Crowding for Confinement: Reversible Isomerization of First-Generation Donor-Acceptor Stenhouse Adduct Derivatives in Water Modulated by Thermoresponsive Dendritic Macromolecules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Dendronized DASAs and Dendronized Copolymers Carrying DASA Pendants
2.2. Thermoresponsive Behavior of the Dendronized DASAs and the Dendronized Copolymers
2.3. Isomerization of the Dendronized DASAs in Water
2.4. Reversible Isomerization of the DASAs Through Enhanced Confinement from the Dendronized Copolymers
3. Experimental Section
3.1. Materials
3.2. Instrumentation and Measurements
3.3. Synthesis
3.3.1. 5-((2Z,4E)-5-(Ethyl(3,4,5-tris(2-(2-(2-ethoxyethoxy)ethoxy) ethoxy) benzyl) amino) -2-hydroxypenta-2,4-dien-1-ylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (Et-Dm)
3.3.2. 5-((2Z,4E)-5-(Ethyl(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy) benzyl) amino)-2-hydroxypenta-2,4-dien-1-ylidene)-1,3-dioctylpyrimidine-2,4,6(1H,3H, 5H)-trione (Me-Do)
3.3.3. 5-((2Z,4E)-5-(Ethyl(3,4,5-tris(2-(2-(2-ethoxyethoxy)ethoxy)ethoxy) benzyl) amino) -2-hydroxypenta-2,4-dien-1-ylidene)-1,3-dioctylpyrimidine-2,4,6(1H,3H, 5H)-trione (Et-Do)
3.3.4. Poly(3,4,5-tris(2-(2-(2-ethoxyethoxy) ethoxy)ethoxy) benzyl meth-acrylate)-co-(2-((tert-butoxycarbonyl)(methyl)amino)ethyl methacrylate) [Poly(G1Et20-co-Boc1)]
3.3.5. Poly(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl meth-acrylate)-co-(2-((tert-butoxycarbonyl)(methyl)amino)ethyl methacrylate) [Poly(G1Me20-co-Boc1)]
3.3.6. Poly(3,4,5-tris(2-(2-(2-ethoxyethoxy)ethoxy)ethoxy)benzyl meth-acrylate)-co-(2-(dimethylamino)ethyl methacrylate) [Poly(G1Et20-co-H1)]
3.3.7. Poly(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl meth-acrylate)-co-(2-(dimethylamino)ethyl methacrylate) [Poly(G1Me20-co-H1)]
3.3.8. Poly(3,4,5-tris(2-(2-(2-ethoxyethoxy)ethoxy)ethoxy)benzyl meth-acrylate)-co-(2-(((1E,3Z)-5-(1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)-4-hydroxy-penta-1,3-dien-1-yl)(methyl)amino)ethyl methacrylate) [Poly(G1Et20-co-Dm1)]
3.3.9. Poly(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl meth-acrylate)-co-(2-(((1E,3Z)-5-(1,3-dioctyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)-4-hydroxypenta -1,3-dien-1-yl)(methyl)amino)ethyl methacrylate) [Poly(G1Me20-co-Do1)]
3.3.10. Poly(3,4,5-tris(2-(2-(2-ethoxyethoxy)ethoxy)ethoxy)benzyl meth-acrylate)-co-(2-(((1E,3Z)-5-(1,3-dioctyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)-4-hydroxy-penta-1,3-dien-1-yl)(methyl)amino)ethyl methacrylate) [Poly(G1Et20-co-Do1)]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based Solar Thermal Fuels: Design, Properties, and Applications. Chem. Soc. Rev. 2018, 47, 7339–7368. [Google Scholar] [CrossRef]
- Brivanlou, A.H.; Darnell, J.E., Jr. Signal Transduction and the Control of Gene Expression. Science 2002, 295, 813–818. [Google Scholar] [CrossRef]
- Corra, S.; Bakić, M.T.; Groppi, J.; Baroncini, M.; Silvi, S.; Penocchio, E.; Esposito, M.; Credi, A. Kinetic and Energetic Insights into the Dissipative Non-Equilibrium Operation of an Autonomous Light-Powered Supramolecular Pump. Nat. Nanotechnol. 2022, 17, 746–751. [Google Scholar] [CrossRef]
- Briggs, W.R. How Do Sunflowers Follow the Sun and to What End? Science 2016, 353, 541–542. [Google Scholar] [CrossRef]
- Vatankhah-Varnosfaderani, M.; Keith, A.N.; Cong, Y.; Liang, H.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D.A.; Dobrynin, A.V.; et al. Chameleon-Like Elastomers with Molecularly Encoded Strain-Adaptive Stiffening and Coloration. Science 2018, 359, 1509–1513. [Google Scholar] [CrossRef]
