Design, Synthesis, Molecular Docking, and ADME-Tox Investigations of Imidazo[1,2-a]Pyrimidines Derivatives as Antimicrobial Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
2.3. Molecular Docking Simulation
2.3.1. Protein-Ligand Interaction
2.3.2. Orientation and Bonding Interaction of the Compounds at the Active Site of Receptors
2.4. Drug-Likeness Evaluation
2.5. ADME-T Properties
- All compounds had Caco-2 values greater than −5.15 (>−5.15 cm/s). This means that these compounds exhibit good permeability. In addition, it is evident that all compounds had HIA values greater than 30%, indicating that the orally administered drug candidates are absorbed from the gastrointestinal system into the bloodstream of the human body.
- All three compounds could penetrate the CNS, as confirmed by logPS values, which were in the range of −3 < logPS < −2. Additionally, the logBB values of compounds 3g, 3k, and 3j were 0.311, 0.030, and 0.123, respectively. This indicates that compound 3g readily crosses the blood–brain barrier and that compounds 3k and 3j are poorly distributed in the brain (Table 7).
- A P450 CYP inhibitor test was performed to determine whether the drug blocked or decreased the activity of one or more isoforms of the CYP450 enzyme. Data from this table indicate that compounds 3g, 3k, and 3j are inhibitors of the CYP1A2 isoform but not CYP2C19 inhibitors. In addition, these compounds are not CYP2D6 and CYP3A4 substrates.
- Further analysis of the table showed that none of the compounds were likely to be an OCT2 substrate. Moreover, it can be clearly seen that these compounds have a low excretion clearance (<5 mL/min/kg) (Table 7).
- Additionally, the selected compounds were neither hERG I nor hERG II inhibitors. However, none of these compounds posed a hepatotoxicity risk.
3. Experimental Section
3.1. Chemistry
3.1.1. General Information
3.1.2. General Procedure for the Synthesis of 2-arylimidazo[1,2-a]Pyrimidines (3a–k)
2-phenylimidazo[1,2-a]pyrimidines (3a)
2-(3-bromophenyl)imidazo[1,2-a]pyrimidine (3b)
2-(4-bromophenyl)imidazo[1,2-a]pyrimidine (3c)
2-(p-tolyl)imidazo[1,2-a]pyrimidine (3d)
2-(2-methoxyphenyl)imidazo[1,2-a]pyrimidine (3e)
2-(3-methoxyphenyl)imidazo[1,2-a]pyrimidine (3f)
2-(4-methoxyphenyl)imidazo[1,2-a]pyrimidine (3g)
2-(4-fluorophenyl)imidazo[1,2-a]pyrimidine (3h)
2-(4-chlorophenyl)imidazo[1,2-a]pyrimidine (3i)
2-(naphthalen-2-yl)imidazo[1,2-a]pyrimidine (3j)
2-(3,4-dimethylphenyl)imidazo[1,2-a]pyrimidine (3k)
3.2. Biology
3.3. In Vitro Assay for PDE5 Inhibitors
3.3.1. Protein Expression and Purification
Ligands and Target Preparations
- Protocol and validation of the Docking method
- ADME-Tox evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasirmahale, L.N.; Shirini, F.; Bayat, Y.; Mazloumi, M. Solvent-Free Synthesis of Imidazo[1,2-a]Pyrimidine-3-Carbonitriles and 1,2,4-Triazolo[4,3-a]Pyrimidines under the Catalytic Performance of TiO2-[Bip]-NH2+ C(NO2)3− as a Novel Nanocatalyst. J. Mol. Struct. 2023, 1272, 134210. [Google Scholar] [CrossRef]
- Nezhadramezan-Ghasemabadi, H.; Mazloumi, M.; Azimi, S.C.; Shirini, F. One-Pot Three Component Synthesis of Pyrido[2,3-d]Pyrimidines and Benzo[4,5]Imidazo[1,2-a]-Pyrimidine-3-Carbonitrile Catalyzed by Acidic Ionic Liquid Immobilized on Nanoporous TiO2. J. Mol. Struct. 2023, 1274, 134435. [Google Scholar] [CrossRef]
- Rawat, M.; Rawat, D.S. Copper Oxide Nanoparticle Catalysed Synthesis of Imidazo[1,2-a]Pyrimidine Derivatives, Their Optical Properties and Selective Fluorescent Sensor towards Zinc Ion. Tetrahedron Lett. 2018, 59, 2341–2346. [Google Scholar] [CrossRef]
- Rehan, T.A.; Al-Lami, N.; Alanee, R.S. Anti-Cancer and Antioxidant Activities of Some New Synthesized 3-Secondary Amine Derivatives Bearing Imidazo [1,2-A] Pyrimidine. Eurasian Chem. Commun. 2021, 3, 339–351. [Google Scholar] [CrossRef]
- Shang, L.L.; Feng, Y.; Gao, X.L.; Chen, Z.R.; Xia, Y.; Jin, W.W.; Liu, C.J. DMAP-Catalyzed C—N Bond Formation for Diverse Synthesis of Imidazo[1,2-a]Pyrimidine and Pyrimido[1,2-a]Benzimidazole Derivatives. Chin. J. Chem. 2020, 38, 1595–1599. [Google Scholar] [CrossRef]
