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Abstract: The advancement of solid-state hydrogen storage materials is critical for the realization of a
sustainable hydrogen economy. This comprehensive review elucidates the state-of-the-art characteri-
zation techniques employed in solid-state hydrogen storage research, emphasizing their principles,
advantages, limitations, and synergistic applications. We critically analyze conventional methods
such as the Sieverts technique, gravimetric analysis, and secondary ion mass spectrometry (SIMS),
alongside composite and structure approaches including Raman spectroscopy, X-ray diffraction
(XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission
electron microscopy (TEM), and atomic force microscopy (AFM). This review highlights the crucial
role of in situ and operando characterization in unraveling the complex mechanisms of hydrogen
sorption and desorption. We address the challenges associated with characterizing metal-based
solid-state hydrogen storage materials discussing innovative strategies to overcome these obstacles.
Furthermore, we explore the integration of advanced computational modeling and data-driven
approaches with experimental techniques to enhance our understanding of hydrogen–material in-
teractions at the atomic and molecular levels. This paper also provides a critical assessment of the
practical considerations in characterization, including equipment accessibility, sample preparation
protocols, and cost-effectiveness. By synthesizing recent advancements and identifying key research
directions, this review aims to guide future efforts in the development and optimization of high-
performance solid-state hydrogen storage materials, ultimately contributing to the broader goal of
sustainable energy systems.

Keywords: solid-state hydrogen storage materials; characterization techniques; hydrogen storage
performance; structure and composition

1. Introduction

The quest for clean and sustainable energy solutions has propelled the development of
solid-state hydrogen storage materials to the forefront of scientific research [1–3]. These ma-
terials offer several advantages over traditional compressed or liquefied hydrogen storage
methods, including higher storage capacities, improved safety, and ease of handling [4–6].
However, the complex nature of hydrogen storage mechanisms and the diverse range of
materials being investigated present significant challenges in understanding their behavior
and optimizing their performance [7–9].
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To advance solid-state hydrogen storage materials from laboratory research to practical
application, a comprehensive understanding of the microstructure, compositional changes,
and dynamic behavior during hydrogenation/dehydrogenation processes is essential, and
this is precisely where characterization techniques play a critical role [10,11]. For instance,
techniques like the Sieverts method and gravimetric analysis are excellent for measuring the
hydrogen storage capacity and kinetic behavior of materials, but when it comes to analyzing
microstructural changes, they need to be complemented by optical and surface analysis
techniques such as X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron
spectroscopy (XPS). Additionally, neutron scattering is advantageous for studying the
distribution and dynamic behavior of hydrogen atoms, while electrochemical methods
are particularly effective in analyzing the electronic structure and surface reactivity of
materials [12–18].

In recent years, with the continuous advancement of materials science, metal-based
hydrogen storage materials have become a research hotspot due to their unique structures
and excellent hydrogen storage performance [19–22]. These novel materials demonstrate
outstanding potential for hydrogen storage, particularly in terms of increasing storage
density and adsorption/desorption rates. However, the structural and performance com-
plexity of these materials presents new challenges for characterization [23–26]. Traditional
characterization techniques have certain limitations in terms of precision, sensitivity, and
applicability, making it difficult to fully reveal the dynamic behavior of these new materials
during the hydrogen storage process [27]. It is important to note that there is typically no
“optimal” technique when selecting and applying characterization methods. Each technique
has its strengths in revealing specific properties of materials, but they are also accompanied
by limitations [28–30]. Thus, different characterization methods often complement and
synergize with one another.

In summary, characterization techniques for solid-state hydrogen storage materials are
key tools for understanding and optimizing their performance. We have conducted a com-
prehensive review of various characterization methods, aiming to provide researchers with
a thorough technical reference that encompasses both traditional and emerging methods.
By comparing the advantages and limitations of different techniques in their applications,
we emphasize their complementarity and synergistic relationships, rather than seeking
the so-called “optimal” testing method. Each characterization technique has its unique
applicable scenarios and focal points, and no single method can fully elucidate all the
mechanisms involved in hydrogen storage within solid-state materials. Therefore, this
review particularly focuses on the unique demands of characterizing these novel materials
and discusses how existing techniques can be improved or new methods developed to
address these challenges. This review not only provides researchers with a comprehensive
technical overview of the field of solid-state hydrogen storage characterization but also
highlights the difficulties in characterizing emerging materials and the trends for future
technological development. Through an in-depth analysis of various characterization
techniques, we hope to provide a theoretical basis and technical support for achieving
efficient and sustainable hydrogen storage solutions, thereby contributing to the continued
development and application of clean energy technologies.

2. Hydrogen Storage Performance Characterization Techniques

Hydrogen storage materials are crucial for advancing hydrogen-based energy systems,
and their performance is highly dependent on their physical and chemical properties [31].
To thoroughly understand these materials, several fundamental characterization techniques
are employed. The Sieverts method, gravimetric analysis, secondary ion mass spectrometry,
neutron scattering, and electrochemical methods represent some of the most essential tools
in this domain. By leveraging these methods, researchers can systematically evaluate and
optimize hydrogen storage materials to meet the demands of practical applications in
energy storage and conversion. Table 1 briefly summarizes the pros and cons of each basic
characterization technique.
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Table 1. The advantages and limitations of essential characterization techniques.

Method Advantages Limitations Refs.

Sieverts method

Simplicity and reliability, measures
hydrogen sorption isotherms,

provides thermodynamic
information

Sensitivity to volume calibration and
leaks, limited information on kinetics,
requires accurate temperature control

[26,30,32–40]

Gravimetric analysis
High sensitivity, real-time

monitoring of hydrogen sorption,
enables kinetic studies

Sensitivity to buoyancy effects,
influence of impurities and adsorbed
species, requires careful calibration

and correction procedures

[39,40]

Thermogravimetric analysis
Differential scanning

calorimetry

Simultaneously measure changes in
mass and heat flow, providing

comprehensive information about
thermal stability, decomposition,

and phase transitions of materials
in a single experiment

Limited sensitivity in detecting small
mass changes and subtle thermal

events, making them less suitable for
analyzing materials with very low
levels of thermal degradation or

phase change

[41–48]

Secondary ion mass
spectrometry

High spatial resolution, sensitive to
low hydrogen concentrations,

provides depth profiling
information

Destructive technique, requires
careful calibration for quantitative

analysis, challenging data
interpretation due to matrix effects

[49–58]

Electrochemical methods

Simulates real-world operating
conditions, provides information on

charge–discharge behavior and
kinetics, enables the study of cycle
stability and long-term performance

Sensitivity to electrode preparation
and cell configuration, requires

careful interpretation of
electrochemical data, may not
provide direct structural and

chemical information

[59–71]

2.1. Sieverts Method

The Sieverts method, also known as the volumetric method, is one of the most widely
used techniques for characterizing hydrogen storage materials [32,33]. The core principle
is based on the ideal gas law and the pressure changes during the gas absorption and
desorption processes. The simplified schematic of the device is shown in Figure 1 [34].
When high-pressure gas comes into contact with a metal sample, the gas dissolves into the
metal. According to Henry’s law, the solubility of the gas in the metal is proportional to
the partial pressure of the gas. By measuring the pressure changes before and after gas
injection with a high-precision pressure sensor system, the amount of gas dissolved in the
metal sample can be calculated.
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The Sieverts method offers several advantages, including simplicity, reliability, and
the ability to measure hydrogen sorption isotherms over a wide range of pressures and
temperatures [35]. It provides essential thermodynamic information, such as the equilib-
rium pressure, enthalpy, and entropy of the hydrogen sorption reactions [36]. To overcome
the limitations of the Sieverts method, researchers have developed advanced apparatus
with improved temperature control, high-precision pressure sensors, and automated data
acquisition systems. The Sieverts method is widely utilized in mainstream hydrogen test-
ing and analysis instruments for analyzing hydrogen storage density in hydrogen storage
materials. This technique provides essential measurements of hydrogen absorption and
desorption capacities, critical for evaluating material performance in hydrogen storage
applications [26,30]. Rigorous calibration procedures and error analysis methods have been
implemented to enhance the accuracy and reliability of the measurements. The Sieverts
method is particularly crucial for evaluating the hydrogen storage capacity and kinetics of
metal hydrides.