- Wu, D.; Solomon, M.L.; Naik, G.V.; García-Etxarri, A.; Lawrence, M.; Salleo, A.; Dionne, J.A. Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation. Adv. Mater. 2018, 30, 1703912. [Google Scholar] [CrossRef]
- Ham, R.; Nielsen, C.J.; Pullen, S.; Reek, J.N.H. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem. Rev. 2023, 123, 5225–5261. [Google Scholar] [CrossRef]
- Lin, X.; Li, Y.; Saravanakumar, S.; Tang, Q.; Zhang, S.; Gao, X.; Hu, Y.; Huang, K.; Han, G. Sunlight-Operable Light Converting Smart Windows for Fertilizer-Free Plant Growth Enhancement. Nano Today 2020, 34, 100918. [Google Scholar] [CrossRef]
- Ji, Y.; Yuan, Y.; Wu, G.; Feng, C.; Cheng, R.; Ma, Q.; Chen, X.; Tong, Y. A Novel Spectral-Splitting Solar Indoor Lighting System with Reflective Direct-Absorption Cavity: Optical and Thermal Performance Investigating. Energy Convers. Manag. 2022, 266, 115788. [Google Scholar] [CrossRef]
- Lin, R.; Hashim, P.K.; Sahu, S.; Amrutha, A.S.; Cheruthu, N.M.; Thazhathethil, S.; Takahashi, K.; Nakamura, T.; Kikukawa, T.; Tamaoki, N. Phenylazothiazoles as Visible-Light Photoswitches. J. Am. Chem. Soc. 2023, 145, 9072–9080. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Ma, M.; Yin, C.; Fei, Z.; Yang, K.; Ross, C.A.; Shi, L. Synthesis and Self-Assembly of Silicon-Containing Azobenzene Liquid Crystalline Block Copolymers. Macromolecules 2023, 56, 470–479. [Google Scholar] [CrossRef]
- Song, J.; Duan, W.; Chen, Y.; Liu, X. Versatile Inorganic Oligomer-Based Photochromic Spiropyrane Gels. Chin. J. Struct. Chem. 2022, 41, 2205037–2205047. [Google Scholar]
- Martorana, A.; Pitarresi, G.; Palumbo, F.S.; Catania, V.; Schillaci, D.; Mauro, N.; Fiorica, C.; Giammona, G. Fabrication of Silver Nanoparticles by A Diethylene Triamine-Hyaluronic Acid Derivative and Use as Antibacterial Coating. Carbohydr. Polym. 2022, 295, 119861. [Google Scholar] [CrossRef]
- Miller, B.H.; Liu, H.; Kolle, M. Scalable Optical Manufacture of Dynamic Structural Colour in Stretchable Materials. Nat. Mater. 2022, 21, 1014–1018. [Google Scholar] [CrossRef]
- Li, Y.; Xue, B.; Yang, J.; Jiang, J.; Liu, J.; Zhou, Y.; Zhang, J.; Wu, M.; Yuan, Y.; Zhu, Z.; et al. Azobenzene as A Photoswitchable Mechanophore. Nat. Chem. 2023, 16, 446–455. [Google Scholar] [CrossRef]
- Martins, J.N.; Raimundo, B.; Rioboo, A.; Folgar-Cameán, Y.; Montenegro, J.; Basílio, N. Photoswitchable Calixarene Activators for Controlled Peptide Transport across Lipid Membranes. J. Am. Chem. Soc. 2023, 145, 13126–13133. [Google Scholar] [CrossRef]
- Manikandan, M.; Nicolini, P.; Hapala, P. Computational Design of Photosensitive Polymer Templates to Drive Molecular Nanofabrication. ACS Nano 2024, 18, 9969–9979. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, M.; Yan, M.; Ye, J.; Li, Y.; Dehaen, W.; Yin, S. Near-Infrared Boron-Dipyrrin (BODIPY) Nanomaterials: Molecular Design and Anti-Tumor Therapeutics. Coord. Chem. Rev. 2024, 506, 215718. [Google Scholar] [CrossRef]
- Liu, L.; Pan, Y.; Zhao, C.; Huang, P.; Chen, X.; Rao, L. Boosting Checkpoint Immunotherapy with Biomaterials. ACS Nano 2023, 17, 3225–3258. [Google Scholar] [CrossRef]
- Montà-González, G.; Sancenón, F.; Martínez-Máñez, R.; Martí-Centelles, V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem. Rev. 2022, 122, 13636–13708. [Google Scholar] [CrossRef]