- Güngör, T. Microwave Assisted, Sequential Two-Step, One-Pot Synthesis of Novel Imidazo[1,2-a] Pyrimidine Containing Tri/Tetrasubstituted Imidazole Derivatives. Turk. J. Chem. 2021, 45, 219–230. [Google Scholar] [CrossRef]
- Goel, R.; Luxami, V.; Paul, K. Synthetic Approaches and Functionalizations of Imidazo[1,2-a]Pyrimidines: An Overview of the Decade. RSC Adv. 2015, 5, 81608–81637. [Google Scholar] [CrossRef]
- Kobak, R.Z.U.; Akkurt, B. Formation and Uses of Imidazo[1,2-a]Pyrimidines and Related Compounds: A Review Comprising Years 2000–2021. J. Turk. Chem. Soc. Sect. A Chem. 2022, 9, 1335–1386. [Google Scholar] [CrossRef]
- Atif, H.Y.S.; Wagare, D.S.; Ahmed, A.Z.; Durrani, A.N. Ultrasound Promoted One-Pot Synthesis of 2-Arylimidazo[1,2-a]Pyrimidines in Glycerol. Rasayan J. Chem. 2021, 14, 2645–2651. [Google Scholar] [CrossRef]
- Aeluri, R.; Alla, M.; Polepalli, S.; Jain, N. Synthesis and Antiproliferative Activity of Imidazo[1,2-a]Pyrimidine Mannich Bases. Eur. J. Med. Chem. 2015, 100, 18–23. [Google Scholar] [CrossRef]
- Annareddygari, S.; Kasireddy, V.; Reddy, J. Synthesis of Novel Amide-Functionalized Imidazo[1,2-a]Pyrimidin-5(1H)-Ones and Their Biological Evaluation as Anticancer Agents. Russ. J. Org. Chem. 2022, 58, 412–418. [Google Scholar] [CrossRef]
- Ravindar, L.; Hasbullah, S.A.; Rakesh, K.P.; Hassan, N.I. Pyrazole and Pyrazoline Derivatives as Antimalarial Agents: A Key Review. Eur. J. Pharm. Sci. 2023, 183, 106365. [Google Scholar] [CrossRef] [PubMed]
- Azzouzi, M.; El Ouafi, Z.; Azougagh, O.; Daoudi, W.; Ghazal, H.; Barkany, S.E.; Abderrazak, R.; Mazières, S.; El Aatiaoui, A.; Oussaid, A. Design, Synthesis, and Computational Studies of Novel Imidazo[1,2-a]Pyrimidine Derivatives as Potential Dual Inhibitors of HACE2 and Spike Protein for Blocking SARS-CoV-2 Cell Entry. J. Mol. Struct. 2023, 1285, 135525. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Trinidad, Á.; Carrillo-Jaimes, K.; Rivera-Chávez, J.A.; Hernández-Vázquez, E. Synthesis and Cytotoxic/Antimicrobial Screening of 2-Alkenylimidazo[1,2-a]Pyrimidines. Med. Chem. Res. 2023, 32, 144–157. [Google Scholar] [CrossRef]
- Güngör, T. One Pot, Multicomponent Protocol for the Synthesis of Novel Imidazo[1,2-a]Pyrimidine-Based Pyran Analogs: A Potential Biological Scaffold. Monatshefte Fur Chem. 2020, 151, 781–789. [Google Scholar] [CrossRef]
- Mantipally, M.; Gangireddy, M.R.; Gundla, R.; Badavath, V.N.; Mandha, S.R.; Maddipati, V.C. Rational Design, Molecular Docking and Synthesis of Novel Homopiperazine Linked Imidazo[1,2-a]Pyrimidine Derivatives as Potent Cytotoxic and Antimicrobial Agents. Bioorganic Med. Chem. Lett. 2019, 29, 2248–2253. [Google Scholar] [CrossRef]
- Gómez-García, O.; Andrade-Pavón, D.; Campos-Aldrete, E.; Ballinas-Indilí, R.; Méndez-Tenorio, A.; Villa-Tanaca, L.; Álvarez-Toledano, C. Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo[1,2-a]Pyrimidines. Molecules 2018, 23, 599. [Google Scholar] [CrossRef]
- Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Antifungal Activity in Vitro of Some Imidazo[1,2-a]Pyrimidine Derivatives. Eur. J. Med. Chem. 1991, 26, 13–18. [Google Scholar] [CrossRef]
- Chatzopoulou, M.; Martínez, R.F.; Willis, N.J.; Claridge, T.D.W.; Wilson, F.X.; Wynne, G.M.; Davies, S.G.; Russell, A.J. The Dimroth Rearrangement as a Probable Cause for Structural Misassignments in Imidazo[1,2-a]Pyrimidines: A 15N-Labelling Study and an Easy Method for the Determination of Regiochemistry. Tetrahedron 2018, 74, 5280–5288. [Google Scholar] [CrossRef]
- Kumar, G.; Kiran Tudu, A. Tackling Multidrug-Resistant Staphylococcus Aureus by Natural Products and Their Analogues Acting as NorA Efflux Pump Inhibitors. Bioorg. Med. Chem. 2023, 80, 117187. [Google Scholar] [CrossRef]
- Kibou, Z.; Aissaoui, N.; Daoud, I.; Seijas, J.A.; Vázquez-Tato, M.P.; Klouche-Kheli, N.; Choukchou-Braham, N. Efficient Synthesis of 2-Aminopyridine Derivatives: Antibacterial Activity Assessment and Molecular Docking Studies. Molecules 2022, 27, 3439. [Google Scholar] [CrossRef] [PubMed]
