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Abstract: Hydroxytyrosol (HT) is a nutraceutical compound, mainly found in the fruit, leaves and
waste from the olive oil industry, known for exhibiting one of the highest antioxidant activities
among molecules of natural origin. To harness this bioactivity in cosmetics, pharmaceuticals and
the food industry, it is essential to modify the hydrophilicity of HT to enhance its compatibility
with lipid-based mixtures. This chemical modification must be carried out with high selectivity
to avoid compromising its radical scavenging activity. This work presents a highly efficient and
selective approach to perform the biocatalytic esterification of free fatty acids (FFAs) of different
alkyl chain lengths with HT in a reaction medium based on the SLIL [C12mim][NTf2]. By using a
1:2 (mol/mol) HT:FFA mixture of substrates, the HT-monoester derivative was obtained up to 77%
yield after 2 h at 80 ◦C. The optimized molar ratio of substrates, combined with the ability to recover
the SLIL for further reuse, significantly reduces waste accumulation compared to other reported
strategies and results in a more sustainable approach as demonstrated by different green metrics. The
antioxidant activity of HT-monoester products was fully maintained with respect to that presented
by the natural HT, being stable for at least 3 months at 4 ◦C, as demonstrated by the DPPH and FRAP
antioxidant analysis.

Keywords: lipases; bioactive molecules; tailor synthesis; neoteric solvents; nutraceuticals

1. Introduction

Nature is a great supplier of chemical compounds with valuable antioxidant properties,
being necessary to highlight the aromatic ones because of their ability to filter UV radiation
and even counteract free radicals [1]. In particular, hydroxytyrosol (HT) is present in olive
leaves and by-products resulting from olive processing (e.g., alperujo, etc.), being easily
extracted from these renewable resources. As a bioactive compound, HT shows one of
the highest antioxidant activities among other natural antioxidants (e.g., up to 10 times
higher than catechols and 15 times higher than Coenzyme Q) [2]. This is related to the
existence of two hydroxyl groups that are placed in an ortho position in the aromatic ring,
improving the efficiency of donating electrons to free radicals due to the stabilization of the
phenoxy group through hydrogen bonding [3–5]. As a result of this excellent antioxidant
activity, HT is also included in the list of natural additives to prevent lipid rancidity in food
products by either the direct addition to the lipid matrices or the incorporation into films
for food preservation [2,6–8]. Moreover, the direct consumption of HT, as a key component
of many nutraceutical preparations (e.g., cooking oils, beverages, dairy products, etc.), is
related to anti-inflammatory or anti-diabetic effects, as well as the prevention of neural
and cardiovascular degeneration [3,5]. In the same context, the cosmeceutical market is
also interested in the use of bioactive ingredients for innovative formulations that are more
efficient in preventing aging and wound healing [9].

The hydrophilic character of HT is a limiting issue for the preparation of cosmeceu-
tical and nutraceutical products based on hydrophobic matrices, as well as favoring its
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adsorption and bioavailability [10]. Among other synthetic approaches, the biocatalytic
esterification of fatty acids with HT appears as the most simple and clean approach to
transform HT into a ‘phenolipid’ derivative [11].

Because of the mutual immiscibility of hydrophilic HT and free or esterified fatty acids
as hydrophobic compounds, the use of volatile organic solvents (e.g., dimethyl carbonate,
methyl tert-butyl ether and tert-butanol) as reaction media has been a common practice,
despite their non-sustainable character [10,12].

As an alternative, ionic liquids (ILs) are exceptional non-aqueous reaction media for
carrying out biocatalytic processes because of their unique array of physical–chemical
properties (e.g., low vapor pressure, non-flammable nature, high ionic conductivity, good
dissolution power towards many substrates, high thermal and chemical stabilities, etc.), as
well as for preserving the activity and enhancing the stability of enzymes [13]. Furthermore,
certain hydrophobic ILs with a sponge-like behavior, so-called sponge-like ionic liquids
(SLILs), have allowed the design of efficient strategies for biocatalytic esterification that
comprise a clean methodology for the separation of pure products [14]. This feature
makes these SLILs highly convenient for the synthesis of food or cosmetic ingredients
like flavors [15], monoacylglycerides of saturated or ω-3 fatty acids [13,16], panthenol
esters [17] or monoesters of (hydroxy)cinnamic acids [18].

For the first time, this work shows an efficient and sustainable strategy for carrying
out the biocatalytic synthesis of HT monoesters through the direct esterification of free
fatty acids (FFAs) having alkyl-chain lengths ranging between C6 and C18, with HT in
SLIL-based reaction medium (Figure 1). Direct esterification has been carefully selected as
a cleaner and cost-effective synthetic strategy with respect to transesterification approaches
because of the reduction in the accumulated by-products. The excellent synergy of SLILs
and biocatalysts for the synthetic reaction, as well as the clean and straightforward product
separation, is shown. The resulting HT monoesters showed the same antioxidant power as
that of free HT. Compared to other conventional synthetic strategies previously reported,
the higher sustainability of the biocatalytic process presented here is clearly demonstrated
through different green metric parameters.
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Figure 1. (A) Structure of the 1-dodecyl-3-methylimidazolium bistriflimide [C12mim][NTf2] SLIL;
(B) Biocatalytic synthesis of hydroxytyrosyl monoesters by direct esterification of FFAs with HT in
SLIL-based reaction media.

2. Results and Discussion
2.1. Suitability of IL-Lipase Combined Tools for the Esterification of FFAs with HT

The biocatalytic esterification of two substrates mutually immiscible, such as an
aromatic alcohol, like HT, and an FFA as an acyl donor, may be considered the main
handicap for a good performance, which is usually overcome by using chemical derivatives
of substrates [19] or a great excess of inert solvents [20] to facilitate the reaction. By using
ILs, many biocatalytic esterification reactions have been successfully carried out, where the
easy recovery for reuse of this solvent was the main flag of greenness. As a representative
example, the hexanoic acid (Hex) was selected as an acyl donor to carry out the biocatalytic
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esterification with HT by using a 1:4 HT:Hex molar ratio in the SLIL [C12mim][NTf2] as
a green solvent. After the addition of the immobilized C. antarctica lipase B Novozym
435 (N435) (400 mg/mmol HT), the mixture was incubated at 80

◦
C under magnetic stirring,

where the presence of the MS 13X dehydrating agent allowed the reaction equilibrium to
shift towards the synthetic side by withdrawing the released water by-product. Under
these conditions, the hydroxytyrosyl hexanoate (HT-Hex) product was obtained at 87%
yield after 3 h reaction time, as determined by HPLC (see Table 1, entry 4). The synthesis
of the product was also confirmed by ATR-FTIR, revealing the formation of an ester bond
through the identification of the C=O stretching by the shift of the vibration band of the
carboxyl group from 1704 cm−1 to 1735 cm−1 and the detection of a new band at 1238 cm−1

corresponding to the C-O-C stretching (see Figure S1). In the same context, the HT-Hex
product was identified and characterized by HPLC-MS, 1H-NMR and 13C-NMR analyses,
as detailed in Supplementary Material (Figures S2–S7). The 1H-NMR and 13C-NMR spectra
clearly showed that the primary OH group in the alkyl chain is the only one involved in
the ester product, confirming the selectivity of the enzymatic esterification.