Existing volumetric measurement instruments often suffer from low efficiency due
to insufficient calibration techniques, temperature gradients, and limited automation. As
shown in Figure 2a, the curve changes with the temperature of the sample. As the sample
temperature increases, the line moves further from the sample cell, resulting in an increase
in the apparent volume of the sample cell and a decrease in the apparent volume of the tube.
The position of this line can be determined through calibration methods and is defined
as a function of temperature. Zhu et al. [38] proposed a novel volumetric calibration and
thermal gradient resistance method by introducing a continuous function to overcome
temperature gradients across the entire test temperature range. This method was validated
through TPD/TPA tests on MgH2 powder, demonstrating automatic temperature control.
Moreover, the new method enabled the completion of three PCT curves within 1.5 days.
This innovative approach has the potential to make Sieverts instruments more effective,
accurate, and reliable tools for characterizing hydrogen storage materials.
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The PCT curve is primarily used to describe the relationship between the composition
of a chemical system and pressure under isothermal conditions, and it is commonly applied
in the study of gas adsorption and metal hydrides for hydrogen storage. By analyzing
the PCT curve, insights can be gained into the phase behavior of the system, adsorption
or desorption processes, and the hydrogen storage capacity of the material. The van’t
Hoff equation lnK = −∆H/RT + ∆S/R, where K is the equilibrium constant, ∆H is the
standard reaction enthalpy (kJ/mol), ∆S is the standard reaction entropy (J/mol·K), R is
the gas constant (J/mol·K), and T is the temperature (K), reveals the relationship between
the chemical equilibrium constant and temperature, forming the theoretical foundation
for studying the effect of temperature on equilibrium in reaction thermodynamics. Wu
et al. [72] measured the PCT curves of MgH2-7 wt.% Ni/VN and ball-milled MgH2 samples
at different temperatures (Figure 2b). The results show that the plateau pressures for



Molecules 2024, 29, 5014 5 of 29

MgH2-7 wt.% Ni/VN during desorption at 548, 573, and 598 K were 0.72, 1.49, and 2.90 bar,
respectively, and during absorption, the plateau pressures were 1.10, 2.25, and 4.20 bar,
respectively. For ball-milled MgH2, the desorption plateau pressures at 598, 623, and 648 K
were 2.20, 4.12, and 7.40 bar, respectively, while the absorption pressures were 3.82, 7.00,
and 12.20 bar. Using the van’t Hoff equation to calculate the ∆H for hydrogen absorption
and desorption of MgH2-7 wt.% Ni/VN at different temperatures based on the plateau
pressures, the values were found to be −75.16 ± 0.25 and 75.91 ± 0.02 kJ·mol−1 (Figure 2c),
indicating no significant reduction compared to pure MgH2.

By experimentally determining the changes in the equilibrium constant with tempera-
ture, thermodynamic parameters such as enthalpy and entropy changes can be obtained.
The van’t Hoff equation not only helps in understanding the influence of temperature on the
direction and extent of chemical reactions but also has wide applications in material design,
catalysis, and industrial process optimization. The combination of the PCT curve and the
van’t Hoff equation allows for in-depth study of thermodynamic behavior in multi-phase
systems such as gas–solid and liquid–solid phases, providing reliable thermodynamic
parameters to optimize material performance and understand reaction mechanisms.

2.2. Gravimetric Analysis

Gravimetric analysis is another fundamental technique for characterizing hydrogen
storage materials. It involves measuring the mass change of a sample during hydrogen
absorption or desorption processes [39]. One of the main advantages of gravimetric analysis
is its high sensitivity, allowing for the detection of small mass changes associated with
hydrogen sorption. It provides real-time monitoring of the hydrogen uptake and release,
enabling the study of kinetics and the determination of the rate-limiting steps in the sorption
processes [40]. Gravimetric analysis offers unique advantages in studying hydrogen storage
materials, particularly for understanding sorption kinetics and cycling stability. However,
due to the high cost of high-temperature magnetic levitation balances, this method is rarely
used in the practical analysis of hydrogen storage materials.

Thermogravimetric analysis (TG) is a method used to measure changes in the mass
of a sample as the temperature increases or under isothermal conditions [42,44]. TG is
usually combined with differential scanning calorimetry (DSC), which detects the heat
flow difference between the sample and a reference during heating or cooling, revealing
the endothermic or exothermic behavior of the material and the thermal decomposition
process [45,47]. The advantage of TG-DSC technology lies in its ability to simultaneously
acquire both mass changes and heat flow information, offering a more comprehensive
view of the material’s physical and chemical behavior at various temperatures [41,43,46].
TG-DSC precisely characterizes the decomposition temperature and exothermic or en-
dothermic properties of composite materials, helping to determine thermal stability and
processing parameters. For hydrogen storage materials, by applying the Kissinger equation
(ln(β/Tp

2) = ln(AR/Ea) − Ea/(RTp)), where β is the heating rate (K/min), Tp is the desorp-
tion peak temperature (K), R is the gas constant (J/mol·K), Ea is active energy (kJ/mol),
and A is the frequency factor, to fit the TG-DSC results, the activation energy of hydrogen
desorption can be analyzed, providing insights into the kinetic properties of the material.
Xiao et al. [48] measured the DSC curve of samples and found that after doping MgH2 with
Ce0.6Zr0.4O2, the desorption peak temperature decreased compared to that of ball-milled
MgH2 alone (Figure 3a). Two adjacent endothermic peaks appeared on the DSC curve: the
first lower-temperature desorption peak was attributed to the activation of MgH2 catalyzed
by Ce0.6Zr0.4O2, while the second higher-temperature peak was due to non-activated
MgH2. The Kissinger equation (Figure 3b) was used to calculate the activation energy for
the first low-temperature desorption peak of MgH2-7CeZrO, which was approximately
66.85 kJ/mol, about 45% lower than that of ball-milled MgH2 121.07 kJ/mol. In addition,
the activation energy De-Ea of MgH2-7CeZrO was 116.06 kJ/mol by fitting the second
dehydrogenation peak of MgH2-7CeZrO, indicating that De-Ea was close to De-Ea after
MgH2 grinding, confirming the explanation that the second peak was inactive MgH2.
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Although TG-DSC is highly effective in analyzing the hydrogen desorption kinetics
of hydrogen storage materials, it should be noted that this method cannot monitor the
hydrogen absorption process.

2.3. Secondary Ion Mass Spectrometry

Secondary ion mass spectrometry (SIMS) is a powerful surface characterization tech-
nique that provides detailed information about the elemental composition and distribution
of hydrogen in storage materials [49,50]. As illustrated in Figure 4, SIMS involves bom-
barding the sample surface with a high-energy ion beam, producing secondary ions. These
secondary ions are separated and detected by a mass spectrometer based on their mass-
to-charge ratio (m/z), providing information about the composition and structure of the
sample surface (Figure 4a). The primary ions (such as Cs+ or O2+) bombard the sample
surface, causing sputtering of the surface material and generating secondary ions [51]. The
production rate of secondary ions depends on the surface concentration of the sample
and the sputtering yield of the primary ions (Figure 4b). By separating and detecting the
secondary ions with a mass spectrometer, the composition and structure of the sample
surface elements can be determined (Figure 4c).

