn species [128]. Carboxyl and benzyl groups were attached to positions 8 
and 12 (Figure 4a), selected based on insights from previous structural studies of the 10–
23 DNAzyme. Figure 4b illustrates the initial modifications made solely at position 8, cho-
sen due to the known tolerance of T8 to mutations [129,130]. Among the modifications, 
the carboxyl group (green line in Figure 4c) had the most substantial impact on DNAzyme 
activity. Interestingly, while the functional groups shown in Figure 4b exhibited signifi-
cant individual effects, Zhang’s study demonstrated that the combined installation of 
these groups resulted in a near-exponential enhancement of catalytic performance. 

Figure 3. (a) Modifications to the 3′ and 5′ ends of Dz-00 and the activity variation for the mutated
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for DNAzyme-catalyzed cleavage of oligonucleotide monomers. (d) Single point mutations to the
four main catalytic bases of NaH1 (left) and their respective rates. (e) A comparison of NaA43T to
NaH1 at different pH values, including other mutations showing less significant results. Adapted
from Refs. [113,124] with permission.

The introduction of functional groups to the active sites or adjacent bases of a DNAzyme
can significantly influence its catalytic behavior. In a recent study published by Zhang et al.,
researchers reported an impressive 700-fold increase in the efficiency of the 10–23 DNAzyme
after adding two small functional groups to its catalytic motif, generating the CaBn
species [128]. Carboxyl and benzyl groups were attached to positions 8 and 12 (Figure 4a),
selected based on insights from previous structural studies of the 10–23 DNAzyme. Figure 4b
illustrates the initial modifications made solely at position 8, chosen due to the known
tolerance of T8 to mutations [129,130]. Among the modifications, the carboxyl group (green
line in Figure 4c) had the most substantial impact on DNAzyme activity. Interestingly,
while the functional groups shown in Figure 4b exhibited significant individual effects,
Zhang’s study demonstrated that the combined installation of these groups resulted in a
near-exponential enhancement of catalytic performance.

Borggräfe et al. provided further insights suggesting that the CaBn species enhances
activity by increasing the number of magnesium ions available at the DNAzyme’s “Site II”,
thereby promoting more active conformations within the ensemble. Notably, this enhanced
ability to capture and interact with magnesium ions reduces the DNAzyme’s reliance on
high cofactor concentrations. Similar findings related to cofactor density have been reported
in other studies [131]. Zhang’s chemoenzymatic modification study parallels an earlier
optimization study by Nguyen et al., though Zhang’s work achieved a greater activity
boost through a simpler modification process. These findings reinforce the synergistic
nature of DNAzyme optimization and highlight the promising potential of this field.
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Given the diverse reactions facilitated by known DNAzymes and the flexibility of
single-stranded DNA aptamers, it may also be possible to expand DNAzyme applications
by substituting aptamers more suited to specific conditions. For instance, one challenge
faced by many G-quadruplex catalysts is their inability to selectively recognize porphyrins,
along with their tendency to bind undesirable planar molecules [132–134]. Such behavior
limits their usefulness in environments where non-reactive molecules could monopolize or
deactivate binding sites [135].

In a 2024 study, Gu et al. provided an excellent example of aptamer substitution by
comparing two DNA catalysts: Hem1 and PS2.M. Hem1, which was developed using
SELEX to specifically avoid forming a G-quadruplex structure, was confirmed by multiple
spectroscopic techniques to retain this property. As illustrated in Figure 5a, its activity
was evaluated in the presence of various cofactors. In contrast, PS2.M, a classical G-
quadruplex species, exhibits the common limitations of G-quadruplex catalysts, such as
reduced activity and distinct cofactor preferences, as shown in Figure 5b. By substituting
the traditional G-quadruplex aptamer PS2.M with the rationally designed Hem1, Gu et al.
successfully overcame the structural challenges of PS2.M and achieved a notable increase
in catalytic activity.

The 10–23 DNAzyme has emerged as a leading candidate in ushering the mod-
ern era of rational optimization. Other DNA catalysts are following closely behind,
with studies focusing on the structural optimization of the 8–17 DNAzyme, peroxidase-
mimicking DNAzymes, and various others, yielding equally impressive results over the
past decade [136–139]. With the availability of comprehensive three-dimensional structures
for more catalytic motifs, progress in this field is expected to accelerate significantly.