Table 1. Influence of reaction parameters on the biocatalytic synthesis of hydroxytyrosyl hexanoate
by esterification of Hex with HT (0.25 mmol) in 70% (w/w) [C12mim][NTf2] reaction medium. Yield
(ε) and productivity (mmol HT-Hex/g N435 h) have been calculated at 3 h reaction time.

Entry HT:Hex
(mol: mol)

N435/HT
(mg/mmol) T (◦C) ε (%) Productivity

(mmol HT-Hex/g N435 h)

1 1:4 50 80 33 2.2
2 1:4 100 80 83 2.8
3 1:4 200 80 81 1.4
4 1:4 400 80 87 0.7
5 1:4 100 70 71 2.4
6 1:4 100 60 47 1.6

7 a 1:2 100 80 78 2.6
a 0.5 mmol HT.

These results show the effectiveness of the combination of biocatalysis and SLILs to
achieve the efficient esterification of FFAs with HT. While the exquisite selectivity of the
enzymes simplifies and improves the efficiency of this desired transformation, the selection
of this SLIL as a non-aqueous green solvent with an excellent solubilization capacity permits
us to significantly reduce its contribution to the mass transfer and improves the reaction
rate compared to other organic solvents (see Section 2.5, Table 3, entries 2 and 3) [15,21].
Moreover, the potential for recovery and reuse of this SLIL is much more interesting from
the economic and environmental points of view. Thus, it has been demonstrated that the
synergy between the IL and the biocatalysts is fundamental for the efficient modification
of natural bioactive compounds following the selectivity and economy criteria [13–16].
However, the excellence of this combo of IL-biocatalysts can be boosted through the
optimization of the reaction conditions, attending to the amount of biocatalyst, the reaction
temperature and the molar ratio of substrates.

As can be seen in Table 1 (entries 1–4), the increase in the enzyme amount from 50 to
400 mg provides a concomitant increase in product yield up to 87% (see entry 4). However,
it should be noted that the productivity of the reaction systems shows a bell-shaped profile
as the amount of enzyme increases, the best results being obtained when using 100 mg
N435/mmol HT (see entry 3), a value four times higher than that obtained for the highest
enzyme content. Reaction temperature was also shown as an important parameter, being
observed a clear improvement in product yield (from 47% to 83%, see entries 2, 5 and 6)
when the temperature raised from 60 to 80 ◦C. This fact was directly related to the greater
suitability of the reaction system for dissolving both substrates (HT and Hex) into the
ionic net and enhancing their transfer rate to the active site of the enzyme whose activity
is maintained by the protective effect of SLIL media [15]. The ability of hydrophobic
SLILs to stabilize enzymes at high temperatures has been widely reported (e.g., up to



Molecules 2024, 29, 5057 4 of 19

1370 days half-life time at 60 ◦C in the N-octadecyl-N’,N”,N”’-trimethylammonium bis
(trifluoromethylsulfonyl)imide IL) [14,22]. This stabilization is attributed to the preservation
of the essential water shell around the enzyme within the IL network, which acts as
a stabilizing confined space for biocatalyst conformation. It should be noted that by
decreasing the HT:Hex molar ratio to 1:2 mol/mol (see entry 7), both product yield (76%)
and productivity (2.6 mmol HT-Hex/g N435 h) parameters remained practically similar to
those obtained for a 1:4 HT:Hex molar ratio (see entry 2). Consequently, the 1:2 HT-Hex
molar ratio was selected for further experiments because of the improvement in green
metric parameters of the process (e.g., atom economy) [11,23].

2.2. Biocatalytic Synthesis of HT Monoesters with Different Acyl Chain Length

To analyze the suitability of the N435/[C12mim][NTf2] system for the lipophilization
of HT, the biocatalytic synthesis of HT monoesters from fatty acids with different alkyl
chain length was studied under the optimized reaction conditions.

Figure 2 shows the time-course profiles of the N-435-catalyzed direct esterification of
hexanoic (C6), octanoic (C8), decanoic (C10), lauric (C12), myristic (C14) or oleic (C18:1) acid
with HT using a 1:2 HT:FFA molar ratio at 80 ◦C. For all the assayed reaction systems, the
immobilized enzyme was able to achieve a product yield higher than 50% within the first
30 min, whatever the size of the alkyl chain, reaching almost the maximum value in 2 h with
a slight increase afterwards (i.e., up to 70–83% HT-monoester yield after 4 h reaction). The
greater efficiency of the proposed approach can be observed after a comparative analysis
with other strategies previously described, where similar yields were achieved after 16 h
reaction by using a transesterification approach of synthesis in acetonitrile as reaction
medium [19]. According to the profiles in Figure 2, a reaction time of 2 h was selected
as the most appropriate for enzymatically producing HT monoesters, attending to the
balance between high yield and productivity, as well as minimizing any possible undesired
oxidations on HT derivatives induced by heat, that could occur after long reaction times at
80 ◦C.
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reaction medium. Free HT (#); HT-monoester product (▼).
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Figure 3 shows the evolution of the HT-monoester product yield and the productivity
of the reaction system as a function of the alkyl chain length of the carboxylic acid used for
the biocatalytic esterification of HT after 2 h of reaction. Both parameters show a similar
behavior being increased with the alkyl chain length from hexanoic (C6) to lauric (C12)
acids and then remained practically unchanged (e.g., approx. 80% yield and 3.8 mmol HT
monoester/gN435·h) for myristic and oleic acids as the most hydrophobic cases. Although
differences in the performance between the more hydrophobic FFAs were scarce, it can
be noted that a slight improvement is obtained with lauric acid. A similar pattern was
reported for the N435-catalyzed esterification of FFAs with different alkyl length with
glycerol [13] and panthenol [17,23], where lauric acid also displayed the best performance
for both, either in SLIL or solvent-free reaction media. For these hydrophobic SLIL-based
reaction media, these results clearly demonstrated that the biocatalysts’ performance in
the reaction system is positively influenced by the increase in the alkyl chain length of the
acyl donor. This improvement is driven by the hydrophobic interactions between the alkyl
chains of the FFA and the SLIL [C12mim][NTf2], fully aligning with the “like-dissolves-like”
principle [14,22]. Thus, the best results obtained for lauric acid may be attributed to a
favored mass-transfer rate of this fatty acid inside the IL net having the same alkyl chain
length, as it was also reported for the case of the biocatalytic synthesis of aliphatic esters in
IL/supercritical CO2 biphasic systems [24]. It is important to note that, despite the excess
of acyl donor respect HT and the increased hydrophobicity of the reaction media with
all tested FFAs, the degree of selectivity towards the synthesis of HT monoesters is not
affected, not detecting diester products that could signify a decrease in the antioxidant
activity. These results emphasized the excellent synergies between biocatalysts and SLILs
to achieve the efficient and selective lipophilization of aromatic alcohols [11,14].
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Figure 3. Yield (bars) and productivity (•) for the synthesis of HT-monoester derivatives by direct
biocatalytic esterification of different FFAs (i.e., hexanoic acid, C6; octanoic acid, C8; decanoic acid,
C10; lauric acid, C12; myristic acid, C14; oleic acid, C18:1) with HT. Reaction conditions: HT:FFA 1:2
(mol:mol), 100 mg N435/mmol HT, 2 h, 80 ◦C.