- Baba-Ahmed, I.; Kibou, Z.; Choukchou-Braham, N. Recent Advances in the Synthesis of Tacrine Derivatives as Multifunctional Agents for Alzheimer’s Disease. Curr. Org. Chem. 2021, 25, 2579–2624. [Google Scholar] [CrossRef]
- Belhadj, F.; Kibou, Z.; Benabdallah, M.; Aissaoui, M.; Rahmoun, M.N.; Villemin, D.; Choukchou-Braham, N. Synthesis and Biological Evaluation of New Chromenes and Chromeno[2,3-d] Pyrimidines. S. Afr. J. Chem. 2021, 75, 150–155. [Google Scholar] [CrossRef]
- Medjdoub, A.; Belhadj, F.; Saidi Merzouk, A.; Baba Hamed, Y.; Kibou, Z.; Choukchou-Braham, N.; Merzouk, H. In Vitro Peripheral Blood Mononuclear Cell Proliferation, Cytokine Secretion and Oxidative Stress Modulation by Pyrido[2,3-d] Pyrimidines. Chem. Pap. 2020, 74, 903–913. [Google Scholar] [CrossRef]
- Belhadj, F.; Kibou, Z.; Cheikh, N.; Choukchou-Braham, N.; Villemin, D. Convenient Access to New 4-Substituted Aminopyrido[2,3-d]Pyrimidine Derivatives. Tetrahedron Lett. 2015, 56, 5999–6002. [Google Scholar] [CrossRef]
- Nouali, F.; Sousa, J.L.C.; Albuquerque, H.M.T.; Mendes, R.F.; Paz, F.A.A.; Saher, L.; Kibou, Z.; Choukchou-Braham, N.; Talhi, O.; Silva, A.M.S. Microwave-Assisted Synthesis of 4,6-Disubstituted Isoindoline-1,3-Diones by Diels-Alder Reactions. J. Mol. Struct. 2023, 1275, 134608. [Google Scholar] [CrossRef]
- Kibou, Z.; Villemin, D.; Lohier, J.F.; Cheikh, N.; Bar, N.; Choukchou-Braham, N. Easy Solventless Synthesis of New Mono and Bis Amino-5H-Chromeno [3,4-c] Pyridin-5-One Derivatives. Tetrahedron 2016, 72, 1653–1661. [Google Scholar] [CrossRef]
- Xie, Y.Y. Organic Reactions in Ionic Liquids: Ionic Liquid-Accelerated One-Pot Synthesis of 2-Arylimidazo[1,2-a]Pyrimidines. Synth. Commun. 2005, 35, 1741–1746. [Google Scholar] [CrossRef]
- Sindi, A.; Chawn, M.V.B.; Hernandez, M.E.; Green, K.; Islam, M.K.; Locher, C.; Hammer, K. Anti-Biofilm Effects and Characterisation of the Hydrogen Peroxide Activity of a Range of Western Australian Honeys Compared to Manuka and Multifloral Honeys. Sci. Rep. 2019, 9, 17666. [Google Scholar] [CrossRef]
- Wasihun, A.G.; Kasa, B.G. Evaluation of Antibacterial Activity of Honey against Multidrug Resistant Bacteria in Ayder Referral and Teaching Hospital, Northern Ethiopia. Springerplus 2016, 5, 1–8. [Google Scholar] [CrossRef]
- Imberty, A.; Hardman, K.D.; Carver, J.P.; Perez, S. Molecular Modelling of Protein-Carbohydrate Interactions. Docking of Monosaccharides in the Binding Site of Concanavalin A. Glycobiology 1991, 1, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Wade, R.C.; Goodford, P.J. The Role of Hydrogen-Bonds in Drug Binding. Prog. Clin. Biol. Res. 1989, 289, 433–444. [Google Scholar] [PubMed]
- Skok, Ž.; Barančoková, M.; Benek, O.; Cruz, C.D.; Tammela, P.; Tomašič, T.; Zidar, N.; Mašič, L.P.; Zega, A.; Stevenson, C.E.M.; et al. Exploring the Chemical Space of Benzothiazole-Based DNA Gyrase B Inhibitors. ACS Med. Chem. Lett. 2020, 11, 2433–2440. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.; Paneth, A.; Trojanowski, D.; Paneth, P.; Zakrzewska-Czerwińska, J.; Stączek, P. Thiosemicarbazide Derivatives Decrease the ATPase Activity of Staphylococcus Aureus Topoisomerase IV, Inhibit Mycobacterial Growth, and Affect Replication in Mycobacterium Smegmatis. Int. J. Mol. Sci. 2021, 22, 3881. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, N.; Zhang, L.; Deravi, S.; Oerlemans, R.; Groves, M.R.; Haslinger, K. Structural Characterization and Extended Substrate Scope Analysis of Two Mg2+-Dependent O-Methyltransferases from Bacteria**. ChemBioChem 2023, 24, e202300076. [Google Scholar] [CrossRef]
- Aljohny, B.O.; Rauf, A.; Anwar, Y.; Naz, S.; Wadood, A. Antibacterial, Antifungal, Antioxidant, and Docking Studies of Potential Dinaphthodiospyrols from Diospyros Lotus Linn Roots. ACS Omega 2021, 6, 5878–5885. [Google Scholar] [CrossRef]
- Aarjane, M.; Slassi, S.; Tazi, B.; Amine, A. Synthesis and Biological Evaluation of Novel Isoxazole Derivatives from Acridone. Arch. Pharm. 2021, 354, e2000261. [Google Scholar] [CrossRef]
- Hosseini, Z.S.; Housaindokht, M.R.; Razzaghi-Asl, N.; Miri, R. Virtual Screening of Some Heterocyclic Structures toward Novel Antibacterial Agents. J. Iran. Chem. Soc. 2018, 15, 621–628. [Google Scholar] [CrossRef]