The different binding energies of hydrogen atoms make the analysis of hydrogen
storage processes in carbon-containing materials extremely complex. To differentiate
between surface atoms and atoms embedded in the sample, Madroñero et al. [52] used
a SIMS spectrometer with periodic ion beam interruption, observing some outgassing
phenomena of surface hydrogen under room temperature and high-vacuum conditions.
SIMS has proven invaluable in studying the spatial distribution of hydrogen and other
elements in complex storage materials. For example, D. Andersen et al. [53] combined SIMS
with dual-beam focused ion beam scanning electron microscopy to obtain high-resolution
imaging of hydrogen and deuterium in Mg2Ni/Mg2NiH4 hydrogen storage films. This
allowed successful characterization of the formation process of hydrides at different depths
in the films, providing valuable insights into the hydrogen storage mechanisms of the
materials. When the grains exhibit an equiaxed structure (Figures 4c and 5a), hydrides
mainly form on the film surface, evidenced by an enhanced 1H signal in the surface
“hydride” local depth profile. In contrast, when the grains exhibit a columnar structure
(Figure 5b,d), the hydrides extend toward the substrate, forming a continuous region. The
local depth profile shows that the fully hydride layer is confined near the substrate and is
surrounded by a sub-hydride layer.
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Figure 4. A schematic overview of the secondary ion mass spectrometry experiment [51]. (a) A surface
is bombarded with a primary ion resulting in the sputtering of secondary ions characteristic of surface
chemistry. Secondary ions are detected and measured by mass spectrometry. The bombardment
is by primary ions, ranging from atomic ions offering the highest lateral resolution to massive gas
cluster ion beams that liberate surface species up to several thousand mass units. (b) Mass analysis of
secondary ions is generally by quadrupole magnetic sector, time-of-flight, or Orbitrap instruments.
(c) Outputs from the analysis include mass spectra, 2D or 3D images, and depth profiles, which can
be further processed using machine learning. EM, electromagnetic; MCP, microchannel plate [51].

Although SIMS technology is not extensively employed currently in the analysis
of solid-state hydrogen storage materials, its unique advantages, including high spatial
resolution, sensitivity to hydrogen concentrations as low as parts per million (ppm), and ca-
pability to provide depth profile information, offer significant potential. In the future, SIMS
could play a crucial role in supplementing the characterization of hydrogen storage materi-
als, addressing existing gaps in understanding various aspects of these materials [54,55].
To overcome the limitations of SIMS, advanced instrumentation with improved mass reso-
lution and sensitivity has been developed [56]. The use of multi-modal SIMS, combining
different primary ion beams and detection modes, has enhanced the capabilities of the
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technique [57]. Careful sample preparation and the use of appropriate reference materials
are essential for accurate quantification [58].
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2.4. Electrochemical Characterization Methods

Electrochemical methods, including cyclic voltammetry, chronopotentiometry, and
electrochemical impedance spectroscopy, are valuable tools for characterizing the elec-
trochemical hydrogen storage properties of materials [59,60]. These techniques provide
insights into the charge–discharge behavior, kinetics, and reversibility of hydrogen sorption
processes in electrochemical systems, such as metal hydride batteries [61–63].

Cyclic voltammetry involves sweeping the potential of the working electrode con-
taining the hydrogen storage material and measuring the resulting current. Chronopoten-
tiometry applies a constant current to the electrode and monitors the potential response
over time [64]. Electrochemical impedance spectroscopy (EIS) measures the impedance of
the electrochemical system over a wide range of frequencies [65]. To overcome the limita-
tions of electrochemical methods, researchers have developed advanced electrochemical
cell designs and measurement protocols. The use of reference electrodes and optimized
electrolyte compositions can improve the accuracy and reliability of the measurements [66].
Combining electrochemical methods with other characterization techniques, such as XRD
and Raman spectroscopy, can provide a more comprehensive understanding of the electro-
chemical hydrogen storage behavior. The operational principle of nickel–metal hydride
(NiMH) batteries fundamentally involves the absorption and desorption of hydrogen
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by metal hydrides. This principle can be similarly exploited through electrochemical
methods to swiftly assess the performance characteristics of solid-state hydrogen storage
materials [67–70]. Edalati et al. [71] discovered that TixZr2-xCrMnFeNi alloys, benefiting
from the Ti/Zr ratio of the C14 Laves structure, exhibit good room-temperature hydro-
genation/dehydrogenation capabilities. Electrochemical tests on their discharge potential,
discharge capacity, and discharge capacity versus cycle number showed that this high-
entropy alloy (HEA) successfully functions as the negative electrode of a nickel–metal
hydride battery, with excellent charge–discharge cycling performance. The optimal Ti/Zr
ratio achieved the highest storage capacity and fastest activation.

3. Structure and Composition Characterization Techniques

As the field of hydrogen storage materials evolves, advanced spectroscopic and micro-
scopic techniques have become indispensable for detailed characterization at the molecular
and atomic levels [73]. Techniques such as Raman spectroscopy, X-ray diffraction, and X-ray
photoelectron spectroscopy offer unparalleled capabilities in probing the structural, elec-
tronic, and chemical properties of hydrogen storage materials. These advanced techniques
enable researchers to achieve a deeper understanding of the interactions and mechanisms
at play within these materials, facilitating the development of more efficient and robust
hydrogen storage solutions. By employing these sophisticated methods, scientists can
gain comprehensive insights that drive innovation and optimization in the design and
application of hydrogen storage materials. Table 2 briefly summarizes the pros and cons of
various spectroscopic and microscopic techniques.

Table 2. The advantages and limitations of advanced spectroscopic and microscopic techniques.

Method Advantages Limitations Refs.

Raman spectroscopy

Non-destructive and non-contact
technique, high spectral resolution,

identifies different hydrogen-bonding
configurations

Sensitivity to sample surface and
orientation, challenging interpretation
for complex materials, may not provide

quantitative hydrogen content
information

[74–85]

Fourier transform infrared
spectroscopy

Rapid, non-destructive detection with
high sensitivity to low-concentration
molecular vibrations; wide range of

organic and inorganic materials; excels in
identifying functional groups and

chemical bonds

It is sensitive to moisture, with water
absorption peaks potentially interfering

with analysis. It only detects
infrared-active functional groups,

making non-polar bond vibrations
difficult to observe.

[37,86–91]

X-ray diffraction
Crystalline Structure Determination,

wide range of materials, Phase
Identification

Limited to Crystalline Materials,
Penetration Depth, Size Limitation [92–105]

Neutron scattering techniques
Non-destructive technique, provides bulk

structural and dynamic information,
sensitive to light elements like hydrogen

Requires access to specialized neutron
sources, complex data interpretation,

challenging sample preparation
[106–112]

X-ray photoelectron
spectroscopy

Surface-sensitive technique, provides
elemental composition and chemical state

information, investigates surface
catalysts and coatings

Limited information on bulk properties,
requires clean and well-defined sample

surface, may not provide direct
hydrogen content information

[113–123]

Scanning electron microscopy

High-resolution surface imaging, large
depth of focus, suitable for

three-dimensional topography
observation, simple sample preparation

Can only observe surface structures;
cannot provide internal structural

information; may require metal coating,
which affects the true morphology

[124–132]
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Table 2. Cont.

Method Advantages Limitations Refs.