2.3. Scaling up of the Production of HT-Monohexanoate

To demonstrate the robustness of this procedure, a tempting assay to measure the
suitability for scaling up was carried out by increasing 10-folds the reaction mass with
respect to the optimized reaction in Table 1. Under these conditions, the incubation was
performed in a reactor with an anchor mechanical stirring, coupled to a vacuum system
to remove the water by-product released from the enzymatic reaction. Figure 4 shows the
accumulated productivity (in terms of mmol of HT-monohexanoate per gram of N435) for
the N435-catalyzed direct esterification of Hex with 0.5 mmol (low scale) or 5 mmol (high
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scale) HT by using a 1:2 HT:FFA molar ratio in 70% (w/w) [C12mim][NTf2] at 80 ◦C. The
comparison of the time-course profiles reveals a similar biocatalytic performance in both
scales of synthesis and even a slight improvement when the reaction mass is increased
10-fold, reaching a value close to 8 mmol HT-monohexanoate/g N435 at 3 h reaction time.
This result was attributed to the better suitability of the mechanical anchor stirring for
mixing the resulting viscous reaction medium with respect to the magnetic stirring used for
low reaction size. By this approach, an adequate mass-transfer rate during the biocatalytic
process occurred, as well as an efficient removal of the water by-product produced along
the reaction by the vacuum system coupled to the reactor. These results highlight the
relevance of the setup as an additional element to the N435/SLIL system to achieve the best
performance. The intensification of the biocatalytic synthesis provided by the suitable setup
at high reaction volumes was also observed, although to a greater extent, for the synthesis
of panthenyl monolaurate [23] and xylityl monolaurate [25] by direct esterification in
solvent-free media.
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Figure 4. Time-course profiles of the accumulated productivity for the N435-catalyzed esterification
of Hex with 0.5 mmol HT (•) or 5 mmol HT (#) (HT:Hex 1:2 mol:mol) using 100 mg N435/mmol HT
in 70% (w/w) [C12mim][NTf2] at 80 ◦C.

To build green chemical processes, it is necessary to develop integrated approaches for
selective (bio)transformation and separation, capable of providing the products directly and
the recovery for reuse of all the elements of the reaction system (e.g., biocatalysts, solvents,
etc.). The SLILs (e.g., [C12mim][NTf2], etc.) are temperature-switchable ionic liquid/solid
phases that behave as sponge-like systems that permit us to develop straightforward and
clean approaches for product separation after the biocatalytic step by a simple protocol of
cooling and centrifugation. By this approach, the SLIL precipitates as a solid salt at the
bottom, while the products remain in the upper liquid phase, as pure products when they
are liquids or dissolved in another green molecular cosolvent (e.g., water, etc.) previously
added [14,15,17,22]. For this system, the full release of HT-monohexanoate and unreacted
HT from the IL matrix could not be achieved by simple cooling and centrifugation of the
reaction mixture, as occurred for volatile flavors [15]. For the proper extraction of these
compounds, the addition of propylene glycol:water (PG:H2O, 85:15 v/v) green solution was
necessary, providing a liquid–liquid biphasic system. This mixture was then fully shaken,
cooled and centrifuged to precipitate the solid SLIL (bottom phase), while the released HT
and HT-monohexanoate were accumulated in the propylene glycol:water phase (upper
phase, see Figure 5). Briefly, five volumes of PG: H2O (85:15 v/v) were added to 4.5 mL
(4.5 g) of the reaction mixture from the biocatalytic step for HT-monohexanoate synthesis
in [C12mim][NTf2]. From the initial mass of 4.5 g, a total of 1.35 g made of HT-Hex (94%)
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and unreacted HT (6%) were recovered in the liquid phase. A 19F-NMR analysis (insert in
Figure 5 and Figure S8) showed the presence of traces of SLIL (up to 1%) that can be fully
eliminated by other classical procedures (i.e., ionic exchange column). The precipitated
SLIL accounted for 4.2 g and its white color (identical to the pure SLIL) points to almost the
total release of the reaction species. Only a content of 10% HT-Hex was still retained in the
ionic net, having the possibility to carry out another purification step or to directly reuse
this SLIL in another operational cycle.
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cycle. Created with BioRender.com.

It should be noted that propylene glycol (PG) meets the specifications of the Food
Chemicals Codex (Report Number: 27 NTIS Accession Number: PB265504, 1973) in agree-
ment with the Select Committee on GRAS Substances (SCOGS) [26]. Because of the safety
of PG, the extracted mixture containing the HT monoester could be used without addi-
tional steps of purification, contrary to other strategies where the use of volatile organic
solvents involves tedious workups that reduce the greenness of the overall process and
increase waste.