- Miguel, A.; Hsin, J.; Liu, T.; Tang, G.; Altman, R.B.; Huang, K.C. Variations in the Binding Pocket of an Inhibitor of the Bacterial Division Protein FtsZ across Genotypes and Species. PLoS Comput. Biol. 2015, 11, e1004117. [Google Scholar] [CrossRef]
- Then, A.; Zhang, H.; Ibrahim, B.; Schuster, S. Bioinformatics Analysis of the Periodicity in Proteins with Coiled-Coil Structure—Enumerating All Decompositions of Sequence Periods. Int. J. Mol. Sci. 2022, 23, 8692. [Google Scholar] [CrossRef]
- Desai, J.; Liu, Y.; Wei, H.; Liu, W.; Ko, T.; Guo, R.; Oldfield, E. Structure, Function, and Inhibition of Staphylococcus Aureus Heptaprenyl Diphosphate Synthase. ChemMedChem 2016, 11, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, D.; Fujihashi, M.; Okuyama, N.; Kobayashi, Y.; Noike, M.; Koyama, T.; Miki, K. Crystal Structure of Heterodimeric Hexaprenyl Diphosphate Synthase from Micrococcus Luteus B-P 26 Reveals That the Small Subunit Is Directly Involved in the Product Chain Length Regulation. J. Biol. Chem. 2011, 286, 3729–3740. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.; Al-Majid, A.M.; Al-Qahtany, B.M.; Ali, M.; Teleb, M.; Al-Agamy, M.H.; Naz, S.; Ul-Haq, Z. Synthesis, Antimicrobial Activity, Pharmacophore Modeling and Molecular Docking Studies of New Pyrazole-Dimedone Hybrid Architectures. Chem. Cent. J. 2018, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Nariya, P.B.; Bhalodia, N.R.; Shukla, V.J.; Nariya, M.B. In Vitro Evaluation of Antimicrobial and Antifungal Activity of Cordia Macleodii Bark. (HOOK.F. & THOMSON). Int. J. PharmTech Res. 2010, 2, 2522–2526. [Google Scholar]
- Rai, N.P.; Narayanaswamy, V.K.; Govender, T.; Manuprasad, B.K.; Shashikanth, S.; Arunachalam, P.N. Design, Synthesis, Characterization, and Antibacterial Activity of {5-Chloro-2-[(3-Substitutedphenyl-1,2,4-Oxadiazol-5-Yl)-Methoxy]-Phenyl} -(Phenyl)-Methanones. Eur. J. Med. Chem. 2010, 45, 2677–2682. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef]
- Lu, J.; Patel, S.; Sharma, N.; Soisson, S.M.; Kishii, R.; Takei, M.; Fukuda, Y.; Lumb, K.J.; Singh, S.B. Structures of Kibdelomycin Bound to Staphylococcus Aureus GyrB and ParE Showed a Novel U-Shaped Binding Mode. ACS Chem. Biol. 2014, 9, 2023–2031. [Google Scholar] [CrossRef]
- Cho, J.H.; Park, Y.; Ahn, J.H.; Lim, Y.; Rhee, S. Structural and Functional Insights into O-Methyltransferase from Bacillus Cereus. J. Mol. Biol. 2008, 382, 987–997. [Google Scholar] [CrossRef]
- Raymond, A.; Lovell, S.; Lorimer, D.; Walchli, J.; Mixon, M.; Wallace, E.; Thompkins, K.; Archer, K.; Burgin, A.; Stewart, L. Combined Protein Construct and Synthetic Gene Engineering for Heterologous Protein Expression and Crystallization Using Gene Composer. BMC Biotechnol. 2009, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Daoud, I.; Melkemi, N.; Salah, T.; Ghalem, S. Combined QSAR, Molecular Docking and Molecular Dynamics Study on New Acetylcholinesterase and Butyrylcholinesterase Inhibitors; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 74, ISBN 0000000191. [Google Scholar]
- Daoud, I.; Mesli, F.; Melkemi, N.; Ghalem, S.; Salah, T. Discovery of Potential SARS-CoV 3CL Protease Inhibitors from Approved Antiviral Drugs Using: Virtual Screening, Molecular Docking, Pharmacophore Mapping Evaluation and Dynamics Simulation. J. Biomol. Struct. Dyn. 2022, 40, 12574–12591. [Google Scholar] [CrossRef] [PubMed]
- Bajda, M.; Wiȩckowska, A.; Hebda, M.; Guzior, N.; Sotriffer, C.A.; Malawska, B. Structure-Based Search for New Inhibitors of Cholinesterases. Int. J. Mol. Sci. 2013, 14, 5608–5632. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst (% w/w) | Yield (%) | Reaction Time (s) |
---|---|---|---|
1 | 10 | 26 | 150 |
2 | 20 | 45 | 120 |
3 | 30 | 65 | 90 |
4 | 40 | 63 | 90 |
5 | 50 | 34 | 120 |
Entry | Structure | Yield (%) | Yield (Ref %) | Melting Point (°C) | Melting Point (Ref °C) | Reaction Time (s) |
---|---|---|---|---|---|---|
3a | 70 | 80 [28] | 195–197 | 190–192 [28] | 240 | |
3b | 56 | 80 [18] | 191–193 | 220 [18] | 300 | |
3c | 63 | 94 [9] | 209–211 | 212–214 [9] | 90 | |