Strategies such as in vitro selection, chemical evolution technologies, environmental
adjustments, sequence modifications, functional group installations, nucleotide alterations,
mechanical manipulations, and aptamer substitutions have all demonstrated promising
results. However, these optimization techniques are limited by the inherent constraints
of DNA-dominant catalysts. To address this, researchers have explored hybridizing DNA
with other materials, aiming for more substantial modifications and enhanced optimization.
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3. DNA–Nanoparticle Hybrid

Nanozymes are nanoparticles with enzyme-like properties, capable of converting vari-
ous substrates into products. When combined with DNA, they form a new class of catalysts,
DNAzyme/nanozyme hybrids, that provide a high surface area, multiple catalytic sites, en-
hanced reaction specificity, and biocompatibility [91,140–143]. These hybrids often exhibit
modified behavior compared to the parent nanozymes or DNAzymes, as the nanoparticle
and DNA components can serve distinct functions during catalysis. This allows researchers
to independently optimize both components for enhanced performance. Sometimes, a syn-
ergistic effect occurs at the DNA–nanoparticle interfaces. DNA–nanoparticle hybrids can
be synthesized through techniques such as thiol-gold linkages [144], click chemistry [145],
and noncovalent binding to the nitrogenous bases of DNA [62,146].

A notable example of this approach was demonstrated by Shen and Mao, who linked
DNA hairpins to gold nanospheres (AuNPs, Figure 6a) [62]. The DNA formed a corona-like
structure around the AuNP surface, leading them to name this catalyst the “coronazyme”.
Both the original AuNPs and the resulting coronazyme function as peroxidase mimics,
catalyzing the oxidation of fluorogenic amplex red in the presence of hydrogen peroxide.
However, the DNA-functionalized coronazyme exhibited a five-fold increase in catalytic
efficiency compared to bare AuNPs (Figure 6b). Kinetic analyses and density functional
theory (DFT) calculations showed that this improved performance stems from the strong
interaction between the DNA and the substrate, enabling long-range catalysis exclusively
within the DNA corona. This interaction transforms individual DNA bases into reactive
sites, enhancing the coronazyme’s substrate selectivity. For instance, while resazurin is
structurally similar to amplex red, the coronazyme’s activity in converting resazurin is
significantly lower (Figure 6c), as the binding between resazurin and the coronazyme is
weaker. This selective binding behavior allows the coronazyme to mimic enzymes by
modulating its binding strength toward different substrates, depending on the surrounding
DNA structure.

The authors further discovered that the catalytic performance of coronazymes is highly
dependent on the DNA sequence [147]. A regular DNA hairpin with randomized bases
showed higher activity compared to a GC-enriched hairpin (Figure 7a), as the latter tends
to immobilize charges within it. This finding suggests that DNA acts as a charge conduit,
and its charge-conducting capability directly influences the catalytic activity during redox
reactions. Similar to DNA–hemin systems, internal charge transduction occurs within the
coronazyme, beginning with charge injection from the AuNP to the DNA hairpin. Since
the reaction substrates bind exclusively to the DNA bases, charges must transfer through
the DNA strand to reach the bound substrate. Previous studies have shown that DNA
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can transfer charges over distances of tens of nanometers, but this charge conduction is
sequence-dependent. Therefore, the activity of the coronazyme is closely linked to the
DNA sequence.
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Additionally, because DNA is intrinsically chiral, electron spin is modulated as charges
pass through the DNA strand [148–150]. This recently discovered phenomenon is known as
chiral-induced spin selectivity (CISS) [151,152]. The CISS effect suggests that DNA strands
can act as both electron spin inducers and filters when attached to nanoparticles. The chiral
structure of DNA, along with its preference for specific electron spins, can be leveraged
to enhance the overall catalytic performance of DNA-based catalysts. This interpretation
was supported by Shen and Mao’s findings, where they observed that DNA-wrapped
coronazymes responded to external magnetic fields, as electron spins were aligned to the
field direction at the Au-DNA interface (Figure 7b) [147]. Moreover, circularly polarized
light (CPL) can generate electron spin polarization at this interface. Notably, when exposed
to right-hand circularly polarized light (RHCP), which matches the chirality of DNA,
the coronazyme exhibited consistently higher activity compared to left-hand circularly
polarized light (LHCP) (Figure 7c). Beyond utilizing magnetic fields and CPLs to modulate
coronazyme performance, the researchers also applied mechanical forces to stretch the DNA
hairpin during catalysis. The coronazyme’s activity responded to these force stimuli, as the
change in DNA conformation altered its chirality and, consequently, its charge-conduction
capabilities (Figure 7d). These discoveries demonstrate that DNA-based hybrid catalysts
can respond to various external stimuli, resulting in modulated catalytic performance.