2.4. Antioxidant Activity of the HT-Monoesters

The industrial interest in preparing lipophilized HT derivatives to be used as nutraceu-
ticals in hydrophobic-based formulations is fully dependent on the maintenance of the
antioxidant power with respect to the free HT. The antioxidant activity of HT and its deriva-
tives after the esterification with different alkyl-chain length FFAs was determined by their
capacity to reduce the free radical 2,2-diphenyl-1-picrylhydrazyl, which manifests through
a color turn from deep purple to pale yellow that can be quantified by Vis-UV spectroscopy
at 517 nm. [11,27,28] To carry out this assay, SLIL-free samples were first obtained from
the reaction media by liquid–liquid extraction, and their respective concentrations were
determined by HPLC using a calibration pattern. Free HT and vitamin C (ascorbic acid)
were used as control references of the antioxidant activity, and the concentration of all
samples was adjusted to 80 nmol for a proper comparison (see Materials and Methods
section). The analysis was performed on a freshly extracted reaction mixture and, after
3 months of storage at 4 ◦C, was run in duplicate to obtain the mean and standard deviation.
Additionally, the capacity of the different HT monoesters for reducing the Fe3+-specie was
determined by means of the FRAP method (see Table 2).
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Table 2. Antioxidant activity of HT and HT monoesters by DPPH and FRAP. Fresh samples or
samples stored for 3 months at 4 ◦C were analyzed. The results of the DPPH assays are expressed
as a percentage of relative antioxidant activity with respect to the blank methanol. The ferric-
reducing activity determined by FRAP is expressed as µM Trolox equivalent/nmol of sample). N.D.:
Not determined.

Entry
DPPH Relative Antiox. Activ. (%) FRAP

(µM TE/nmol Sample)

Fresh Stored 4 ◦C Fresh Stored 4 ◦C

Vit C 49.3 ± 12.7 N.D. N.D. N.D.
HT 92.9 ± 0.0 89.8 ± 3.7 2.0 ± 0.1 N.D.

HT-C6 93.1 ± 3.3 92.7 ± 3.3 1.5 ± 0.0 2.2 ± 0.2
HT-C8 95.6 ± 0.1 92.7 ± 3.6 1.6 ± 0.2 2.3 ± 0.1

HT-C10 95.5 ± 0.8 92.2 ± 3.4 2.4 ± 0.0 1.9 ± 0.0
HT-C12 95.9 ± 0.3 92.7 ± 3.1 2.2 ± 0.1 2.0 ± 0.0
HT-C14 88.7 ± 12.0 72.9 ± 3.1 1.9 ± 0.1 1.4 ± 0.0

HT-C18:1 95.4 ± 0.5 92.8 ± 3.5 2.9 ± 0.3 4.9 ± 0.0

According to Table 2, the results obtained by the DPPH assay showed that the relative
antioxidant activities of HT and HT monoesters ranged from 89 ± 3.7 to 95 ± 0.5%, being
clearly higher than that resulted from the same concentration of vitamin C (49.3 ± 13%).
This could be attributed to the double reductive moieties onto the HT structure with respect
to the sole reductive group of vitamin C [29]. Furthermore, it should be noted how all the
HT-monoesters derivatives maintain the same antioxidant activity, regardless of the length
of the alkyl chain of the FFA, since the selective esterification did not affect the aromatic
hydroxyl groups, activity as demonstrated by NMR analysis (see Figure S7). However,
attending to the time-course profile of the DPPH reduction (Figure 6), a certain slowdown
in the reaction rate was detected for HT esters with respect to free HT and vitamin C.
This fact had already been reported for the lipophilization of HT [20,30], as well as for
other aromatic acids (e.g., caffeic acid, coumaric, etc. [11]), being attributed to a lower
ionization of the aromatic hydroxyl groups after the esterification. This slowdown could be
responsible for the decay in the antioxidant activity measured at short reaction times (<1 h)
in the DPPH method [28,31]. Additionally, the DPPH assay of the different HT monoesters
stored at 4 ◦C for three months showed a similar antioxidant capacity, highlighting the
stability of the HT monoesters.

Alternatively, an FRAP assay was also used to determine the antioxidant activity of the
HT monoesters (see Materials and Method section). The obtained results confirmed a high
antioxidant power of these HT monoesters, obtained values between 1.4 and 4.9 µM TE per
each nanomole of the sample analyzed, which was also maintained after 3 months at 4 ◦C.
These results push again on the excellent suitability of these compounds as antioxidants.
It should be noted that despite the study of the antioxidant stability of HT monoesters is
limited due to the short time elapsed, the obtained results are promising for the use of these
products as stable antioxidant additives in food preservation conditions.

Thus, the esterification of FFAs with HT not only improves the miscibility with
lipophilic formulations in cosmetics or foods, favoring skin penetration and intestinal
absorption but also the longer reaction time of HT-monoester derivatives could be consid-
ered an advantage to extend the antioxidant activity over time. Thus, the combination of
these HT monoesters with other antioxidants with a faster rate (i.e., vitamin C or free HT)
could be interesting as a protective system for providing a fast and more prolonged answer
against free radicals.
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Figure 6. Time-course profiles of the relative antioxidant activity of free HT (▼) and HT monoesters
based on different alkyl-chain lengths (C6, △; C8, ■; C10, □; C12, ♦; C14, ♢; C18:1, ▲; overall content in
HT species: 80 nmol), determined spectrophotometrically at 517 nm during 4 h with DPPH. Vitamin
C (80 nmol, #) was used as an antioxidant standard reference. A sample of DPPH without any
antioxidant (•) was used as a control to establish the zero value. Insert picture: final color displayed
by each sample after the DPPH test.

2.5. Green Metric Assessment of the Biocatalytic Synthesis of HT-Monoesters

To assess the sustainability of the biocatalytic strategy here presented, the synthesis
of HT-monohexanoate was selected as a representative example of HT monoesters. Using
different recognized green metrics, i.e., atom economy (AE), yield (ε), stoichiometric
factor (SF), mass recovery parameter (MRP), reaction mass efficiency (RME), process mass
intensity (PMI), E-factor and total carbon release (TCR) parameters and the Ecoscale tool,
a “gate to gate” analysis has been made comprising the synthesis and workup. The
AE, 1/SF and ε parameters provide information about the reactivity of substrates and
atoms incorporated into the desired products. It should be noted that the MRP concerns
the recyclability of the reaction species (or their contribution to waste), whereas RME
is considered a global indicator of sustainability, comprising all the above parameters.
The values of all these parameters range between zero to one, corresponding with the
highest value to the best sustainability. Alternatively, the E-factor parameter may be used
as waste quantification criteria, being expected to have the lowest value for sustainable
processes. This E-factor can be extrapolated from the RME or the PMI, being the last
parameter used to identify the origin of waste (see Table S1) and the sensitive steps of
further optimization to promote waste reduction. Also, the PMI permits us to calculate the
emissions of CO2 through the total carbon release (TCR) parameter, where a different factor
is applied to organic (waste accumulated in the synthesis step) and aqueous (wastewater
in the downstream steps) waste to determine the CO2 production, considering a scenario
of waste incineration [32]. The EcoScale tool provides approximate information about the
LCA by considering aspects of the toxicity and hazardousness of the reagents or the energy
invested in the whole process of synthesis and purification (see Material and Methods and
Supplementary Material sections for further details) [11,23].