- Nihei, M.; Ida, H.; Nibe, T.; Moeljadi, A.M.P.; Trinh, Q.T.; Hirao, H.; Ishizaki, M.; Kurihara, M.; Shiga, T.; Oshio, H. Ferrihydrite Particle Encapsulated within a Molecular Organic Cage. J. Am. Chem. Soc. 2018, 140, 17753–17759. [Google Scholar] [CrossRef]
- Ajayi, F.F.; Mudgil, P.; Maqsood, S. Molecular Structural Modification of Jack Bean Protein Using Thermo-Shearing/Ultrasound/Microwave Treatments for Improved Extractability, Functional and Gelling Properties: The Underlying Impacts of Matrix Pretreatment Versus Alkaline-Assisted Extraction. Food Hydrocoll. 2024, 154, 110066. [Google Scholar] [CrossRef]
- Bagnall, A.J.; Haake, M.; Grau, S.; Straistari, T.; Koepf, M.; Moghaddam, N.J.; Gimbert-Suriñach, C.; Benet-Buchholz, J.; Llobet, A.; Chavarot-Kerlidou, M.; et al. Molecular Engineering of Electrocatalytic Nanomaterials for Hydrogen Evolution: The Impact of Structural and Electronic Modifications of Anchoring Linkers on Electrocatalysis. ACS Catal. 2024, 14, 5630–5638. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Z.; Cai, S.; An, Z.; Huang, W. Enhancing Purely Organic Room Temperature Phosphorescence via Supramolecular Self-Assembly. Adv. Mater. 2024, 36, 2311922. [Google Scholar] [CrossRef]
- Beuerle, F. Unexplored Territory for Self-Assembly. Nature 2016, 540, 529–530. [Google Scholar] [CrossRef]
- Orton, G.R.F.; Pilgrim, B.S.; Champness, N.R. The Chemistry of Phosphines in Constrained, Well-Defined Microenvironments. Chem. Soc. Rev. 2021, 50, 4411–4431. [Google Scholar] [CrossRef]
- Pastore, A.; Caballero, G.R.; Temussi, P.A. Introduction: Molecular Crowding. Chem. Rev. 2024, 124, 6697–6699. [Google Scholar] [CrossRef]
- Qu, Z.; Cheng, S.Z.D.; Zhang, W. Macromolecular Topology Engineering. Trends Chem. 2021, 3, 402–415. [Google Scholar] [CrossRef]
- Peters, J.; Oliva, R.; Caliò, A.; Oger, P.; Winter, R. Effects of Crowding and Cosolutes on Biomolecular Function at Extreme Environmental Conditions. Chem. Rev. 2023, 123, 13441–13488. [Google Scholar] [CrossRef] [PubMed]
- Lerch, M.M.; Szymanski, W.; Feringa, B.L. The (Photo)-Chemistry of Stenhouse Photoswitches: Guiding Principles and System Design. Chem. Soc. Rev. 2018, 47, 1910–1937. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Ling, Y.; Wang, D.; Liu, Y.; Chen, X.; Zheng, S.; Wu, X.; Shen, J.; Feng, S.; Zhang, J.; et al. Harnessing Molecular Isomerization in Polymer Gels for Sequential Logic Encryption and Anticounterfeiting. Sci. Adv. 2022, 8, eadd1980. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Sun, F.; Duan, Y.; Zhang, Y.; Liu, X.; Liu, T.; Ji, Y.; Wu, Q.; Deng, X.; Zheng, Y.; et al. Programmable Encryption Based on Photochromism of Spiropyrans and Donor-Acceptor Stenhouse Adducts. Adv. Funct. Mater. 2024, 34, 2316457. [Google Scholar] [CrossRef]
- Sandlass, S.; Stricker, F.; Fragoso, D.; Read de Alaniz, J.; Gordon, M.J. Effect of Polymer Host Matrix on Multi-Stage Isomerization Kinetics of DASA Photochromes. J. Photoch. Photobio. A 2023, 444, 114964. [Google Scholar] [CrossRef]
- Helmy, S.; Oh, S.; Leibfarth, F.A.; Hawker, C.J.; Read de Alaniz, J. Design and Synthesis of Donor-Acceptor Stenhouse Adducts: A Visible Light Photoswitch Derived from Furfural. J. Org. Chem. 2014, 79, 11316–11329. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Xiong, X.; Gao, A.; Duan, Y.; Mao, L.; Gu, L.; Wang, Z.; He, C.; Deng, X.; Zheng, Y.; et al. Fast Photochromism in Solid: Microenvironment in Metal-Organic Frameworks Promotes the Isomerization of Donor-Acceptor Stenhouse Adducts. Chem. Eng. J. 2022, 427, 132037. [Google Scholar] [CrossRef]