The peroxidase-like activity of DNA-AuNP hybrids was also explored by Hizir et al.,
who capped AuNPs with single-stranded DNA (ssDNA) [78]. They found that the ssDNA-
AuNP system exhibited significantly enhanced TMB oxidation as the negatively charged
phosphate backbone of the ssDNA facilitated the electrostatic attraction of the substrate.
This highlights DNA’s ability to enhance catalysis by promoting substrate adsorption.
Similarly, Chen et al. synthesized ssDNA-encoded gold nanoparticle clusters (GNCs)
as programmable enzyme equivalents (PEEs) (Figure 8a) [153]. These ssDNA scaffolds
assemble into folded nanostructures with polyadenine (polyA) loops and double-stranded
stems acting as nucleation sites, leading to increased binding affinity for reaction substrates.

DNA’s intrinsic chirality has also been harnessed for substrate recognition. Recently,
Ouyang et al. modified DNA into a dopamine-binding aptamer (DBA) and conjugated
it to polyadenine-stabilized Au nanoparticles (pA-AuNPs) to create an aptananozyme
(Figure 8b) [154]. This aptananozyme catalyzed H2O2-mediated dopamine oxidation to
aminochrome through the aerobic oxidation of glucose. Compared to separate nanozyme/
aptamer units, the aptananozyme showed a 10-fold increase in dopamine oxidation by
H2O2 and a 13-fold increase in the presence of glucose. This remarkable enhancement
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was attributed to the concentration of dopamine at the catalytic interfaces, facilitated by
chiral-selective aptamer–dopamine binding.
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Similarly, Zhan et al. reported the use of DNA-capped AuNPs as chiral-selective nano
catalysts for glucose oxidase-mimicking reactions [155]. Uncapped AuNPs showed no
preference for glucose enantiomers, indicating that the chirality preference was introduced
exclusively through the addition of DNA. The ssDNA-AuNPs displayed higher activity
for L-glucose than D-glucose, due to the stronger interaction with L-glucose, which was
likely driven by its stereo orientation preference. However, the dsDNA-AuNPs, i-motif-
AuNPs, and G-quadruplex AuNPs showed more preference for the D-glucose (Figure 8c).
Collectively, these studies underscore DNA’s potential in catalyst design, as it can effectively
adsorb reaction substrates, enrich reactants at catalytic surfaces, and introduce chirality for
selective reactions.

It is important to note that DNA–nanozyme hybrids are not limited to AuNPs; other
metals, such as copper (Cu), iron (Fe), and zinc (Zn), are also commonly used. For exam-
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ple, Fu et al. reported platinum (Pt) nanozymes synthesized using G-C rich nucleation
centers [80], while Wei et al. developed DNA-based FeCuAg nanoclusters [156]. Both of
these DNA-nanoparticle hybrids demonstrated peroxidase-like activities. Additionally,
Liu et al. designed Cu-DNAzyme nanohybrids for delivering DNAzymes and Cu2+ into
cancer cells for combined catalytic therapy [157]. These nanohybrids exhibited enhanced
cell membrane permeability and excellent loading capacity (Figure 8d). The catalytic
10–23 DNAzyme in the nanohybrids cleaved human vascular endothelial growth factor-2
(VEGFR2) mRNA, leading to gene silencing. Simultaneously, the glutathione-induced
reduction of Cu2+ to Cu+ catalyzed the conversion of endogenous H2O2 into cytotoxic
hydroxyl radicals, enabling dual-catalytic tumor therapy.
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Figure 8. (a) Schematics for ss DNA scaffold programmed Gold Nanoparticle Clusters (GNCs)
for their peroxidase activity. (b) Schematics of the DNA aptamer-modified Au nanoparticles for
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It is also common to hybridize DNA with metal oxides, such as Fe3O4 and TiO2 [77,158].
The rationale behind DNA–metal oxide hybrids is similar to that of DNA–metal catalysts:
the presence of DNA enhances substrate interaction, thereby improving the overall cat-
alytic activity. For example, Zhang demonstrated the use of DNA with iron cobalt oxide
nanosheets (FeCo-ONs) as a peroxidase mimic [159]. In a study by Liu et al., DNA-
capped Fe3O4 nanoparticles showed a roughly 10-fold increase in activity compared to
bare nanoparticles (Figure 9a) [82]. The DNA ligands outperformed negatively charged
polymers, such as polyacrylic acid (PAA) and polystyrene sulfonate (PSS), in nanoparticle
modification, underscoring DNA’s superior substrate interactions. Beyond their negatively
charged backbones, DNA molecules feature additional hydrogen bonding capabilities and
π-π stacking interactions with substrates, significantly enhancing their binding properties.
In a study conducted by Zhang and his colleagues, it was found that the peroxidase-like
activity of ssDNA-Fe3O4 was doubled, dsDNA-Fe3O4 exhibited a 4.6-fold increase, hairpin
DNA-NP demonstrated an 8-fold increase, and the hybridization chain reaction (HCR)
H-DNA-Fe3O4 revealed a 13-fold enhancement compared to bare Fe3O4 (Figure 9b) [77].
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The variations in DNA binding to the nanoparticles, attributed to different surface coverage,
explain these differences in activity enhancement.
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4. DNA–Carbon Hybrids