For a comparative green analysis, other reported strategies for HT-monoester biocat-
alytic synthesis were selected as a result of the sufficient information they provided (see
Table 3) [10,19,20]. Among other conditions, the most relevant differences between these
approaches concern the use of volatile organic solvents as reaction medium (entries 2–4), as
well as aliphatic esters (entries 1 and 2) as activated acyl donors for a transesterification
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approach, which provides easy solubilization into the solvent that resulted in homogeneous
reaction media. In all cases, the reaction was catalyzed by N435, providing excellent yields
(75–98%) but different performances. Thus, a high HT-monoester yield (93%, entry 2) was
obtained at the shortest reaction time (1.25 h), leading to the highest value of productivity
(5.4 mmol ME/g N435 h). These results are slightly higher than those here reported by
a direct esterification approach (see entry 4, 3.1 mmol HT monoester/g N435·h). It can
be noted that the use of a very low amount of biocatalyst (33 mg/mmol HT, see entry 3)
involves a lengthening in the reaction time up to 48 h for achieving a 75% HT-monoester
yield, being the productivity greatly reduced (0.5 mmol ME/g N435 h). In this regard,
it seems more appropriate to increase the amount of enzyme to improve esterification
reaction rates and productivity.

Table 3. Reaction conditions and analysis of sustainability of different biocatalytic strategies for
hydroxytyrosol lipophilization.

Entry 1, [19] 2, [20] 3, [10] 4, [This work] a

R
ea

ct
io

n
co

nd
it

io
ns

Solvent
(mL/mmol HT) None MTBE b

(35)
MTBE

(33)
[C12mim][NTf2]

(5)

Acyl donor Ethyl
palmitate

Vinyl
decanoate

Hexanoic
acid

Hexanoic
acid

HT (mmol) 0.4 0.72 6 5

HT:DA (mol:mol) 1:30 1:20 1:2 1:2

mg N435/mmol HT 100 139 33 100

Temperature (◦C) 37 40 40 80

Time (h) 4 1.25 48 3

ε (%) 98 93 75 76 ± 1.4

Productivity (mmol
HT ester/g Enz h) 2.5 5.4 0.5 3.1 ± 0.2

a From this work, the biocatalytic esterification reaction of Hex (10 mmol) with HT (5 mmol) was selected for
green metric analysis; b MTBE, methyl tert-butyl ether.

However, yield and productivity parameters only focus on reaction efficiency, and
other critical aspects related to reaction conditions and preparation that provide information
on resource use (substrates, energy, solvents, etc.) and waste generation must also be taken
into account [11,23]. Therefore, a complementary sustainability analysis becomes necessary
to identify the most efficient approach. In this regard, the ε was complemented with other
green parameters like AE, 1/SF, MRP and RME, which are usually represented as the
vertices of a pentagon (Figure 7). As can be seen, the greenness of the process is shown
when a balanced pentagon with a maximum radius of one is obtained, which is the highest
value for each metric [33]. The analysis of these metrics has been strictly referred to as the
synthesis step (or upstream) to identify the most efficient reaction conditions.

The AE parameter provides information about the suitability of the strategy selected,
revealing the contribution of by-products to the overall synthesis. Thus, the application of
an esterification strategy (entries 3 and 4, Table 3; blue and green lines, Figure 7) shows the
highest values of AE as a result of the release of water as a unique by-product. Although
the transesterification strategy provides the release of alcohol as a by-product, the high
AE value resulted in entries 1 and 2 is due to the lower molecular mass of ethanol and
acetaldehyde by-products, respectively, with respect to the large alkyl chain of the obtained
HT-monoester products. As the AE parameter does not consider the substrate’s mass
balance in the reaction system, the green analysis must be complemented with the stoichio-
metric factor parameter (1/SF), which quantifies the excess of substrates with respect to
the reaction stoichiometry. Then, an important decay in the 1/SF parameter was obtained
for entries 1 and 2 (values of 0.1) due to the great presence of fatty acid esters used as acyl
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donors. On the contrary, the use of a 1:2 HT:Hex molar ratio (see blue and green lines,
Figure 7) raises the 1/SF parameter to an acceptable value of 0.7. When using an excess
of one of the substrates, the contribution to waste is great, being strongly penalized by
other green metric parameters. For example, attending to the MRP formula in Table S1,
this excess of substrates is quantified twice, in the 1/SF parameter and in the waste (W)
term, having a profound impact on the reduction in the value of the MRP parameter.
Also, the use of organic solvents as non-recoverable input or the low reaction yield greatly
impacts a poor value of MRP. Conversely, the suitability of SLILs to be recovered and
reused [19–21,28], together with the fair molar ratio of substrates used in the strategy here
reported, leads to the best MRP value (0.66, entry 4), being 66-folds higher than the MRP
value of entry 3 (0.01) despite using the same reaction conditions. The RME parameter
collects the results of all the above green metrics to provide an overall landscape of the
reaction sustainability and thus, may be considered as the most important parameter in the
radial pentagon. As can be seen, whilst the reported strategies (see lines blue, orange and
red) adopt a triangle or a square shape because their RME value is almost null (0.01–0.03),
the direct esterification of Hex with HT in SLILs (green line) results in an RME value of 0.33,
being the only one that fits a balanced pentagon and shows the higher values for almost all
the assayed metric parameters.
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Alternatively, the determination of the PMI parameter is useful to detect those steps
that can be improved for reducing waste. The PMI calculator allows us to determine
waste accumulation through the different steps of upstream and downstream. Because of
the insufficient information on solvent mass used in the workup in entry 2, the complete
analysis of the PMI parameter was only carried out for entries 1, 3 and 4 (see Table 3).
Figure 8A provides the distribution of the source of waste for each of the selected strategies
resulting from the PMI calculator. Although entry 1 is a solvent-free synthetic approach,
the high mass of solvents used in the workup tarnishes its sustainability (up to 670 kg
input/kg output). It should be noted how the use of a fully recoverable solvent, like SLIL,
joined to the high biocatalytic efficiency achieved for entry 4, leads to the best PMI results.
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Figure 8. Analysis of waste and CO2 emissions in the strategies in Table 3. (A) PMI: Representation
of the contribution of substrates and reagents, solvents and water to the PMI value in the upstream
and downstream processes; (B) E-factor: Relation of mass of waste accumulated with respect to the
mass of the HT-monoester product in the upstream and downstream processes; (C) TCR: Mass of
CO2 emissions as a result of the incineration of organic and aqueous waste in the upstream and
downstream processes. The analyses for entry 2 are only referred to the upstream.