Atomic force microscopy

Ultra-high resolution, reaching atomic
level; does not require a vacuum

environment, allowing for observation of
live samples; capable of measuring

mechanical and electrical properties of
materials

Slow scanning speed, suitable for small
area samples; influenced by probe
shape, which may cause artifacts;

requires surface flattening treatment of
the sample

[133–138]

Transmission and scanning
transmission electron

microscopy

Extremely high resolution, capable of
observing atomic-level structures; can

provide internal structural information of
samples; able to perform compositional

and phase analysis

Samples must be very thin; complex
sample preparation, which may

introduce artifacts; requires a vacuum
environment, potentially causing

sample damage

[139–148]

3.1. Composition Characterization Techniques
3.1.1. Raman and Fourier Transform Infrared Spectroscopy

Raman spectroscopy has emerged as a powerful technique for investigating the local
structure, bonding, and vibrational properties of hydrogen in storage materials [74,75].
When monochromatic light (usually a laser) illuminates a sample, photons interact with
molecules, producing scattered light. A portion of this scattered light undergoes a fre-
quency shift (Raman scattering), which provides information on molecular vibrations and
rotations. When the laser illuminates the sample, most photons undergo Rayleigh scatter-
ing (elastic scattering with no frequency shift), but a small number of photons undergo
Raman scattering (inelastic scattering), with their frequencies shifted due to changes in
molecular vibrational or rotational energy levels. Raman-active molecules located near
waveguides can be excited through either in-plane coupling (waveguide mode) or out-
of-plane coupling (as depicted in Figure 6a). In “classical” Raman scattering, emission
typically occurs in the reverse direction to eliminate background interference from the
excitation light (as illustrated in Figure 6b). This technique is particularly vital for studying
amorphous hydrogen storage materials, providing crucial insights into their structural
properties [76].
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Raman spectroscopy offers several advantages for characterizing hydrogen storage
materials, including its non-destructive and non-contact nature, high spectral resolution,
and the ability to identify different hydrogen-bonding configurations [77]. It is particularly
useful for studying the interactions between hydrogen and the host material, such as the
formation of metal–hydrogen bonds [78]. This technique is particularly vital for studying
amorphous hydrogen storage materials, providing crucial insights into their structural
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properties [79–81]. Raman spectroscopy has proven invaluable in studying the local struc-
ture and bonding in complex hydrides. Ross et al. [74] used this technique to investigate the
decomposition pathway of sodium aluminum hydride (NaAlH4), a promising hydrogen
storage material. Their study revealed distinct Raman shifts associated with different Al-H
bond configurations, providing insights into the dehydrogenation mechanism. Pedraza
et al. [82] studied the mechanism of hydrogen release from ammonia borane within meso-
porous materials using Raman spectroscopy and mass spectrometry. Figure 6a,b show that,
at the point of maximum hydrogen evolution, the deformation mode of -NH3 at 1601 cm−1

disappears, while two new modes emerge at 1565 cm−1 and 1085 cm−1, indicating the
formation of polymeric aminoborane (PAB). When the temperature reaches around 101 ◦C,
the intensity of these modes decreases significantly, along with other vibrational modes
such as B-H, H-B-H, B-N, and N-B-H. At 50 ◦C, the B-N stretching modes of 10B and 11B at
799 cm−1 and 783 cm−1 show a slight redshift (see inset in Figure 7), and around 106 ◦C,
they merge and diminish sharply, almost disappearing at 109 ◦C. However, the mode near
783 cm−1 persists at higher temperatures and is associated with the B-N vibrational mode
in polyaminoborane (-[BH2NH2]n−), indicating the formation of this phase. Additionally,
above 100 ◦C and with Raman shifts higher than 3150 cm−1, strong noise appears in the
signal. The entire Raman spectrum undergoes significant changes around 106 ◦C, with all
vibrational modes weakening, while hydrogen release becomes highly significant in the
online mass spectrometry analysis (Figure 7c).
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of 1 ◦C·min−1 [82].
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Fourier transform infrared spectroscopy (FTIR) is an analytical technique that studies
the molecular composition and chemical structure of a sample by measuring the absorption
or transmission of infrared spectra [89,91]. Different molecular functional groups exhibit
specific absorption characteristics for particular wavelengths of infrared light [88,90]. FTIR
identifies these characteristic absorption peaks, allowing for rapid, sensitive, and non-
destructive qualitative and semi-quantitative analysis [86,87]. It is widely applied in fields
such as chemistry, materials science, environmental monitoring, and pharmaceuticals.

In the study of coordination hydrides, FTIR plays a key role as it can accurately de-
tect changes in molecular structure and chemical bonds. Coordination hydrides undergo
dynamic changes in metal–hydrogen coordination bonds or hydride groups during hy-
drogen storage and release processes. FTIR can reveal the mechanisms of hydrogenation
and dehydrogenation by monitoring the characteristic absorption peaks of these chemical
bonds. By tracking the changes in M–H (metal–hydrogen) bond vibration frequencies, FTIR
can directly follow the interactions between metal centers and hydrogen in coordination
hydrides during hydrogen absorption and desorption. Different metal coordination centers
(e.g., transition metals or rare-earth elements) and hydride combinations produce unique
infrared absorption peaks, allowing FTIR to distinguish these changes and identify different
hydrogen storage mechanisms. Ding et al. [37] utilized FTIR to investigate the hydrogen
storage mechanism of the LiBH4-MgH2 system prepared via ball milling aerosol spraying
(BMAS), as shown in Figure 8. Although the characteristic absorption of LiH at 1030 cm−1

overlaps with the absorption band of α-Mg(BH4)2, the absorption bands of Mg(BH4)2 at
1262 and 1375 cm−1 almost disappeared in the 8R sample, while the absorption band at
1030 cm−1 remained visible, indicating the presence of LiH during the reaction process.
This observation suggests that Mg(BH4)2 gradually decomposes over several dehydrogena-
tion cycles, while LiH is formed through the reactions as follows: 12LiBH4(s) = Li2B12H12(s)
+ 10LiH(s) + 13H2(g) and Li2B12H12(s) + 6MgH2(s) = 6MgB2(s) + 2LiH(s) + 11H2(g). The
gradual increase in the intensity of MgB2 and LiH in the samples after cycling reflects
the partial reversibility of the above reactions and further explains the gradual decline in
hydrogen capacity of the BMAS powders during the cycling process.
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Figure 8. FTIR spectra of (a) the commercially purchased bulk KBr powder, (b) hand-mixed
MgH2 + 5 vol% C, (c) BMAS powder, (d) BMAS powder after one dehydrogenation (1R) powder,
(e) BMAS powder after one dehydrogenation and then re-hydrogenation (1S) powder, and (f) BMAS
powder after 7 cycles of dehydrogenation and re-hydrogenation and then dehydrogenation again
(8R) powder [37].

Raman spectroscopy is a key tool for studying the hydrogenation and dehydrogenation
mechanisms of metal hydrides. By monitoring changes in Raman spectra during hydrogen
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adsorption, insights into phase transitions, structural changes, and kinetics can be obtained.
To fully exploit the potential of Raman spectroscopy, researchers have developed advanced
instruments and data analysis methods, such as confocal Raman microscopy for high-
resolution spatial mapping and in situ Raman spectroscopy for real-time monitoring
of hydrogen adsorption processes. Alongside Raman spectroscopy, FTIR also plays an
important role in hydrogen storage studies by detecting changes in chemical bonds between
hydrogen and metal or metal oxide matrices, providing molecular vibrational information
during hydrogen absorption and desorption.

These two techniques complement each other, with FTIR being particularly advan-
tageous for detecting X-H (such as M-H or O-H) stretching vibrations in hydrides. In
combination, Raman and FTIR spectroscopy provide a comprehensive analysis of material
structures, chemical bond vibrations, and phase transitions, offering powerful tools for the
design and optimization of hydrogen storage materials.