- Helmy, S.; Leibfarth, F.A.; Oh, S.; Poelma, J.E.; Hawker, C.J.; Read de Alaniz, J. Photoswitching Using Visible Light: A New Class of Organic Photochromic Molecules. J. Am. Chem. Soc. 2014, 136, 8169–8172. [Google Scholar] [CrossRef]
- Lerch, M.M.; Wezenberg, S.J.; Szymanski, W.; Feringa, B.L. Unraveling the Photoswitching Mechanism in Donor-Acceptor Stenhouse Adducts. J. Am. Chem. Soc. 2016, 138, 6344–6347. [Google Scholar] [CrossRef]
- Lerch, M.M.; Donato, M.M.; Laurent, A.D.; Medved, M.; Feringa, B.L. Solvent Effects on the Actinic Step of Donor-Acceptor Stenhouse Adduct Photoswitching. Angew. Chem. Int. Ed. 2018, 57, 8063–8068. [Google Scholar] [CrossRef]
- Mallo, N.; Foley, E.D.; Iranmanesh, H.; Kennedy, A.D.W.; Luis, E.T.; Ho, J.; Harper, J.B.; Beves, J.E. Structure-Function Relationships of Donor-Acceptor Stenhouse Adduct Photochromic Switches. Chem. Sci. 2018, 9, 8242–8252. [Google Scholar] [CrossRef]
- Mao, L.; Wang, Z.; Duan, Y.; Xiong, C.; He, C.; Deng, X.; Zheng, Y.; Wang, D. Designing of Rewritable Paper by Hydrochromic Donor-Acceptor Stenhouse Adducts. ACS Nano 2021, 15, 10384–10392. [Google Scholar] [CrossRef]
- Castagna, R.; Maleeva, G.; Pirovano, D.; Matera, C.; Gorostiza, P. Donor-Acceptor Stenhouse Adduct Displaying Reversible Photoswitching in Water and Neuronal Activity. J. Am. Chem. Soc. 2022, 144, 15595–15602. [Google Scholar] [CrossRef] [PubMed]
- Dubuis, S.; Dellai, A.; Courdurié, C.; Owona, J.; Kalafatis, A.; Vellutini, L.; Genin, E.; Rodriguez, V.; Castet, F. Nonlinear Optical Responses of Photoswitchable Donor-Acceptor Stenhouse Adducts. J. Am. Chem. Soc. 2023, 145, 10861–10871. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Diaz, Y.J.; Hawker, M.C.; Martinez, M.R.; Page, Z.A.; Zhang, S.X.-A.; Hawker, C.J.; Read de Alaniz, J. Stable Activated Furan and Donor-Acceptor Stenhouse Adduct Polymer Conjugates as Chemical and Thermal Sensors. Macromolecules 2019, 52, 4370–4375. [Google Scholar] [CrossRef]
- Stricker, F.; Peterson, J.; Sandlass, S.K.; de Tagyos, A.; Sroda, M.; Seshadri, S.; Gordon, M.J.; Read de Alaniz, J. Selective Control of Donor-Acceptor Stenhouse Adduct Populations with Non-Selective Stimuli. Chem 2023, 9, 1994–2005. [Google Scholar] [CrossRef]
- Duan, Y.; Song, M.; Sun, F.; Xu, Y.; Shi, F.; Wang, H.; Zheng, Y.; He, C.; Liu, X.; Wei, C.; et al. Controlling Isomerization of Photoswitches to Modulate 2D Logic-in-Memory Devices by Organic-Inorganic Interfacial Strategy. Adv. Sci. 2023, 10, 2207443. [Google Scholar] [CrossRef]
- Overholts, A.C.; Razo, W.G.; Robb, M.J. Mechanically Gated Formation of Donor-Acceptor Stenhouse Adducts Enabling Mechanochemical Multicolour Soft Lithography. Nat. Chem. 2023, 15, 332–338. [Google Scholar] [CrossRef]
- Hemmer, J.R.; Poelma, S.O.; Treat, N.; Page, Z.A.; Dolinski, N.D.; Diaz, Y.J.; Tomlinson, W.; Clark, K.D.; Hooper, J.P.; Hawker, C.; et al. Tunable Visible and Near Infrared Photoswitches. J. Am. Chem. Soc. 2016, 138, 13960–13966. [Google Scholar] [CrossRef]
- Rifaie-Graham, O.; Yeow, J.; Najer, A.; Wang, R.; Sun, R.; Zhou, K.; Dell, T.N.; Adrianus, C.; Thanapongpibul, C.; Chami, M.; et al. Photoswitchable Gating of Non-equilibrium Enzymatic Feedback in Chemically Communicating Polymersome Nanoreactors. Nat. Chem. 2023, 15, 110–118. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, L.; Zhao, H.; Wu, J.; Wagner, M.; Sun, W.; Liu, X.; Miao, M.; Zheng, Y. Inducing Molecular Isomerization Assisted by Water. Commun. Chem. 2019, 2, 118. [Google Scholar] [CrossRef]