3d | 68 | 75 [28] | 229–231 | 236–238 [28] | 150 | |
3e | 57 | ----- | 264–266 | Not described | 200 | |
3f | 53 | 90 [9] | 219–221 | 222–224 [9] | 200 | |
3g | 52 | 70 [28] | 189–191 | 188–190 [28] | 200 | |
3h | 63 | 85 [28] | 230–232 | 236–238 [28] | 110 | |
3i | 65 | 83 [10] | 273–275 | 267–269 [10] | 90 | |
3j | 67 | 91 [10] | 249–251 | 276–278 [10] | 220 | |
3k | 64 | ----- | 231–233 | Not described | 180 |
Compounds | Gram-Positive Bacteria | ||||||
---|---|---|---|---|---|---|---|
S. aureus | M. luteus | L. monocytogenes | E. faecalis | B. cereus | B. subtilis | ||
3a | 8.6 ± 0.3 | 8.3 ± 0.3 | / | / | / | 8.3 ± 0.3 | |
3b | 8.3 ± 0.3 | / | / | / | / | / | |
3c | 12.3 ± 0.3 | 15.6 ± 0.3 | / | / | 11 ± 0.6 | 9.3 ± 0.3 | |
3d | / | / | / | / | / | ||
3e | 8.6 ± 0,3 | 9.6 ± 0.3 | 7 ± 0 | 7 ± 0 | / | ||
3f | 8.3 ± 0.3 | 8 ± 0.0 | / | 10.6 ± 0.3 | 9.3 ± 0.3 | ||
3g | 12.6 ± 0.3 | / | / | / | / | 19.3 ± 0.3 | |
3h | 7.3 ± 0.3 | / | / | 7 ±0.0 | 7 ± 0.0 | ||
3i | 8.6 ± 0.3 | / | / | / | / | 7.6 ± 0.3 | |
3j | 12.3 ± 0.3 | 13.3 ± 0.3 | / | 11.3 ± 0.3 | 8.6 ± 0.3 | ||
3k | 10.6 ± 0.3 | 9.3 ± 0.3 | / | 12.3 ± 0.3 | 9.3 ± 0.3 | ||
Gram-Negative Bacteria | Yeasts | ||||||
Compounds | E. coli | K. pneumoniae | P. areuginosa | S. typhymerium | C. albicans ATCC 26790 | C. albicans ATCC 10231 | C. albicans IPP 444 |
3a | 8.6 ± 0.3 | / | / | / | 9.6 ± 0.3 | 15 ± 1 | / |
3b | / | / | / | / | / | / | / |
3c | 6 ± 0.0 | / | / | / | 13 ± 0.57 | 18.3 ± 0.6 | / |
3d | / | / | / | / | 8.6 ± 0.3 | / | / |
3e | / | / | / | / | / | / | / |
3f | / | / | / | / | 10 ± 0.5 | 11.6 ± 0.3 | / |
3g | / | / | / | / | 13 ± 0.5 | 19.3 ± 0.3 | / |
3h | / | / | / | / | 14 ± 0.57 | / | / |
3i | / | / | / | / | / | / | / |
3j | / | / | / | / | 15 ± 0.3 | 12.3 ± 0.5 | 14 ± 0.5 |
3k | / | / | / | / | 15.6 ± 0.3 | 12.6 ± 0.3 | 14.6 ± 0.3 |
Product | S. aureus | M. luteus | B. cereus | B. subtilis | C. albicans 26790 | C. albicans 10231 | C. albicans IPP 444 | |
---|---|---|---|---|---|---|---|---|
3a | MIC | / | / | / | / | / | 5 | / |
MBC | / | / | / | / | / | 10 | / | |
3c | MIC | / | / | / | / | 5 | 5 | / |
MBC | / | / | / | / | 10 | 10 | / | |
3g | MIC | 5 | / | / | 2.5 | 5 | 2.5 | / |
MBC | 10 | / | / | 2.5 | 10 | 5 | / | |
3h | MIC | / | / | / | / | 5 | / | / |
MBC | / | / | / | / | 5 | / | / | |
3j | MIC | 10 | 5 | / | / | 2.5 | 5 | 5 |
MBC | 10 | 10 | / | / | 5 | 5 | 10 | |
3k | MIC | / | / | 20 | / | 2.5 | 5 | 2.5 |
MBC | / | / | 20 | / | 2.5 | 10 | 5 |
S. aureus (PDB ID: 4URM) | ||||||||
---|---|---|---|---|---|---|---|---|
Compounds | S-Score (kcal/mol) | RMSD (Å) | Bonds Between Atoms of Compounds and Active Site Residues | |||||
Atom of Compound | Involved Receptor Atoms | Involved Receptor Residues | Category | Type of Interaction | Distance (Å) | |||
3g | −5.241 | 2.016 | N | HH21 | ARG144(A) | Hydrogen Bond | Conventional H-Bond | 2.70 |
N | OE2 | GLU58(A) | Hydrogen Bond | Conventional H-Bond | 3.23 | |||
H | OD2 | ASP81(A) | Hydrogen Bond | Carbon–H-Bond | 2.93 | |||
H | OD2 | ASP81(A) | Hydrogen Bond | Carbon–H-Bond | 2.61 | |||
/ | NH2 | ARG84(A) | Electrostatic | Pi–Cation | 3.84 | |||
/ | NH2 | ARG84(A) | Electrostatic | Pi–Cation | 4.46 | |||
/ | OE1 | GLU58(A) | Electrostatic | Pi–Anion | 4.48 | |||
/ | OE2 | GLU58(A) | Electrostatic | Pi–Anion | 3.64 | |||
/ | C | ASN54(A) | Hydrophobic | Amide–Pi Stacked | 4.94 | |||
/ | C | GLY85(A) | Hydrophobic | Amide–Pi Stacked | 5.31 | |||
/ | / | ARG84(A) | Hydrophobic | Pi–Alkyl | 5.11 | |||
/ | / | PRO87(A) | Hydrophobic | Pi–Alkyl | 4.75 | |||
/ | / | ARG84(A) | Hydrophobic | Pi–Alkyl | 5.42 | |||
/ | / | PRO87(A) | Hydrophobic | Pi–Alkyl | 5.13 | |||
/ | / | ILE86(A) | Hydrophobic | Pi–Alkyl | 4.31 | |||
3k | −4.871 | 1.898 | / | NH2 | ARG84(A) | Electrostatic | Pi–Cation | 4.78 |
/ | NH2 | ARG84(A) | Electrostatic | Pi–Cation | 4.49 | |||
/ | OE1 | GLU58(A) | Electrostatic | Pi-Anion | 4.57 | |||
C | / | ILE86(A) | Hydrophobic | Alkyl | 4.99 | |||
/ | / | PRO87(A) | Hydrophobic | Pi–Alkyl | 4.44 | |||
/ | / | PRO87(A) | Hydrophobic | Pi–Alkyl | 4.42 | |||
/ | / | ILE86(A) | Hydrophobic | Pi–Alkyl | 4.53 | |||