3.1.2. X-Ray Diffraction and Neutron Scattering

X-ray diffraction (XRD) is a fundamental technique for characterizing the crystallo-
graphic structure, phase composition, and structural changes in hydrogen storage material,
and the schematic diagram is shown in Figure 9. Its fundamental equation is Bragg’s law,
which describes the conditions for XRD in a crystal. When X-rays illuminate a crystal, the
atomic planes within the crystal cause the XRD [92,93]. By measuring the diffraction angles
and intensities, one can determine the lattice parameters and atomic arrangement of the
crystal [104,105]. Bragg’s law reveals the relationship between the crystal structure and the
X-ray wavelength, enabling the inference of the crystal’s three-dimensional structure from
its diffraction pattern [103].
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Figure 9. Schematic diagram of the XRD principle.

XRD is widely used in hydrogen storage research to investigate the structural proper-
ties of metal hydrides, complex hydrides, and other crystalline storage materials [94–96]. It
allows for the identification of the hydrogen storage phases, the determination of the phase
abundances, and the study of phase transitions during the hydrogen sorption processes.
One of the advantages of XRD is its non-destructive nature, allowing for the characteriza-
tion of the bulk properties of the material [97]. It provides statistical information about the
average structure, complementing local probe techniques like Raman spectroscopy. In situ
XRD has emerged as a powerful tool for studying the structural evolution of hydrogen stor-
age materials during absorption and desorption cycles. Zlotea et al. [98] used in situ XRD to
analyze the hydrogen release and absorption process of the TiZrNbHfTa high-entropy alloy.
Through in situ XRD (Figure 10a,b), the phase transformations between the alloy, monohy-
dride, and dihydride were observed clearly, greatly aiding researchers in understanding
the dynamic hydrogen absorption and desorption processes of the alloy materials.

Furthermore, the advent of high-energy synchrotron X-ray sources has enabled rapid,
time-resolved XRD measurements. Jensen et al. [99] leveraged this capability to study the
dehydrogenation kinetics of NaAlH4, a promising complex hydride. Their millisecond-
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resolution measurements uncovered transient phases that play a critical role in the hydrogen
release process, demonstrating the power of advanced XRD techniques in elucidating
complex reaction mechanisms.
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Neutron scattering techniques, including neutron diffraction and inelastic neutron
scattering, are powerful tools for investigating the structural and dynamic properties of
hydrogen in storage materials [100,101]. Neutron scattering involves the interaction of
neutrons with the atomic nuclei in the material to study the structure and dynamics of
the material. Neutron scattering includes elastic scattering (such as neutron diffraction)
and inelastic scattering. When a neutron beam irradiates a sample, neutrons scatter off the
sample’s atomic nuclei, and the scattered neutrons are collected by detectors, as illustrated
in Figure 11 [102]. By analyzing the angle and energy distribution of the scattered neutrons,
information about the atomic structure and dynamics of the sample can be obtained.
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By measuring and analyzing the scattering cross-section and momentum transfer,
the atomic structure and dynamics of the sample can be inferred. Neutrons have unique
advantages for studying hydrogen, as they can penetrate deep into the material and
have high sensitivity to light elements like hydrogen [106]. In situ neutron scattering
can determine the reaction process of Mg-based hydrides by tracking phase changes and
distributions during H2 desorption and absorption reactions. Ponthieu et al. [107] studied
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the reversible deuterium absorption of MgD2-TiD2 nanocomposites using this technique. By
examining the in situ H2 desorption process, they found that the dehydrogenation peak of
0.3TiH2-0.7MgH2 appeared at 520 K, approximately 30 K lower than that of pure MgD2, and
the desorption kinetics were significantly faster. They discovered that the transformation
of β-MgD2 to Mg is the only reversible loading path for deuterium at moderate pressure
and temperature (i.e., p < 1 MPa, T < 600 K). The addition of TiD2 not only restricted
grain growth of the Mg and MgD2 phases but also induced lattice distortion in β-MgD2.
The TiD2 phase facilitated hydrogen migration through the sub-stoichiometric MgD2-η
phase and TiD2-η phase, as well as the coherent interface between TiD2 and Mg/MgD2
phases. As shown in Figure 12a, XRD can clearly characterize the phase composition
of the composite material but struggles to distinguish its crystal structure. Therefore,
neutron diffraction becomes crucial for analysis. In Figure 12b, the signal intensity of
γ-MgD2 is significantly stronger than in the XRD results. The combination of these results
confirms the coexistence of both β-MgD2 and γ-MgD2 phases in the composite material. It
is worth noting that, in neutron scattering analysis, different hydrogen isotopes may occupy
different interstitial sites within the metal lattice and have varying activation diffusion
barriers, which could impact the performance analysis of hydrogen storage materials. Thus,
ensuring the accuracy of the research is another challenge that must be addressed when
using this method in hydrogen storage material studies.

Neutron diffraction provides detailed information about the crystal structure, phase
composition, and hydrogen occupancy in storage materials [108–110]. Inelastic neutron
scattering, on the other hand, probes the vibrational and rotational dynamics of hydrogen
within the material [111]. To harness the full potential of neutron scattering techniques,
researchers have developed advanced instrumentation and data analysis methods [106].
The use of high-intensity neutron sources and optimized sample environments has en-
hanced the capabilities of these techniques [112]. Combining neutron scattering with
complementary characterization methods, such as XRD and Raman spectroscopy, pro-
vides a comprehensive understanding of the structural and dynamic aspects of hydrogen
storage materials.

Molecules 2024, 29, x FOR PEER REVIEW 16 of 31 
 

 

 
Figure 12. (a) X-ray and (b) neutron diffraction patterns of deuterated (1−x)MgD2−xTiD2 nanocom-
posites for x = 0, 0.1, 0.3, and 0.5 [107]. 

Neutron diffraction provides detailed information about the crystal structure, phase 
composition, and hydrogen occupancy in storage materials [108–110]. Inelastic neutron 
scattering, on the other hand, probes the vibrational and rotational dynamics of hydrogen 
within the material [111]. To harness the full potential of neutron scattering techniques, 
researchers have developed advanced instrumentation and data analysis methods [106]. 
The use of high-intensity neutron sources and optimized sample environments has en-
hanced the capabilities of these techniques [112]. Combining neutron scattering with com-
plementary characterization methods, such as XRD and Raman spectroscopy, provides a 
comprehensive understanding of the structural and dynamic aspects of hydrogen storage 
materials. 

3.1.3. X-Ray Photoelectron Spectroscopy 
X-ray photoelectron spectroscopy (XPS) is a surface-sensitive technique that provides 

valuable information about the elemental composition, chemical states, and electronic 
structure of hydrogen storage materials [113]. This method is based on the excitation of 
photoelectrons from a sample by X-rays and the measurement of the photoelectrons’ ki-
netic energy to determine the elemental composition and chemical states of the sample. 
When X-rays illuminate a sample, the atoms in the sample absorb the X-ray energy and 
emit photoelectrons (Figure 13). The kinetic energy of these photoelectrons is related to 
the energy of the incident X-rays and the binding energy of the atomic nucleus. By ana-
lyzing the photoelectron spectrum, one can obtain binding energy information for the el-
ements on the sample surface, thereby determining the sample’s elemental composition 
and chemical state [114]. 

 
Figure 13. Schematic diagram of the XPS principle. 𝐸 is the binding energy [113]. 

Figure 12. (a) X-ray and (b) neutron diffraction patterns of deuterated (1−x)MgD2−xTiD2 nanocom-
posites for x = 0, 0.1, 0.3, and 0.5 [107].