From the PMI parameter, the E-Factor refers to the overall generated waste, while
the TCR parameter points to the waste contribution to CO2 emissions (see Table S1 and
Figure 8B,C) [34]. The results obtained for E-factor and TCR follow the same pattern as
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that observed for the PMI case, pointing again to the negative character of non-recoverable
solvents to the environmental burden.

To obtain an overview of the LCA for the synthesis of HT monoesters according to the
selected strategies, the analysis was complemented with the EcoScale. Although this tool
does not allow for a fine discrimination between reaction conditions, it is very useful to
evaluate certain parameters not contemplated in the previous metrics, such as the energy
invested, the price and toxicity of the reagents or the stages and equipment necessary
for the synthesis and workup. Thus, starting from an initial value of 100% sustainability,
penalties are assigned as a function of those criteria that have been collected in detail in
Table S2 (it should be remembered that the workup of entry 2 is incomplete). For entries
1–3, most of the penalties come from the cost and safety of substrates and reagents used.
For example, the higher price of the activated acyl donor (i.e., ethyl palmitate and vinyl
decanoate) is heavily penalized compared to FFAs. The lower yield obtained in entries 3
and 4 is also penalized, though this tool only considers the yield of the limiting substrate
and does not account for the excess substrate used in entries 1 and 2. This is a clear
example of the limitations of this tool, together with the rough discrimination between the
reaction conditions in the section of technical setup. However, these weaknesses can be
counterbalanced by combining this tool with other green metric parameters.

As a result, all the penalties assigned reduce the scores for entries 1–3 from 100%
(corresponding to an ideal sustainable reaction) to almost 50%. Meanwhile, the one here
reported obtains a value of 77% due to the lower range of reagents and the simplification
and safety of the overall process. This punctuation, according to the authors of this tool,
corresponds to excellent operating conditions [35].

In all the green parameters analyzed in this work, the contribution to waste of the
SLIL used in this work has been omitted due to its recovery. However, the potential
environmental impact of IL versus other volatile organic solvents can be discussed. So far,
there are a limited number of LCA studies performed on ILs, which present certain gaps
due to the lack of relevant information [36]. Regarding the case of [C12mim][NTf2] SLIL,
its low vapor pressure prevents evaporation, while its high hydrophobicity also prevents
mixing with aqueous media. This means greater control of its release compared to organic
solvents and allows it to be recovered and reused almost entirely over several operational
cycles before degradation.

3. Materials and Methods
3.1. Materials

Commercial HT (2,4-dihydroxyphenylethanol, Naturolive HT15SF with 15% purity
was a kind gift from Deretil Nature, S.A (Almeria, Spain). As a pure standard, a commercial
HT (>98%) from TCI was also used. Sigma provided different free fatty acids: hexanoic acid
(C6, 99%), octanoic acid (C8, >98%), decanoic acid (C10, ≥98%), lauric acid (C12,98%), mirys-
tic acid (C14, 98%) and oleic acid (C18:1, 90%), as the dehydrating agent molecular sieves
MS13X, acetophenone (99%), deuterated dimethyl sulfoxide (DMSO-δ6) and the free radi-
cal 2,2-DiPhenyl-1-PicrylHydrazyl (DPPH), while ascorbic acid (≥99%) was supplied by
Probus, S.A. (Barcelona, Spain). IoLiTec (Ionic Liquids Technologies, Heilbronn, Germany)
was the source of the IL 1-dodecyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide
([C12mim][NTf2], 99% purity). The commercial immobilized Candida antarctica lipase B,
named Novozym® 435 (N435), was a gift of Novozymes/Novonesis (Madrid, Spain).

3.2. Biocatalytic Synthesis of Hydroxytyrosol Esters

The commercial product Naturolive HT15SF is a complex extract from Olea europaea
containing 15–17% HT, 45–65% fruit extract (fats, sugars, dietary fiber and proteins) and
35–55% starch. Before the use, HT was extracted with methanol (10 g extract/60 mL MeOH)
for 12 h, and afterwards, methanol was evaporated in a rotary evaporator at 60 ◦C and
110 rpm. The concentration of recovered HT was measured by HPLC with respect to a
calibration pattern of pure HT (0.02–1 mM) from TCI (99% purity) using acetophenone
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(1 mM) as the internal standard, obtaining a concentration of 2.7 M. The biocatalytic
esterification process of HT was carried out by using different FFAs as acyl donors (i.e.,
hexanoic acid, C6; octanoic acid, C8; decanoic acid, C10; lauric acid, C12; myristic acid, C14;
oleic acid, C18:1). To perform the process, 1:4 or 1:2 molar ratios of HT and FFAs were
dissolved in 0.5 mL of the SLIL-[C12mim][NTf2] containing MS 13X (100 mg/mmol HT).
After mixing at 60–80 ◦C, 250 rpm, N435 (50–400 mg N435/mmol HT) was added, and the
reaction was incubated in the same conditions for 8 h. Along the reaction, 10 µL aliquots
were withdrawn at different intervals to obtain the time-course profiles through HPLC
analysis. The higher scale reaction was performed by increasing 10-folds the overall mass
in a Carousel Plus 6 Reaction Station system with a TornadoTM Overhead Stirring System
(Radleys, Saffron Walden, United Kingdom) coupled to a vacuum system (Vacstar IKA,
Barcelona, Spain).

The assays performed at benchmark or at higher scale were conducted in triplicate to
obtain the mean and standard deviation.