Native ligand (XAM) | −5.813 | 1.408 | OBB | HZ3 | LYS93(A) | Hydrogen Bond | Conventional H-Bond | 2.19 |
OBY | HZ2 | LYS11(A) | Hydrogen Bond | Conventional H-Bond | 1.99 | |||
CLX | HD3 | ARG84(A) | Hydrogen Bond | Carbon–H-Bond | 3.02 | |||
/ | / | ALA108(A) | Hydrophobic | Alkyl | 4.86 | |||
CLW | / | PRO87(A) | Hydrophobic | Alkyl | 5.09 | |||
CLX | / | ARG84(A) | Hydrophobic | Alkyl | 3.98 | |||
CLX | / | PRO87(A) | Hydrophobic | Alkyl | 4.70 | |||
CAK | / | MET94(A) | Hydrophobic | Alkyl | 5.09 | |||
CAK | / | VAL105(A) | Hydrophobic | Alkyl | 4.36 | |||
/ | / | PRO87(A) | Hydrophobic | Pi–Alkyl | 4.22 | |||
E. coli (PDB ID: 3FV5) | ||||||||
3k | −3.662 | 0.884 | H | OD2 | ASP69(A) | Hydrogen Bond | Carbon–H-Bond | 2.13 |
H | OD2 | ASP69(A) | Hydrogen Bond | Carbon–H-Bond | 2.41 | |||
/ | OE2 | GLU46(A) | Electrostatic | Pi–Anion | 3.96 | |||
/ | C | ASN42(A) | Hydrophobic | Amide–Pi Stacked | 4.27 | |||
/ | C | ASN42(A) | Hydrophobic | Amide–Pi Stacked | 4.21 | |||
C | / | PRO75(A) | Hydrophobic | Alkyl | 4.58 | |||
/ | / | MET74(A) | Hydrophobic | Pi–Alkyl | 4.78 | |||
/ | / | VAL165(A) | Hydrophobic | Pi–Alkyl | 5.19 | |||
/ | / | MET74(A) | Hydrophobic | Pi–Alkyl | 4.03 | |||
/ | / | MET74(A) | Hydrophobic | Pi–Alkyl | 5.06 | |||
Native Ligand (1EU) | −3.552 | 1.362 | N24 | HH11 | ARG132(A) | Hydrogen Bond | Conventional H-Bond | 2.50 |
H6 | OD2 | ASP69(A) | Hydrogen Bond | Conventional H-Bond | 1.76 | |||
H7 | OD2 | ASP69(A) | Hydrogen Bond | Conventional H-Bond | 2.35 | |||
H5 | OG | SER43(A) | Hydrogen Bond | Carbon–H-Bond | 2.89 | |||
H17 | O | GLY73(A) | Hydrogen Bond | Carbon–H-Bond | 2.63 | |||
/ | NH1 | ARG72(A) | Electrostatic | Pi–Cation | 3.63 | |||
/ | OE2 | GLU46(A) | Electrostatic | Pi–Anion | 4.09 | |||
/ | / | MET74(A) | Hydrophobic | Pi–Alkyl | 4.51 | |||
/ | / | PRO75(A) | Hydrophobic | Pi–Alkyl | 4.91 | |||
/ | / | ARG72(A) | Hydrophobic | Pi–Alkyl | 5.09 | |||
/ | / | PRO75(A) | Hydrophobic | Pi–Alkyl | 4.70 | |||
B. Cereus (PDB ID: 3DUW) | ||||||||
3j | −5.855 | 1.164 | N | HA | GLU90(A) | Hydrogen Bond | Carbon–H-Bond | 2.76 |
/ | OE2 | GLU90(A) | Electrostatic | Pi–Anion | 4.16 | |||
/ | OD1 | ASP140(A) | Electrostatic | Pi–Anion | 4.36 | |||
/ | / | HIS40(A) | Hydrophobic | Pi–Pi Stacked | 5.95 | |||
/ | C | ALA141(A) | Hydrophobic | Amide–Pi Stacked | 4.79 | |||
/ | C | ALA141(A) | Hydrophobic | Amide–Pi Stacked | 4.17 | |||
/ | / | ALA91(A) | Hydrophobic | Pi–Alkyl | 3.52 | |||
/ | / | ALA119(A) | Hydrophobic | Pi–Alkyl | 5.01 | |||
/ | / | ALA141(A) | Hydrophobic | Pi–Alkyl | 4.08 | |||
/ | / | ALA91(A) | Hydrophobic | Pi–Alkyl | 4.36 | |||
/ | / | ALA141(A) | Hydrophobic | Pi–Alkyl | 3.69 | |||
/ | / | ALA141(A) | Hydrophobic | Pi–Alkyl | 4.62 | |||
/ | / | LEU68(A) | Hydrophobic | Pi–Alkyl | 5.08 | |||
Native Ligand (SAH) | −5.616 | 1.623 | N7 | H | ALA119(A) | Hydrogen Bond | Conventional H-Bond | 2.56 |
O | HZ1 | LYS143(A) | Hydrogen Bond | Conventional H-Bond | 2.19 | |||
HN1 | O | ASP140(A) | Hydrogen Bond | Conventional H-Bond | 1.88 | |||
HN61 | OH | TYR149(A) | Hydrogen Bond | Conventional H-Bond | 2.78 | |||
O | HA | ALA141(A) | Hydrogen Bond | Carbon–H-Bond | 2.93 | |||
/ | OD1 | ASP142(A) | Electrostatic | Pi–Anion | 3.36 | |||
/ | OD2 | ASP142(A) | Electrostatic | Pi–Anion | 3.14 | |||
HN2 | OD2 | ASP140(A) | Electrostatic | Attractive charge | 2.00 | |||
OXT | NZ | LYS143(A) | Electrostatic | Attractive charge | 4.31 | |||
SD | / | HIS40(A) | Other | Pi–Sulfur | 5.65 | |||
/ | / | ALA91(A) | Hydrophobic | Pi–Alkyl | 3.80 | |||
/ | / | LEU118(A) | Hydrophobic | Pi–Alkyl | 5.30 | |||
/ | / | ALA119(A) | Hydrophobic | Pi–Alkyl | 5.09 | |||
/ | / | ALA141(A) | Hydrophobic | Pi–Alkyl | 4.75 | |||
/ | / | ALA91(A) | Hydrophobic | Pi–Alkyl | 4.69 | |||
/ | / | LEU118(A) | Hydrophobic | Pi–Alkyl | 4.66 | |||
B. Subtilis (PDB ID: 2RHL) | ||||||||
3g | −5.205 | 1. 634 | O | HG1 | THR109(A) | Hydrogen Bond | Conventional H-Bond | 2.95 |
H | O | MET105(A) | Hydrogen Bond | Carbon–H-Bond | 2.70 | |||
/ | NH1 | ARG143(A) | Electrostatic | Pi–Cation | 4.97 | |||
/ | OE1 | GLU139(A) | Electrostatic | Pi–Anion | 4.72 | |||