3.1.3. X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive technique that provides
valuable information about the elemental composition, chemical states, and electronic
structure of hydrogen storage materials [113]. This method is based on the excitation of
photoelectrons from a sample by X-rays and the measurement of the photoelectrons’ kinetic
energy to determine the elemental composition and chemical states of the sample. When
X-rays illuminate a sample, the atoms in the sample absorb the X-ray energy and emit
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photoelectrons (Figure 13). The kinetic energy of these photoelectrons is related to the
energy of the incident X-rays and the binding energy of the atomic nucleus. By analyzing
the photoelectron spectrum, one can obtain binding energy information for the elements on
the sample surface, thereby determining the sample’s elemental composition and chemical
state [114].
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XPS is particularly useful for studying the surface chemistry of hydrogen storage
materials, as it can probe the top few nanometers of the sample [115]. It can provide
insights into the surface oxidation states, contamination levels, and chemical bonding
between hydrogen and the host material [116,117]. XPS has been widely used to investigate
the surface properties of metal hydrides, complex hydrides, and nanostructured storage
materials [118,119].

Selvam et al. [120] utilized XPS to analyze Mg2Cu and Mg2Ni alloys exposed to air,
finding that they undergo surface decomposition and preferential segregation of mag-
nesium in the presence of oxygen and moisture. The segregated magnesium primarily
existed as oxides and hydroxides on the surface, while Ni or Cu also appeared in oxidized
states. The passivation of the alloys was caused by the oxidation of the transition metal
components, and the researchers believed that the activation of these alloys involved the re-
duction of the oxidized three-dimensional elements and the formation of metal clusters. To
investigate the influence of TiOx on MgH2 in greater depth, Zhang et al. [123] analyzed the
internal chemical states of the samples using X-ray photoelectron spectroscopy (XPS). As
shown in Figure 14a,b, compared to the single Ti4+ state in TiO2, the Ti in the Ni0.034@TiO2
catalyst exhibits a mixed valence state of Ti4+ and Ti3+. During the dehydrogenation pro-
cess, the content of Ti4+ and Ti3+ decreases, while the proportion of Ti2+ and Ti0 increases.
Meanwhile, due to the electronegativity of Ti (1.54), which lies between that of Mg (1.31)
and H (2.20), it helps to weaken the Mg-H bond, thereby accelerating the dehydrogenation
reaction. Throughout the evolution of Ti valence states, the valence state of oxygen (O) also
changes. The O 1s XPS spectra of TiO2 show two peaks located at 529.18 eV and 530.98 eV,
corresponding to the Ti-O-Ti oxygen lattice (OL) and oxygen vacancies (OVs), respectively.
The OL/OV ratio in TiO2 is 87/13, while the OL/OV ratio in the Ni0.034@TiO2 catalyst is
71/29, significantly lower than that of TiO2. This indicates that the presence of single-atom
Ni promotes the formation of oxygen vacancies. Additionally, the OL/OV ratio in the
Nix@TiO2 sample is also lower than that in TiO2, further proving that Ni facilitates the
generation of oxygen vacancies. Combined with X-ray absorption spectroscopy data, the Ni
in the Ni0.034@TiO2 catalyst exhibits a mixed positive valence state, with a strong electron-
accepting capability. In this case, Ni attracts O ions, promoting the formation of oxygen
vacancies in TiO2, resulting in a higher number of oxygen vacancies compared to that of
pure TiO2. This is also consistent with recent findings on the influence of metal particles on
oxygen vacancies. Figure 14c illustrates the catalytic mechanism during hydrogenation and
dehydrogenation. Single-atom Ni can promote the formation of OVs and multivalent Tix+

species around TiO2 units. Oxygen vacancies serve as active sites that accelerate electron
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transfer, while Tix+ facilitates transitions between valence states via electron mediation, thus
avoiding the high energy required to directly break the Mg-H bond. The atomic interface
formed between isolated Ni atoms and Tix+ constitutes dispersed Ni-O-Tix+ active centers,
thereby enhancing catalytic performance. Overall, the synergistic interaction between
single-atom Ni and the TiO2 support significantly improves the catalytic effect.
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One of the key applications of XPS in hydrogen storage research is the study of surface
catalysts and coatings that enhance the hydrogen sorption kinetics [121,122]. By analyzing
the chemical composition and oxidation states of the surface species, the role of catalysts
in promoting hydrogen dissociation, diffusion, and recombination can be elucidated. To
overcome the limitations of XPS, researchers have developed advanced instrumentation and
data analysis methods, such as synchrotron-based XPS for high-resolution measurements
and in situ XPS studies for real-time monitoring of surface chemical changes. Combining
XPS with other surface characterization techniques, such as scanning tunneling microscopy
(STM) and atomic force microscopy (AFM), has provided a comprehensive understanding
of the surface morphology and chemical properties of hydrogen storage materials. XPS
has been crucial in understanding surface phenomena in hydrogen storage materials,
particularly catalytic effects and degradation mechanisms.

3.2. Structure Characterization Techniques
3.2.1. Scanning Electron Microscopy

Scanning electron microscopy (SEM) is an ideal tool for studying the microstructure
and surface characteristics of hydrogen storage materials due to its high-resolution imaging
capabilities [125]. SEM can reveal detailed morphological features of materials, helping
scientists understand the interactions between hydrogen and these materials, which is
crucial for designing more efficient hydrogen storage systems [126,127]. The microstructure
of materials, such as pore size, distribution, and surface roughness, directly affects the
adsorption and diffusion rates of hydrogen.

Through SEM, researchers can clearly see these structural features and evaluate their
specific impact on hydrogen storage performance. For example, larger pores may promote
rapid hydrogen diffusion, while higher surface roughness can increase the surface area,
providing more active sites for hydrogen adsorption. Additionally, SEM analysis can reveal
potential defects on material surfaces, such as cracks, fractures, or other irregular shapes,
which could affect the long-term stability and hydrogen storage efficiency of the materi-
als. By regularly using SEM to monitor these materials, scientists can track performance
changes during long-term use and adjust preparation processes or select more suitable
materials accordingly. Silva et al. [124] used SEM to observe the surface morphology of
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Ti11V30Nb28Cr31 at different stages of hydrogenation, finding that during laser processing,
the surface of the debris particles melted, increasing the proportion of oxides near the
surface. The manual grinding process leads to random particle size distribution, as shown
in Figure 15a,d,g,j. Figure 15b,c illustrate that the surface of the particles after breaking the
original alloy remains smooth with sharp edges, consistent with the brittle characteristics
of the alloy. Figure 15e,f show that laser treatment significantly alters the particle surface,
where rounded edges and a smooth surface suggest that the particles underwent remelting
and rapid solidification. The inset in Figure 15f reveals microcracks on the remelted surface,
which may contribute to the activation of the sample. Additionally, the remelted surface
could restore the hydrogenation ability of the aged sample. Figure 15h,i,k,l display the
similar behavior of both original and aged samples during hydrogenation. Surface cracks
caused by volume expansion during the hydrogenation process were observed in particles
analyzed under both conditions. These changes enhanced the alloy’s hydrogen storage
capacity. Therefore, surface remelting, oxide layer formation, and crack formation were con-
firmed to be factors influencing the hydrogen storage capacity of the pulse laser-activated
Ti11V30Nb28Cr31 alloy.
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In recent years, the development of environmental scanning electron microscopy
(ESEM) has brought revolutionary advancements to hydrogen storage research [128,131].
Unlike traditional SEM, ESEM allows for sample observation under near-natural conditions
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without requiring high vacuum or complex sample preparation [130,132]. This enables
researchers to directly monitor and record changes in material surfaces and microstructures
during hydrogen absorption and desorption processes in real time. ESEM is particularly
suitable for studying the interactions between hydrogen and materials. During hydrogen
absorption, ESEM can capture morphological changes on the material surface, such as
surface expansion, crack formation, or other structural deformations, in real time. These
observations provide valuable information for optimizing material design and improving
reaction speed and hydrogen storage capacity. Similarly, during hydrogen release, ESEM
can offer crucial visual evidence to help scientists understand the material’s regeneration
capability and long-term stability.