At the end of the biocatalytic reaction, the immobilized enzyme derivative was sep-
arated from the medium by centrifugation (i.e., 14,000 rpm, 15 min, RT). A liquid–liquid
extraction procedure was developed to separate the HT monoesters and unreacted HT
from the SLIL as follows. Approximately 200 µL of reaction medium were suspended
in propylene glycol: H2O (85: 15 v/v, 1 mL) and stirred for 5 min at room temperature.
The resulting heterogeneous mixture was cooled to −10 ◦C for 15 min and centrifuged at
0 ◦C (i.e., 14,000 rpm, 10 min), resulting in two separated phases: an upper liquid phase
containing unreacted HT and HT-monoester products and a solid-white bottom phase
corresponding to the SLIL. Residual SLIL on the liquid phase was determined by 19F-NMR,
as follows. The sample (40 µL) and trifluoroacetic acid (TFA, 40 µL, internal standard) were
dissolved in DMSO-δ6 (420 µL) and then analyzed in a Brucker AC 200E spectrometer
400 MHz (Massachusetts, United States, U.S.A.), quantifying the residual IL with respect to
a standard of the [C12mim][NTf2] SLIL prepared in the same conditions.

3.3. HPLC Analysis

The separation and identification of substrates and products was performed by HPLC
using an HPLC LC-20 system (Shimadzu, Columbia, MD, USA) coupled to a photodiode
detector (SPD-M20A, Shimadzu), with an RP-18 column (LiChrospher, Merck, Darmstadt,
Germany, 250 nm × 5 µm). The solvents acetonitrile (ACN, A) and orthophosphoric
acid 0.1% v/v (B) were used according to the following elution gradient: 0–2 min, 25% A;
2–16 min, 25–90% A; 16–17 min, 90%; 17–18 min, 90–25% A, 18–25 min, 25% A. For the
reaction with octadecenoic acid as an acyl donor, the gradient varied as follows: 0–2 min,
25% A; 2–16 min, 25%–90% A; 16–25 min, 90% A; 25–26 min, 90%–25% A; 26–32 min, 25%
A. HT and the ester products were identified at their λmax (280 nm) with the following
retention times: HT (3.0 min), HT-C6 (13.6 min), HT-C8 (15.8 min), HT-C10 (17.8 min), HT-
C12 (19.7 min), HT-C14 (21.4 min) andHT-C18:1 (23.4 min). The yield of the esterification
was determined as a function of the peak area balance of HT and the ester product.

3.4. FTIR Spectra

The vibration bands of the functional groups in HT, FFAs and the ester products were
identified by infrared spectroscopy (FT-IR-4700 JASCO Analytical Instruments, Easton, PA,
USA) with a range of measurement from 3500 to 400 cm−1, at a 0.4 cm−1 resolution.

3.5. HPLC-MS and NMR Analyses

The reaction model of HT esterification with hexanoic acid was selected to identify
the ester product by HPLC-MS and NMR spectra. HPLC-MS analyses were performed
with an HPLC-DAD Agilent 1200 equipped with an RP-C18 column (250 mm × 5 µm) and
an electrospray detector ESI-TOF Agilent 6220 (Agilent, California U.S.A.) following the
same elution gradient as in Section 2.3 but replacing orthophosphoric acid by acetic acid.
Signals were obtained by scanning in the range of 100–1000 m/z operating in negative ion
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mode. The ion spectra were compared with a NIST library for the identification of the
reaction species.

Equally, 1H-NMR and 13C-NMR spectra were obtained for HT, Hex, the SLIL-[C12mim]
[NTf2], and the reaction mixture with a Bruker Avance 400 MHz spectrometer. For the
analyses, 50 µL were diluted with DMSO-δ6 up to a final volume of 400 µL.

Hydroxytyrosol: 1H-NMR δ(ppm)—3.48 (dt, 2H, Ha); 4.53 (t, 1H, Ha-OH); 2.52 (t,
2H, Hb); 6.42 (dd, 1H, Hd); 6.60 (d, 1H, He); 8.57/8.67 (s, 1H, Hf-OH or Hg-OH, indistin-
guishable); 6.57 (d, 1H, Hh). 13C-NMR δ(ppm): 62.6 (CA); 38.5 (CB); 130.1 (CC); 119.4 (CD);
116.3 (CE); 143.3 (CF); 144.9 (CG); 115.4 (CH).

Hexanoic Acid—1H-NMR δ(ppm): 11.95 (s, 1H, Hi-OH); 2.18 (t, 2H, Hj); 1.48 (q,
2H, Hk); 1.18–1.33 (m, 4H, Hl and Hm, indistinguishable); 0.85 (t, 3H, Hn). 13C-NMR
δ(ppm): 174.5 (CI); 33.6 (CJ); 24.2 (CK); 30.8 (CL); 21.9 (CM); 13.8 (CN). Hydroxytyrosyl
Hexanoate—1H-NMR δ(ppm):4.11 (t, 2H, Ha); 2.67 (t, 2H, Hb); 6.43 (dd, 1H, Hd); 6.59, (d,
1H, He); 6.56 (d, 1H, Hh); 2.23 (t, 2H, Hj); 1.47 (q, 2H, Hk); 1.18-1.33 (m, 4H, Hl and Hm,
indistinguishable); 0.85 (t, 3H, Hn). 13C-NMR δ(ppm): 64.6 (CA); 33.8 (CB); 128.5 (CC); 119.4
(CD); 116.5 (CE); 143.6 (CF); 145.1 (CG); 115.7 (CH); 172.9 (CI); 33.5 (CJ); 24.1 (CK); 30.7 (CL);
21.8 (CM); 13.8 (CN).

1-Dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide—1H-NMR δ(ppm):
4.14 (t, 2 H, Ha′ ); 1.77 (q, 2 H, Hb′ ); from 1.32 to 1.15 (m, 18 H, from Hc′ to Hk′ , indistin-
guishable); 0.85 (t, 2H, Hl′ ); 9.09 (dd, 1H, Hm′ ); 7.75 (dd, 1H, Hn′ ); 7.76 (dd, 1H, Ho′ ); 3.84 (s,
3H, Hp′ ). 13C-NMR δ(ppm): 48.8 (CA′ ); from 29.3 to 28.4 (from CB′ to CI′ , indistinguish-
able); 25.5 (CC′ ); 31.3 (CJ′ ); 22.1 (CK′ ); 13.8 (CL′ ); 136.5 (CM′ ); 123.6 and 122.1 (CN′ and CO′ ,
indistinguishable).