DNA can also be hybridized with various carbon materials to enhance their catalytic
properties. Carbon-based materials, such as carbon dots [160] and graphene [161], have
previously been explored for their high efficiency, large surface area, and versatility in
different forms, making them ideal candidates for hybridization with DNA [162,163].

In a study by Qu et al., a DNA-modified graphene/Pd nanoparticle hybrid (DNA-G-
Pd) was assembled for formic acid electro-oxidation and the Suzuki reaction
(Figure 10a) [164]. These hybrids demonstrated higher catalytic activity, extended lifespan,
and easy recyclability. Cyclic voltammetry (CV) analysis revealed that the mass-normalized
peak current for DNA-G-Pd was 2.5 times higher than PVP-G-Pd and approximately
3.5 times better than Pd/C, highlighting the crucial role of DNA in electrochemical ap-
plications (Figure 10b). The DNA lattice not only distributed active sites evenly but also
depleted oxygen in the solution, preventing Pd from forming passive PdO and supporting
formic acid intermediates to promote catalysis. In another study by Das and his coworkers,
a G-quadruplex/hemin network crosslinked by carbon quantum dots showed increased
catalytic activity and enhanced stability (Figure 10c) [165]. The carbon dots (CDs) interacted
non-covalently with the hemin/GQ network, facilitating electron transfer through keto
carbonyl functional groups and creating a confined yet beneficial microenvironment for the
ABTS oxidation reaction, leading to a faster catalytic rate.

Li et al. developed a nanocomposite composed of platinum, ssDNA, and reduced
graphene oxide (ssDNA-RGO/cf-Pt), which exhibited 2.5 times greater catalytic activity
than RGO-Pt and 3.8 times higher activity than regular Pt nanoparticles for methanol
oxidation [166]. In methanol oxidation, CO adsorption typically poisons the catalytic
efficiency, but the additional oxygen groups in the ssDNA and residual oxygen species
in the RGO enhanced CO oxidation, providing resistance to CO poisoning. The anti-
poisoning ratio was 1.75 times higher than that of RGO/Pt and Pt nanoparticles. These
studies highlight the diverse role of DNA in generating superior catalysts and enhancing
catalytic performance.
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5. DNA–Soft Matter Catalysts

It is common practice to hybridize DNAzymes with natural biopolymers like peptides
and synthetic polymers to create hybrid catalysts [167,168]. For instance, Ding and his
colleagues synthesized a DNA/peptide nanoparticle that exhibited enhanced peroxidase-
like activity through a synergistic mechanism [169]. The incorporation of histidine residues
from the peptides facilitates hydrogen bonding, mimicking the role of distal arginine
residues found in natural peroxidases. This interaction stabilizes the hemin aggregates on
the guanine quartet of the DNA framework, enabling the hybrid to demonstrate superior
peroxidase-like properties. The observed synergistic catalytic behavior stems from the
complementary chemical and structural features of the peptides and DNA components.

Similarly, Xiang and his team reported that cationic peptide conjugates covalently linked
to DNAzymes resulted in a catalytically active DNA-peptide conjugate (Figure 11a) [170].
This conjugate exhibited increased peroxidase and oxidase activities, by up to fourfold and
threefold, respectively. The enhancement was attributed to the electrostatic interaction between
the peptides and DNA phosphates, as well as the π–π stacking between histidine and DNA
nucleobases. These interactions stabilized the parallel DNA G-quadruplex structures and
promoted hemin binding. Wang further demonstrated the engineering of a peroxidase-
mimicking nanoparticle, utilizing hemin encapsulated between DNA G-quadruplexes and
lysine-rich peptides (Figure 11b) [171]. This scaffolded architecture resulted in enhanced
peroxidase-like activity due to the increased substrate binding capacity.
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ginine residues found in natural peroxidases. This interaction stabilizes the hemin aggre-
gates on the guanine quartet of the DNA framework, enabling the hybrid to demonstrate 
superior peroxidase-like properties. The observed synergistic catalytic behavior stems 
from the complementary chemical and structural features of the peptides and DNA com-
ponents. 