- Li, W.; Zhang, A.; Feldman, K.; Walde, P.; Schlüter, A.D. Thermoresponsive Dendronized Polymers. Macromolecules 2008, 41, 3659–3667. [Google Scholar] [CrossRef]
- Yao, Y.; Shi, X.; Zhao, Z.; Zhang, A.; Li, W. Dendronization of Chitosan to Afford Unprecedent Thermoresponsiveness and Tunable Microconfinement. J. Mater. Chem. B 2023, 11, 11024–11034. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Lu, X.; Li, W.; Yan, J.; Whittaker, A.K.; Zhang, A. Thermoresponsive Helical Dendronized Poly(phenylacetylene)s: Remarkable Stabilization of Their Helicity via Photo-Dimerization of the Dendritic Pendants. J. Am. Chem. Soc. 2023, 145, 24906–24921. [Google Scholar] [CrossRef] [PubMed]
- Junk, M.J.; Li, W.; Schlüter, A.D.; Wegner, G.; Spiess, H.W.; Zhang, A.; Hinderberger, D. EPR Spectroscopic Characterization of Local Nanoscopic Heterogeneities during the Thermal Collapse of Thermoresponsive Dendronized Polymers. Angew. Chem. Int. Ed. 2010, 49, 5683–5687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, Y.; Zhang, Y.; Wu, D.; Li, W.; Whittaker, A.K.; Zhang, A. Thermoresponsive Dendronized Microgels through In Situ Cross-Linking Polymerization to Exhibit Enhanced Confinement for Solvatochromic Dyes. Macromolecules 2023, 56, 3931–3944. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.; Su, X.; Zhang, A.; Li, W. Reversible Isomerization of Donor-Acceptor Stenhouse Adduct Derivatives in Water through Dendritic Confinement. Sci. China. Chem. 2024, 67, 1636–1646. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Liu, K.; Yan, J.; Hu, G.; Zhang, A. Comblike Thermoresponsive Polymers with Sharp Transitions: Synthesis, Characterization, and Their Use as Sensitive Colorimetric Sensors. Macromolecules 2011, 44, 8614–8621. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, J.; Jia, R.; Li, W.; Zhang, A. Topological Effects of Dendronized Polymers on Their Thermoresponsiveness and Microconfinement. Macromolecules 2022, 55, 630–642. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ma, Q.; Wang, H.; Zhang, P.; Su, X.; Zhang, A.; Li, W. Crowding for Confinement: Reversible Isomerization of First-Generation Donor-Acceptor Stenhouse Adduct Derivatives in Water Modulated by Thermoresponsive Dendritic Macromolecules. Molecules 2024, 29, 5055. https://doi.org/10.3390/molecules29215055
Zhang J, Ma Q, Wang H, Zhang P, Su X, Zhang A, Li W. Crowding for Confinement: Reversible Isomerization of First-Generation Donor-Acceptor Stenhouse Adduct Derivatives in Water Modulated by Thermoresponsive Dendritic Macromolecules. Molecules. 2024; 29(21):5055. https://doi.org/10.3390/molecules29215055
Chicago/Turabian StyleZhang, Jiaxing, Qinqin Ma, Huan Wang, Peinan Zhang, Xinyan Su, Afang Zhang, and Wen Li. 2024. "Crowding for Confinement: Reversible Isomerization of First-Generation Donor-Acceptor Stenhouse Adduct Derivatives in Water Modulated by Thermoresponsive Dendritic Macromolecules" Molecules 29, no. 21: 5055. https://doi.org/10.3390/molecules29215055
APA StyleZhang, J., Ma, Q., Wang, H., Zhang, P., Su, X., Zhang, A., & Li, W. (2024). Crowding for Confinement: Reversible Isomerization of First-Generation Donor-Acceptor Stenhouse Adduct Derivatives in Water Modulated by Thermoresponsive Dendritic Macromolecules. Molecules, 29(21), 5055. https://doi.org/10.3390/molecules29215055