3.2.2. Transmission and Scanning Transmission Electron Microscopy

Advanced electron microscopy techniques, particularly transmission electron mi-
croscopy (TEM), have revolutionized our understanding of hydrogen storage materials at
the atomic scale [140]. With its superior resolution and accuracy, TEM allows researchers
to observe the atomic and molecular structure of materials in unprecedented detail. This
unique perspective provides scientists with critical insights into how these materials behave
during hydrogen storage [142].

Through TEM, scientists can directly observe the atomic arrangement and molecular
configuration within materials [141]. This capability not only helps reveal the fundamental
structural characteristics of materials but also allows researchers to see subtle changes
in the internal structure during hydrogen adsorption and desorption [143]. For example,
researchers can observe how hydrogen atoms bond with specific sites within the material
or how the lattice structure of the material deforms during hydrogen absorption. These
detailed observations provide valuable information for understanding the behavior of
hydrogen storage materials. By analyzing these microstructural changes, scientists can
better comprehend the mechanisms of hydrogen adsorption and the key factors influencing
storage capacity and release rate [149]. This in-depth understanding aids in developing
new materials and optimizing the chemical composition and microstructure of existing
materials to enhance their hydrogen storage performance. Furthermore, TEM’s high-
resolution imaging allows researchers to identify small defects within materials, such as
dislocations, vacancies, and interfacial mismatches. These defects significantly impact the
overall performance of materials, especially during repeated cycles of hydrogen adsorption
and desorption. Therefore, accurately identifying and analyzing these defects is crucial for
designing more durable and efficient hydrogen storage materials. Wu et al. [150] prepared
LiBH4 composites confined within bilayer carbon nanobowls through a strong capillary
effect under 100 bar H2 pressure. TEM analysis confirmed the gradual formation of bilayer
carbon nanobowls. Benefiting from the nanoscale confinement and catalytic functions of
carbon, the composite released hydrogen from 225 ◦C, peaking at 353 ◦C, with a hydrogen
release amount of up to 10.9 wt.%. Compared to bulk LiBH4, the peak dehydrogenation tem-
perature decreased by 112 ◦C. More importantly, the composite absorbed about 8.5 wt.% H2
at 300 ◦C and 100 bar H2, demonstrating significant reversible hydrogen storage capability.
Ren et al. [133] investigated the dehydrogenation mechanism of the MgH2/Ni@pCNF com-
posite using in situ high-resolution transmission electron microscopy (HRTEM) to observe
the microstructural evolution under electron-beam irradiation. Figure 16a–c show HAADF,
BF, and corresponding element mapping images of hydrogenated MgH2/Ni@pCNF, with
the red dashed box indicating the irradiated area. Figure 16d–g present the HRTEM images
of the composite material during the hydrogen release process, where the lattice fringes
observed in the selected area electron-diffraction patterns in each subfigure correspond to
the phase changes of the material throughout the reaction. Before irradiation, lattice fringes
were used to identify MgH2 (101) (Figure 16(d1)), Mg2NiH4 (311) (Figure 16(d2)), and MgO
(200) (Figure 16(d3)). Additionally, amorphous carbon frameworks of pCNF, acting as
scaffolds for the nanoconfined MgH2, were observed in all HRTEM images (Figure 16d–g).
After 3 min of irradiation, part of the Mg2NiH4 began to decompose, converting into Mg2Ni
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(Figure 16(e2)). A 0.246 nm plane spacing was observed between MgH2 (Figure 16(e3)) and
Mg2NiH4 (Figure 16(e4)), corresponding to Mg (101) (Figure 16(e1)), indicating that MgH2
near MgH2NiH4 was also starting to decompose. The desorption of Mg2NiH4 induced lat-
tice volume changes, which introduced internal stress and defects at the Mg2NiH4/MgH2
interface, promoting MgH2 desorption. Furthermore, the interface between the catalyst
(Mg2NiH4/Mg2Ni) and the matrix (MgH2) facilitated rapid hydrogen diffusion, accel-
erating MgH2 desorption. After 6 min of irradiation, only Mg2Nif (Figure 16(f2)), Mg
(Figure 16(f1)), and MgH2 (Figure 16(f3)) remained, indicating that Mg2NiH4 completely
decomposed earlier than MgH2. After 10 min of electron-beam irradiation, the hydrogen
in the irradiated area was fully released and transferred to Mg (Figure 15(g1)) and Mg2Ni
(Figure 15(g2)). Moreover, due to the confinement of pCNF, the Mg-based nanoparticles
did not experience significant growth or agglomeration.
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Figure 16. In situ TEM analysis of the hydrogenated MgH2/Ni@pCNF composites: (a) HAADF
image (the square marked by red dotted line indicates the irradiated area). (b) BF image. (c) The
corresponding elemental mapping of C, N, Mg, and Ni. (d–g) HRTEM images and selective electron
diffraction at random points showing the evolution of microstructure upon hydrogen desorption
induced by the electron-beam irradiation. (d1–d3) Initial microstructure showing lattice fringes of
MgH2 (101), Mg2NiH4 (311), and MgO (200), respectively, before irradiation. (e1–e4) After 3 min,
partial decomposition of Mg2NiH4 into Mg2Ni begins, with defects forming at the Mg2NiH4/MgH2

interface, promoting hydrogen desorption, while some MgH2 remains stable. (f1–f3) At 6 min,
complete decomposition of Mg2NiH4 is observed, while MgH2 remains partially stable, and Mg
nanoparticles become visible. (g1,g2) After 10 min, hydrogen is fully released and transferred to Mg
and Mg2Ni [133].
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Additionally, the development of in situ environmental transmission electron mi-
croscopy (E-TEM) has made it possible to observe materials directly under dynamic,
real-world conditions, which is crucial for studying hydrogen storage materials [147,148].
Traditional TEM requires vacuum conditions, limiting the observation of material behavior
under actual operating conditions [145,146]. In contrast, E-TEM allows for the observa-
tion of materials in a gaseous environment, which can include hydrogen, thus providing
genuine insights into the behavior of these materials during hydrogen adsorption and
desorption [144]. Through E-TEM, researchers can observe structural changes during
the hydrogen cycling process in real time [151,152]. This includes observing how atoms
rearrange, how defects in the material evolve, and how the crystal structure of the material
changes during hydrogen adsorption and release. These observations are critical for under-
standing the mechanisms of hydrogen adsorption and the factors influencing the efficiency
and durability of storage materials. Future rational use of E-TEM can help identify the best
materials and designs for hydrogen storage, allowing scientists to conduct experiments on
different materials and under various environmental conditions.

3.2.3. Atomic Force Microscopy

Atomic force microscopy (AFM), as a precise surface analysis tool, has provided valu-
able insights into the surface morphology and mechanical properties of hydrogen storage
materials [135,137]. AFM measures forces through interactions between the probe and the
sample surface, allowing for nanoscale mapping of material surfaces [136,138]. This de-
tailed surface characterization is crucial for understanding and optimizing the performance
of hydrogen storage materials [134]. AFM’s high-resolution imaging capabilities enable it
to reveal the microstructure of materials, such as nanoparticles, pores, and cracks, which
are key factors in evaluating the adsorption capacity of materials. Furthermore, AFM can
measure mechanical properties such as hardness and elastic modulus, which are critical
for designing hydrogen storage systems that maintain structural stability under various
operating conditions.