Similarly, Xiang and his team reported that cationic peptide conjugates covalently 
linked to DNAzymes resulted in a catalytically active DNA-peptide conjugate (Figure 11a) 
[170]. This conjugate exhibited increased peroxidase and oxidase activities, by up to four-
fold and threefold, respectively. The enhancement was attributed to the electrostatic in-
teraction between the peptides and DNA phosphates, as well as the π–π stacking between 
histidine and DNA nucleobases. These interactions stabilized the parallel DNA G-quad-
ruplex structures and promoted hemin binding. Wang further demonstrated the engineer-
ing of a peroxidase-mimicking nanoparticle, utilizing hemin encapsulated between DNA 
G-quadruplexes and lysine-rich peptides (Figure 11b) [171]. This scaffolded architecture 
resulted in enhanced peroxidase-like activity due to the increased substrate binding ca-
pacity. 
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idation. Adapted from Refs. [170,171] with permission. 

Figure 11. (a) Schematics of the DNA-peptide conjugate hybrid formation. (b) Activity comparison
among peptide–DNA/hemin hybrid, G–DNA/hemin hybrid and peptide/hemin hybrid for TMB
oxidation. Adapted from Refs. [170,171] with permission.

6. Conclusions

Significant progress has been made in DNA-based catalysts over the years. Initially
a theoretical concept in the 1960s, catalytic nucleic acids have evolved into a versatile
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class of multifunctional catalysts. Recent advancements have generated various DNA-
based catalysts, incorporating structural, conformational, and chemical modifications,
aptamer engineering, and hybridization with metals, polymers, and biopolymers. These
improvements have resulted in catalysts with higher stability, enhanced performance,
better efficiency, chiral selectivity, and catalytic modulation via light, magnetic fields,
or mechanical force. This progress offers enormous potential for DNA-based catalysts
to address the limitations associated with natural enzymes. Further research into the
dynamics and functional mechanisms of non-hybridized DNAzymes will help unlock the
full potential of DNA-dominant catalysts and strengthen the foundation for optimizing
DNA hybrid catalysts.

The selection of new DNAzymes via in vitro selection and chemical evolution is well-
documented and has been enriched by advances in three-dimensional structure-resolution
technologies. Understanding DNA’s activity across pH, temperature, solvent, cofactor, and
substrate variations has been extensively reviewed. Mutation studies have identified key
bases that must be conserved for catalytic activity. These insights, combined with spatially
resolved, catalytically active DNAzyme structures, have revealed unexpected mechanisms.
Simple functional modifications have improved DNAzyme activity up to 700-fold.

DNA’s biocompatibility makes it ideal for hybridization with other catalysts, com-
bining catalytic traits to create superior hybrid catalysts. DNAzyme-hybrid catalysts,
particularly those with metallic nanoparticles, represent a significant advancement due
to their enhanced properties and versatility. Gold nanoparticles, for instance, conjugated
with DNAzymes, can serve as sensitive biosensors or effective catalysts in redox reactions.
These hybrids leverage the selective nature of DNAzymes and the catalytic and optical
properties of nanoparticles. Incorporating other materials can further improve stability
and catalytic activity, making DNAzyme hybrids suitable for challenging chemical environ-
ments. The precise control over nanoparticle size, shape, and composition offers another
layer of optimization for DNA hybrid catalysts, enhancing performance in fields like envi-
ronmental sensing, diagnostics, and drug delivery. The synergy between DNAzymes and
nanoparticles is expected to drive future advancements in these areas.

Furthermore, hybrid systems like DNA@AuNPs provide insights into fundamental
concepts like chirality and charge transfer, offering new opportunities to understand DNA
catalysis. DNA’s substrate-binding affinity and charge transfer are crucial to its catalytic
performance, and these factors are influenced by DNA sequence and conformational
flexibility. Increasing active sites or modulating DNA flexibility could optimize binding
and catalysis, and altering DNA length, base sequence, or conformational dynamics can
enhance efficiency.

Despite groundbreaking discoveries, some aspects of DNA catalysis remain poorly
understood, and hybridization introduces additional complexity. Emerging single-molecule
techniques, such as single-particle force spectroscopy and single-molecule fluorescence
microscopy, offer unprecedented insights at high resolution. Computational approaches,
integrated with artificial intelligence and machine learning, may also play a key role in
decoding catalytic mechanisms. Future research will focus on the application of DNAzymes
in complex biological environments and industrial processes. Improved screening and
selection methods will enable the discovery and refinement of these catalytic tools for
practical use. DNA’s structural flexibility, sequence programmability, and capacity for
hybridization ensure that these catalysts will continue to drive innovation across fields,
from diagnostics to therapeutic interventions.
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