/ | C | GLY104(A) | Hydrophobic | Amide–Pi Stacked | 4.68 | |||
/ | C | GLY104(A) | Hydrophobic | Amide–Pi Stacked | 4.52 | |||
Native Ligand (GDP) | −6.077 | 1.336 | O1A | H | GLY21(A) | Hydrogen Bond | Conventional H-Bond | 2.01 |
O2 | H | GLY22(A) | Hydrogen Bond | Conventional H-Bond | 1.82 | |||
O2 | H | GLY23(A) | Hydrogen Bond | Conventional H-Bond | 2.76 | |||
O3B | H | ALA71(A) | Hydrogen Bond | Conventional H-Bond | 2.19 | |||
O3B | H | ALA72(A) | Hydrogen Bond | Conventional H-Bond | 2.65 | |||
O3B | H | ALA73(A) | Hydrogen Bond | Conventional H-Bond | 2.13 | |||
O2B | H | GLY108(A) | Hydrogen Bond | Conventional H-Bond | 2.30 | |||
O2B | H | THR109(A) | Hydrogen Bond | Conventional H-Bond | 1.86 | |||
O2B | HG1 | THR109(A) | Hydrogen Bond | Conventional H-Bond | 2.30 | |||
O6 | HD21 | ASN166(A) | Hydrogen Bond | Conventional H-Bond | 2.19 | |||
HO3 | O | GLY104(A) | Hydrogen Bond | Conventional H-Bond | 2.90 | |||
O2 | HA2 | GLY22(A) | Hydrogen Bond | Carbon–H-Bond | 3.03 | |||
N3 | HA2 | GLY22(A) | Hydrogen Bond | Carbon–H-Bond | 2.57 | |||
O1B | HA | ALA73(A) | Hydrogen Bond | Carbon–H-Bond | 2.65 | |||
O2B | HA2 | GLY108(A) | Hydrogen Bond | Carbon–H-Bond | 2.98 | |||
O6 | HA | PRO135(A) | Hydrogen Bond | Carbon–H-Bond | 2.59 | |||
H2 | O | GLY104(A) | Hydrogen Bond | Carbon–H-Bond | 2.16 | |||
O1B | NH2 | ARG143(A) | Electrostatic | Attractive charge | 4.10 | |||
/ | / | PHE183(A) | Hydrophobic | Pi–Pi Shaped | 4.82 | |||
M. luteus (PDB ID: 3AQC) | ||||||||
3j | −4.958 | 1.424 | H | O | LYS170(B) | Hydrogen Bond | Carbon–H-Bond | 2.61 |
/ | OE2 | GLU146(B) | Electrostatic | Pi–Anion | 3.69 | |||
/ | OE2 | GLU146(B) | Electrostatic | Pi–Anion | 4.02 | |||
/ | HB2 | SER80(B) | Hydrophobic | Pi–Sigma | 2.66 | |||
/ | / | HIS83(B) | Hydrophobic | Pi-Pi Stacked | 5.61 | |||
/ | / | HIS83(B) | Hydrophobic | Pi-Pi Stacked | 5.72 | |||
/ | / | VAL142(B) | Hydrophobic | Pi–Alkyl | 5.49 | |||
/ | / | VAL142(B) | Hydrophobic | Pi–Alkyl | 5.31 | |||
/ | / | CYS143(B) | Hydrophobic | Pi–Alkyl | 5.11 | |||
Native Ligand (2DE) | −7.534 | 1.144 | O1A | HZ2 | LYS170(B) | Hydrogen Bond | Conventional H-Bond | 1.71 |
O1A | HE3 | LYS170(B) | Hydrogen Bond | Carbon–H-Bond | 2.87 | |||
H2 | OE2 | GLU146(B) | Hydrogen Bond | Carbon–H-Bond | 2.47 | |||
O3B | HZ1 | LYS225(B) | Electrostatic | Attractive charge | 2.13 | |||
O3B | NH1 | ARG93(B) | Electrostatic | Attractive charge | 4.10 | |||
O2B | NZ | LYS170(B) | Electrostatic | Attractive charge | 4.96 | |||
O2B | NZ | LYS170(B) | Electrostatic | Attractive charge | 4.58 | |||
O2B | NZ | LYS225(B) | Electrostatic | Attractive charge | 3.84 | |||
PA | OD2 | ASP84(B) | Electrostatic | Attractive charge | 3.69 | |||
PA | OD2 | ASP88(B) | Electrostatic | Attractive charge | 3.87 | |||
PA | OE2 | GLU146(B) | Electrostatic | Attractive charge | 5.36 | |||
PB | OD2 | ASP84(B) | Electrostatic | Attractive charge | 4.52 | |||
PB | OD2 | ASP88(B) | Electrostatic | Attractive charge | 4.40 | |||
PB | OD2 | ASP211(B) | Electrostatic | Attractive charge | 5.34 | |||
PB | OD1 | ASP230(B) | Electrostatic | Attractive charge | 5.06 | |||
C10 | / | VAL142(B) | Hydrophobic | Alkyl | 5.13 | |||
C14 | / | ILE87(B) | Hydrophobic | Alkyl | 5.25 | |||
C15 | / | HIS83(B) | Hydrophobic | Pi–Alkyl | 5.30 | |||
C. albicans (PDB ID: 3Q70) | ||||||||
3k | −5.040 | 1.501 | H | OG1 | THR221(A) | Hydrogen Bond | Carbon–H-Bond | 2.65 |
/ | / | TYR84(A) | Hydrophobic | Pi–Pi Stacked | 5.27 | |||
/ | / | TYR225(A) | Hydrophobic | Pi–Pi Stacked | 5.02 | |||
C | / | ILE119(A) | Hydrophobic | Alkyl | 4.00 | |||
C | / | ILE123(A) | Hydrophobic | Alkyl | 5.22 | |||
C | / | ILE123(A) | Hydrophobic | Alkyl | 4.97 | |||
C | / | TYR84(A) | Hydrophobic | Pi–Alkyl | 4.43 | |||
C | / | TYR84(A) | Hydrophobic | Pi–Alkyl | 4.56 | |||
Native ligand (RIT) | −5.107 | 1.464 | O24 | HN | GLY85(A) | Hydrogen Bond | Conventional H-Bond | 2.42 |
H5 | O | GLY220(A) | Hydrogen Bond | Conventional H-Bond | 2.87 | |||
H5 | OG1 | THR221(A) | Hydrogen Bond | Conventional H-Bond | 2.54 | |||
H18 | O | GLY220(A) | Hydrogen Bond | Conventional H-Bond | 2.38 | |||