Kalisvaart et al. [139] used AFM to analyze the surface changes of Mg and Mg-10%Cr-
10%V films in both deposited and hydrogenated states. As shown in Figure 17, the surface
of the deposited palladium (Pd) film is extremely smooth, with a root-mean-square (RMS)
roughness of only 5 Å. In the hydrogenated state, the Pd layer appears to break into small
particles with diameters of approximately 20 nm, leading to a 2- to 13-fold increase in the
measured RMS roughness. Due to the tip effect, atomic force microscopy (AFM) often
underestimates roughness. In fact, because of the close spacing of Pd particles, the relatively
large tip radius of the AFM (6 nm) almost certainly leads to a significant underestimation
of roughness, especially in hydrogenated samples. Therefore, the increase in surface rough-
ness observed after combining neutron reflectometry (NR) data are primarily attributed to
the fragmentation of the Pd layer into small particles.

Recent advancements in high-speed atomic force microscopy (high-speed AFM) tech-
nology have enabled scientists to observe dynamic processes at the nanoscale in real
time [153,154]. High-speed AFM significantly improves imaging speed, allowing re-
searchers to observe and record changes in material surfaces during hydrogen adsorption
and desorption almost in real time [155,156]. This capability is particularly important for
understanding the dynamic characteristics of hydrogen–material interactions [157]. For
example, through high-speed AFM, researchers can directly observe changes in surface
morphology caused by hydrogen adsorption, such as slight expansion or contraction of
the surface. These changes might be difficult to capture with traditional AFM due to their
rapid occurrence. Additionally, this technology can be used to study the fatigue behavior of
materials during multiple cycles of hydrogen adsorption and desorption, providing direct
experimental data for assessing the long-term stability and reusability of materials.
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Figure 17. AFM micrographs of Ta/Mg/CrV/Pd and Ta/Mg-10%Cr-10%V/CrV/Pd in the as-
deposited and hydrogenated state. The Ta/Mg/CrV/Pd was hydrogenated at 50 mbar for 14 h and
Ta/Mg-10%Cr-10%V/CrV/Pd at 10 mbar for 20 h. The inset shows the micrograph of the hydrided
film on the same brightness scale as the as-deposited state for Ta/Mg/CrV/Pd [139].

4. Challenges and Limitations
4.1. Obstacles and Limitations in Hydrogen Storage Performance Characterization

The characterization of hydrogen storage performance faces multifaceted challenges
that significantly impact the accuracy, reliability, and interpretability of experimental data.

Volumetric measurements, particularly the Sieverts method, are susceptible to sys-
tematic errors arising from thermal gradients, pressure sensor drift, and gas impurities.
Zhou et al. [21] highlighted the critical impact of temperature gradients on volumetric
measurements, demonstrating how even minor thermal fluctuations can lead to substantial
errors in calculated hydrogen uptake. This issue is particularly pronounced for materials
with low storage capacities or slow kinetics, where small measurement errors can lead to
significant overestimation or underestimation of storage performance.

The challenge of achieving true equilibrium conditions during measurements is ex-
acerbated by the slow kinetics of many advanced storage materials. Complex hydrides
and nanostructured composites often exhibit multi-step absorption/desorption processes
with varying time scales, making it difficult to determine when true equilibrium has been
reached. This kinetic limitation can lead to underestimation of storage capacities and
misinterpretation of thermodynamic parameters, particularly when fixed measurement
times are used across different materials.

The discrepancy between laboratory-scale measurements and real-world performance
remains a significant hurdle. Factors such as heat and mass transfer limitations, which
are often negligible in small-scale experiments, become critical in larger systems. The
work of Ding et al. [28] on nanostructured LiBH4-MgH2 systems exemplifies this challenge,
where the excellent performance observed in laboratory tests may not directly translate to
practical storage systems due to scaling effects on heat transfer and reaction kinetics.

4.2. Challenges and Constraints in Structure and Composition Characterization

The structural and compositional characterization of hydrogen storage materials
presents unique challenges that limit our ability to fully understand storage mechanisms
and material properties.

In situ characterization, which observes materials in their “native environment”,
and operando characterization, which captures real-time data under “actual working
conditions”, can provide researchers with deep insights into the structural and functional
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changes of materials. Although in situ and operando characterization techniques are highly
powerful, they often require certain compromises in experimental conditions, such as
reduced resolution, decreased sensitivity, or simplified setups, to meet the demands of
real-time monitoring. In situ TEM, for instance, allows real-time observation of structural
changes during hydrogen absorption/desorption but typically operates at lower pressures
than those used in practical storage systems. This pressure gap can lead to observations
that may not accurately represent material behavior under realistic conditions. The study
by Ren et al. [133] on MgH2/Ni@pCNF composites using in situ HRTEM illustrates both
the power and limitations of these techniques in studying the dehydrogenation mechanism
of complex nanostructured materials.

Raman spectroscopy, while sensitive to hydrogen-containing bonds, faces challenges
in quantitative analysis due to variations in scattering cross-sections and the potential
for laser-induced sample heating. The work of Pedraza et al. [82] on ammonia borane
decomposition demonstrates both the power and limitations of Raman spectroscopy in
studying hydrogen storage materials, highlighting the need for careful experimental design
and data interpretation.

The characterization of multi-component and nanostructured materials presents addi-
tional complexities. Techniques like XPS and SIMS offer high surface sensitivity but may
not accurately represent bulk compositions. Conversely, bulk techniques may overlook
critical surface phenomena that govern hydrogen uptake and release. The study by Xing
et al. [121] on carbon-coated CoNi nanocatalysts illustrates the challenge of characterizing
complex nanostructured materials, where the distribution and chemical state of catalytic
components play crucial roles in enhancing storage performance.

Addressing these challenges requires continued development of advanced charac-
terization tools, improved experimental protocols, and sophisticated data analysis meth-
ods. Emerging approaches, such as machine learning-assisted data interpretation and
multi-modal characterization platforms [158], offer promising avenues for overcoming
current limitations. However, realizing the full potential of these advanced characterization
approaches will require close collaboration between experimentalists, theorists, and instru-
ment developers to ensure that the data obtained accurately reflects the intrinsic properties
and behavior of hydrogen storage materials under realistic operating conditions.

5. Conclusions and Perspective

The field of solid-state hydrogen storage materials has made significant strides in
recent years, with the development of advanced characterization techniques and the emer-
gence of novel materials. However, ongoing challenges in understanding the complex
hydrogen storage mechanisms and optimizing material performance necessitate continued
research and innovation.

This comprehensive review has provided an overview of the key characterization
techniques employed in the field of solid-state hydrogen storage, discussing their principles,
advantages, limitations, and synergistic applications. Conventional techniques such as
Sieverts method, gravimetric analysis, SIMS, TDS, neutron scattering, and electrochemical
methods have been discussed in detail, highlighting their roles in unraveling the intricate
relationship between the structure, composition, and properties of hydrogen storage mate-
rials. Emerging optical characterization techniques, including Raman spectroscopy, XRD,
and XPS, have been explored, emphasizing their potential in providing insights into the
local structure, bonding, and surface chemistry of these materials.

Practical considerations, such as equipment availability, sample preparation, and
cost-effectiveness, have been addressed to provide a pragmatic guide for researchers in the
field. The challenges associated with characterizing novel hydrogen storage materials, such
as nanoconfined hydrides, MOFs, and graphene-related materials, have been highlighted,
and innovative approaches to tackle these challenges have been discussed.

Looking ahead, the integration of in situ and operando characterization techniques,
computational modeling, and data-driven approaches will be crucial for accelerating the
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discovery and optimization of high-performance hydrogen storage materials. Collaborative
efforts among researchers from diverse disciplines and the establishment of standardized
characterization protocols and databases will be essential for advancing the field towards
practical applications.

As the world transitions towards a sustainable energy future, the development of
efficient and reliable hydrogen storage solutions will play a critical role in enabling the
widespread adoption of clean energy technologies. By addressing the characterization
challenges and embracing innovative approaches, the scientific community can unlock the
full potential of solid-state hydrogen storage materials and contribute to the realization of a
hydrogen-based energy economy.
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