3.6. Antioxidant Activity of HT Monoesters by Radical Scavenging Test

The antioxidant activity of HT monoesters was determined by using the DPPH
method [10,32,33]. First, samples of reaction media (200 µL) containing HT monoesters
based on different FFA acyl donors (see Figure 3) were suspended in ethyl acetate (1 mL),
and the mixture was strongly shaken for 10 min at RT to extract all HT compounds. Then,
the ethyl acetate phase was collected, and the solvent was removed under reduced pressure.
The remaining solid fraction was then dissolved in MeOH (0.5 mL) and the concentration
of HT species was determined by HPLC, as described in Section 3.2. To determine the
stability of HT-esters, fresh samples (recently extracted) or extracts that had been stored
at 4 ◦C for 3 months were used. For all cases, concentrations ranged from 0.3 to 0.37 M
HT species, where HT-monoester derivative accounted for 72–83%, maintaining the same
proportion with free HT as in the reaction media.

To perform the DPPH assay, all extracted fractions were diluted with methanol to
achieve a 0.8 mM HT-monoester final concentration to determine the antioxidant activity.
Samples of HT methanolic fraction (100 µL, 80 nmol) were added to 3 mL of 0.15 mM DPPH
in MeOH, shaken at RT, and then the absorbance at 517 nm was recorded until it reached
the steady state. The relative antioxidant activity, in terms of the capacity to neutralize the
free DPPH radical, was calculated according to the formula:

Relative Antioxidant Activity(%) =
AC − AS

AS
× 100 (1)

where, AC corresponds to the absorbance of the DPPH control solution (without antiox-
idant), and AS corresponds to the absorbance of DPPH in the presence of the antioxi-
dant sample.

Additionally, the FRAP method was used to determine the capacity of the samples to
reduce the ferric ion of the complex 2,4,6-tripyridyl-s-triazine complex [Fe3+-(TPTZ)2]3+

to obtain a ferrous complex [Fe2+-(TPTZ)2]2+ with an intense blue color that is registered
at 593 nm [37,38]. A calibration pattern with Trolox (50–500 µM) was used as a reference.
A volume of 100 µL of each sample (50 µM) was used to determine this activity, being
referred to as µM Trolox equivalents/nmol of the HT sample.
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The DPPH and FRAP studies were conducted in duplicate to obtain the mean and
standard deviation.

3.7. Analysis of Sustainability

To assess the sustainability of the reaction, the efficiency and waste generation were
determined by means of six green metric parameters as previously reported [29]: atom
economy (AE), yield (ε), stoichiometric factor (SF), material recovery parameter (MRP),
reaction mass efficiency (RME), process mass intensity (PMI), E-factor and TCR (see
Section 3 in Supplementary Material, for more information). The PMI calculator was
used to determine the PMI (https://www.acs.org/content/dam/acsorg/greenchemistry/
industriainnovation/roundtable/convergent-pmi-tool.xlsx). The EcoScale tool was also
used (http://ecoscale.cheminfo.org/calculator).

4. Conclusions

The current framework of sustainability in industrial processes demands a shift to-
wards the use of renewable raw materials and the better use of resources to decrease the
environmental burden. The increased interest in natural antioxidants for the cosmetic and
food markets opens the necessity to develop highly selective, green and clean synthetic
approaches for preparing new products with improved bioactivities. This means a turn
of conventional approaches by introducing new tools that afford more sustainable and
cost-effective processes. This work demonstrates how the combination of biocatalysis with
the SLIL [C12mim][NTf2], as a neoteric green solvent, is a highly suitable approach for the
selective preparation of lipophilic HT monoesters, preserving their bioactive properties.
The synergy between the remarkable solvent capacity of this SLIL and the biocatalytic effi-
ciency permits us to achieve high productivity (up to 3.8 mmol HT-monoester/g N435·h) in
the synthesis of HT monoesters bearing different alkyl chain lengths, with the lowest waste
accumulation compared to other strategies previously reported. Moreover, the interesting
properties of SLILs have been key for the development of a clean, innocuous and simple
extraction of the products, allowing for the direct application of the mixture because of the
biological interest of non-reacted substrates and the GRAS solvent used. Thus, because
of the antioxidant activity of HT monoesters and their tailored hydrophobicity, a more
efficient use as a nutraceutical or antioxidant additive in the food sector is expected. More-
over, the combination of these HT monoesters with other bioactive molecules may lead
to synergistic effects, improving the benefits of cosmetics or pharmaceutics formulations.
For example, HT and panthenol (pro-vitamin B5) are bioactive molecules that share the
fact that they have been esterified to reduce their hydrophilicity, but both also contribute
to wound healing through the decrease in inflammation and the promotion of fibroblast
proliferation, respectively. Thus, the combination of both bioactive ingredients could mean
an improvement in the rate of wound healing.

However, more studies are necessary before implementing this technology in industry.
So far, the synthesis of 1.4g of the product has been considered, but it is necessary to
increase the scale of synthesis and assess the recyclability of the system SLIL/biocatalysts.
Also, a long-term analysis of the stability of the antioxidant activity of the synthesized HT
monoesters under different temperature conditions or after the incorporation into different
matrices should be convenient to determine their industrial suitability compared to other
known antioxidants.

Once again, the synergic combination of biocatalysts and SLIL opens an interesting
path to upgrade the greenness of chemical transformations for a more sustainable future.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules29215057/s1, Figure S1. FTIR spectra of HT, Hex, HT-Hex ester
and the LI-[C12mim][NTf2]; Figure S2. HPLC-MS analysis in negative ion mode of the esterification
of HT with hexanoic acid; Figure S3. 1H-NMR (A) and 13C-NMR (B) spectra of commercial hydroxy-
tyrosol (TCI); Figure S4. 1H-NMR (A) and 13C-NMR (B) spectra of hydroxytyrosol used in this work,
kindly gifted by Deretil Nature S.A.; Figure S5. 1H-NMR (A) and 13C-NMR (B) spectra of hexanoic
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acid; Figure S6. 1H-NMR (A) and 13C-NMR (B) spectra of IL [C12mim][NTf2]; Figure S7. 1H-NMR
(A) and 13C-NMR (B) spectra of the reaction medium of HT-Hex synthesis; Figure S8. 19F-NMR
spectra of [C12mim][NTf2] and the extracted sample of HT-Hex; Table S1. Green Metric Parameters,
equations, and definitions [39]; Table S2. List of penalties assigned in each category of the EcoScale.
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