H4 | OD2 | ASP218(A) | Hydrogen Bond | Carbon H-Bond | 3.09 | |||
/ | / | TYR225(A) | Hydrophobic | Pi–Pi Stacked | 4.90 | |||
/ | / | TYR51(A) | Hydrophobic | Pi–Pi Stacked | 4.40 | |||
C64 | / | ILE30(A) | Hydrophobic | Alkyl | 5.20 | |||
C68 | / | VAL12(A) | Hydrophobic | Alkyl | 5.49 | |||
C68 | / | ILE30(A) | Hydrophobic | Alkyl | 5.29 | |||
C86 | / | TYR51(A) | Hydrophobic | Pi–Alkyl | 4.03 |
Compounds | Physicochemical Properties | Medicinal Chemistry | |||||||
---|---|---|---|---|---|---|---|---|---|
Drug-Likeness Rules | |||||||||
TPSA (Å2) | n-ROT | MW (g/mol) | MLog P | n-HA | n-HD | Lipinski | Veber | Egan | |
WLogP | |||||||||
(0~140) | (0~11) | (100~500) | (0~5) | (0~12) | (0~7) | ||||
3g | 39.42 | 2 | 225.25 | 1.49 | 3 | 0 | Accepted | Accepted | Accepted |
2.40 | |||||||||
3k | 30.19 | 1 | 223.27 | 2.33 | 2 | 0 | Accepted | Accepted | Accepted |
3.01 | |||||||||
3j | 30.19 | 1 | 245.28 | 2.65 | 2 | 0 | Accepted | Accepted | Accepted |
3.55 |
ADME | Parameters | 3g | 3k | 3j |
---|---|---|---|---|
Absorption | Caco2 (10−6 cm/s) | 1.178 | 1.417 | 1.526 |
HIA (%) | 99.207 | 97.682 | 97.629 | |
Distribution | CNS (log PS) | −1.800 | −1.692 | −1.462 |
BBB (log BB) | 0.311 | 0.030 | 0.123 | |
Metabolism | CYP1A2 inhibitor | Yes | Yes | Yes |
CYP2C19 Inhibitor | No | No | No | |
CYP2D6 substrate | No | No | No | |
CYP3A4 substrate | No | No | No | |
Excretion | Renal OCT2 substrate | No | No | No |
Total Clearance (log mL/min/kg) | 0.744 | 0.780 | 0.737 | |
Toxicity | hERG I and II inhibitors | No | No | No |
Hepatotoxicity | No | No | No |
Gram-Positive Bacteria | |||||
---|---|---|---|---|---|
Staphylococcus aureus ATCC 25923 | Micrococcus luteus ATCC 9341 | Listeria monocytogenes ATCC 15313 | Bacillus cereus ATCC 10876 | Bacillus subtilis ATCC6633 | Enterococcus faecalis ATCC29212 |
Gram-Negative Bacteria | |||||
Escherichia coli ATCC 25912 | Pseudomonas aeruginosa ATCC 27853 | Klebsiella pneumoniae ATCC 700603 | Salmonella typhimurium ATCC 13311 | ||
Yeasts | |||||
Candida albicans ATCC 26790 | Candida albicans ATCC 10231 | Candida albicans IPP 444 |
Targets PDB | Methods | Organism | Chain | Sequence Length | Resolution (Å) | Native Ligands |
---|---|---|---|---|---|---|
4URM | X-ray diffraction | Staphylococcus aureus | A, B | 123 | 1.85 | 9JH |
3FV5 | X-ray diffraction | E. coli K-12 | A, B | 201 | 1.80 | 1EU |
3DUW | X-ray diffraction | B. cereus | A, B | 223 | 1.20 | SAH |
2RHL | X-ray diffraction | Bacillus subtilis | A, B | 325 | 2.45 | GDP |
3AQC | X-ray diffraction | M. luteus | A, B, C, D | 325 | 2.61 | 2DE |
3Q70 | X-ray diffraction | C. albicans | A | 342 | 1.40 | RIT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benzenine, D.; Daoud, I.; Aissaoui, N.; Kibou, Z.; Seijas, J.A.; Vázquez-Tato, M.P.; Ziani-Cherif, C.; Belarbi, L.; Choukchou-Braham, N. Design, Synthesis, Molecular Docking, and ADME-Tox Investigations of Imidazo[1,2-a]Pyrimidines Derivatives as Antimicrobial Agents. Molecules 2024, 29, 5058. https://doi.org/10.3390/molecules29215058
Benzenine D, Daoud I, Aissaoui N, Kibou Z, Seijas JA, Vázquez-Tato MP, Ziani-Cherif C, Belarbi L, Choukchou-Braham N. Design, Synthesis, Molecular Docking, and ADME-Tox Investigations of Imidazo[1,2-a]Pyrimidines Derivatives as Antimicrobial Agents. Molecules. 2024; 29(21):5058. https://doi.org/10.3390/molecules29215058
Chicago/Turabian StyleBenzenine, Djamila, Ismail Daoud, Nadia Aissaoui, Zahira Kibou, Julio A. Seijas, M. Pilar Vázquez-Tato, Chewki Ziani-Cherif, Lahcen Belarbi, and Noureddine Choukchou-Braham. 2024. "Design, Synthesis, Molecular Docking, and ADME-Tox Investigations of Imidazo[1,2-a]Pyrimidines Derivatives as Antimicrobial Agents" Molecules 29, no. 21: 5058. https://doi.org/10.3390/molecules29215058
APA StyleBenzenine, D., Daoud, I., Aissaoui, N., Kibou, Z., Seijas, J. A., Vázquez-Tato, M. P., Ziani-Cherif, C., Belarbi, L., & Choukchou-Braham, N. (2024). Design, Synthesis, Molecular Docking, and ADME-Tox Investigations of Imidazo[1,2-a]Pyrimidines Derivatives as Antimicrobial Agents. Molecules, 29(21), 5058. https://doi.org/10.3390/molecules29215058